



- Content
- Structure
- Usage
- User profile



Application of data mining techniques to discover usage patterns from web data

# What Can Web Usage Mining Do?

- Statistical analysis
- Recommendation
- Caching
- Improve web site design
- $\ensuremath{\circledast}\xspace$  Identify user groups and interests
- Provide market intelligence
- ۰...

# How Does Web Usage Mining Do it?

- Data collection
- Preprocessing
- Pattern discovery
- Pattern analysis

# Data Collected User interaction with a web site Page requested, request parameter, IP address, time stamp ... User interaction with a web page Mouse clicks, keyboard input, window resizing and scrolling ...





### Pattern Discovery – Sequential Pattern

To get to page P<sub>3</sub> from page P<sub>1</sub>, users usually take the path P<sub>1</sub> $\rightarrow$ P<sub>4</sub> $\rightarrow$ P<sub>5</sub> $\rightarrow$ P<sub>3</sub> instead of P<sub>1</sub> $\rightarrow$ P<sub>2</sub> $\rightarrow$ P<sub>3</sub>.

Typical applications
 Improve web site design

## Pattern Discovery – Classification Users who visited page P<sub>1</sub> and P<sub>2</sub> but not P<sub>3</sub> are likely to be female in the 18-25 age group. Typical applications • User profiling • Market intelligence

### Pattern Discovery – Clustering

User clusters: users who demonstrated similar web browsing patterns. Page clusters: pages that have related content.

### Typical applications

- Identify user groups and interests
- Recommendation
- Content analysis

### Pattern Discovery – Probabilistic Modeling

At page  $P_1$ , the probability of a user going to visit  $P_2$  is 75%, and the probability of visiting  $P_3$  is 25%.

### Typical applications

- User action prediction
- Web traffic prediction
- Simulation

### Pattern Analysis

- Interpret patterns
- Visualize patterns
- Efficient storage, query, and analysis of patterns (like a data warehouse for patterns)

### Web Usage Mining in Action

Discovery of Significant Usage Patterns from Clusters of Clickstream Data, by Lin Lu, Margaret Dunham, and Yu Meng

### Data

- jcpenny.com's web log on 10/5/2003
- 1,463,180 sessions
- ♦593,223 user sessions
- 4000 sessions used in experiments
  - 2000 sessions with purchase
  - 2000 sessions without purchase

### Frequent Navigation Patterns – The Naïve Approach

### Preprocessing web log

- Remove entries generated by web crawlers
- Group page requests into sessions
  - E.g. (p<sub>1</sub>,p<sub>2</sub>,p<sub>3</sub>,p<sub>4</sub>), (p<sub>2</sub>,p<sub>4</sub>), (p<sub>2</sub>,p<sub>5</sub>,p<sub>4</sub>) ...

### Pattern discovery

 Apply a frequent sequential pattern discovery algorithm



# ... Problems with the Naïve Approach

- Should s<sub>1</sub> and s<sub>2</sub> be consider the same?
- Should s<sub>2</sub> and s<sub>3</sub> be consider similar?
- How do we define session *similarity*?
- Should s<sub>4</sub> be consider together with the other sessions?

































| . Experimental Results |                    |                  |                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|------------------------|--------------------|------------------|---------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cluster                | No. of<br>Sessions | Threshold<br>(A) | Average Session<br>Length | No. of<br>States | SUPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1                      | 1746               | 0.3              | 9.6                       | 98               | $\begin{array}{c} 1 & {\rm Seq.} C_1 - C_1 - C_1 - C_1 - C_1 - C_2 - C_1 \\ 2 & {\rm Seq.} (-C_1 - C_1 - C_2 - C_1 - C_1 \\ 3 & {\rm Seq.} (-C_1 - C_1 $ |  |  |

| . L. | vhei | iiiei |     | 1621 | JILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|------|-------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2    | 241  | 0.37  | 6.6 | 38   | $\begin{array}{c} 1. & S P_1 \stackrel{1}{P_2} \stackrel{1}{P_3} \stackrel{1}{P_3$ |
| 3    | 13   | 0.3   | 3.0 | 6    | 1. $S \sim C_1 \cdot P_1 \cdot P_1 \cdot P_2 \cdot E$<br>2. $S \sim C_1 \cdot P_1 - P_1 \cdot E$<br>3. $S \sim C_1 \cdot P_1 - P_2 \cdot E$<br>4. $S \sim C_1 \cdot P_1 - P_2 \cdot E$<br>5. $S \sim T_1 \cdot P_1 \cdot P_2 \cdot E$<br>6. $S \sim T_1 \cdot P_1 \cdot P_2 \cdot E$<br>8. $S \sim T_1 \cdot P_1 \cdot E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Summary

- Session abstraction I
- Similarity measure: sequence alignment
- Clustering: nearest neighbor
- Session abstraction II
- Markov model construction (per cluster)
- Significant Usage Pattern