

Mining Sequential Patterns

- <{computer},{printer},{printer
 cartridge}>
- \$ <{bread,milk},{bread,milk},{bread,milk},..>
- { home.jsp}, {search.jsp}, {product.jsp}
 , {product.jsp}, {search.jsp}...>

- Item, itemset
- Event = itemset
- A sequence is an ordered list of events
 - $< e_1 e_2 e_3 \dots e_l >$
 - E.g. <(a)(abc)(bc)(d)(ac)(f)>
- The length of a sequence is the number of items in the sequence, i.e. not the number of events

Sequences vs. Itemsets

- **�**{a,b,c}
 - # of 3-itemset(s)??
 - # of 3-sequence(s)??

Subsequence

- ♦A=<a₁a₂a₃...a_n>
- $B = \langle b_1 b_2 b_3 ... b_m \rangle$
- $\label{eq:alpha} \begin{array}{l} & \texttt{A} \text{ is a } \textit{subsequence} \text{ of } \texttt{B} \text{ if there exists} \\ 1 \leq j_1 < j_2 < \ldots < j_n \leq m \text{ such that } a_1 \subseteq b_{j_1}, a_2 \\ \subseteq b_{j_2}, \ldots, a_n \subseteq b_{j_n} \end{array}$

Subsequence Example

\$s=<(abc)(de)(f)>

What are the subsequences of s??

A frequent sequence is called a sequential pattern

Apriori Property Again

Every nonempty subsequence of a frequent sequence is frequent

From L_{k-1} to C_k

- Two sequences s₁ and s₂ are joinable if the subsequence obtained by dropping the first item in s₁ is the same as the subsequence obtained by dropping the last item in s₂
- \clubsuit The joined sequence is s_1 concatenated with the last item 1 of s_2
 - If the last two items in s₂ are in the same event,
 i is merged into the last event of s₁;
 - Otherwise i becomes a separate event

Probabilistic Relationship between Attributes and Class

Ten middle-aged, divorced, male borrowers have defaulted on their loans, but would the 11th one default as well?

Calculate $P(C_i | \mathbf{X})$

P(X) does not need to be calculated *Why??*P(C_i)??
P(X|C_i)??

Naive Bayesian Classification **X**=(x₁,x₂,...,x_n) Assume the attribute values are conditionally independent of one another (the *naive* assumption) $P(\mathbf{X} | C_i) = \prod_{i=1}^{n} P(x_i | C_i)$ $= P(x_1 | C_i) \times P(x_2 | C_i) \times \dots \times P(x_n | C_i)$

TID	Home	Marital Status	Annual Income	Defaulted Borrower
	Owner			
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
11	No	Married	120K	??

Conditional Independence in BBN

A node in a Bayesian network is conditionally independent of its nondescendants if its parents are known

Bayesian Classification Examples

- Output node Heart Disease
- Testing data
 - ()
 - (BP=high)
 - (BP=high,D=Healthy,E=Yes)

Bayesian Classification Examples – 2

P(HD = Yes | BP = High) $= \frac{P(BP = High | HD = Yes)P(HD = Yes)}{P(BP = High)}$ $= \frac{P(BP = High | HD = Yes)P(HD = Yes)}{\sum_{i=1}^{n} P(BP = High | HD = a_i)P(HD = a_i)}$ = 0.80

kNN Classification

- Find the k nearest neighbors of the test sample
- Classify the test sample with the majority class of its k nearest neighbors

About kNN

- Similarity/distance measures
- Index structures
- Local decision susceptible to noise

Artificial Neural Network (ANN)

Simulates the learning process of biological neural network

Perceptron Example: Parameters

- Input nodes: x₁, x₂, x₃
- Output node: y
- Weights: 0.1, 0.1, 0.1
- Bias: -0.5
- Learning rate: 0.25
- Activation function: sign function

