
CS422 Principles of Database Systems
SQL and Transactions

Chengyu Sun

California State University, Los Angeles

Structured Query Language
(SQL)

Data Definition Language (DDL)

� CREATE, DROP, ALTER

Data Manipulation Language (DML)

� SELECT, INSERT, DELETE, UPDATE

Data Control Language (DCL)

� GRANT, REVOKE

� COMMIT, ROLLBACK, SAVEPOINT

About SQL Dialects …

Each DBMS has its own SQL dialect

Basic syntax is mostly the same in all
dialects

Different in two major aspects

� Advanced SQL features, e.g. various types
of subqueries, recursive queries

� Non-standardized features, e.g. functions,
procedural languages

… About SQL Dialects

Generally speaking, anything can be
done in any dialect, just in different
ways

Stick to standard when possible, use
dialect when necessary

SQL Script

A text file contains SQL statements and
comments
� Statements: select, insert, create …

� Comments: lines started with --

Usually uses the .sql suffix

Access PostgreSQL Server

GUI client pgAdmin III

� Server

� Database

� SQL

Command line client psql

PostgreSQL Documentation

http://www.postgresql.org/docs/

Examples: Create Tables

Create the following tables:

� 1. students(id, name, email)

� 2. courses(id, name)

� 3. sections(id, course_id, year)

� 4. enrollment(id, section_id, student_id,
grade)

Naming Conventions

Use plural form for table names

Use singular form for column names

Use underscore to concatenate multiple
words, e.g. course_id

� Do not use mixed cases in names (e.g.
CourseId) because many DBMS treat

names as case-insensitive

Data Type

Determines the storage required for a
field

Common data types

� String types

� Numeric types

� Date and time types

� Other types

String Types

char(n)

� Fixed-length strings

� Max length n

varchar(n)

� Variable-length strings

� Max length n

text

� For articles, essays, …

S U N

C H E N G Y

S U N

C H E N G Y

char(6)

varchar(6)

Numeric Types

Integer types
� integer, int

� Variations:
smallint, bigint,
long, …

� Auto increment
� AUTO_INCREMENT

� Serial

Boolean
� boolean, bool

Floating-point types
� real

� Variations: float,
double, …

Arbitrary precision
number
� decimal(m,n)

� numeric(m,n)

Date and Time Types

date – YYYY-MM-DD

time – HH:MM:SS

datetime – YYYY-MM-DD HH:MM:SS

timestamp – YYYY-MM-DD HH:MM:SS

Data Integrity Constraints

Not NULL

Default

Unique

Primary key

� Unique + Not NULL

� Only one primary key per table

Foreign key

Check

Constraint Syntax

Column constraint

Table constraint

Named constraint

Examples: Modify Tables

Add grade point to grades

� 5. Create grades table

� 6. Drop the the grade column in the
enrollment table

� 7. Add a grade_id column to the
enrollment table

� 8. Add a foreign key constraint to the
grade_id column

About ALTER TABLE

Modify tables

� Name

� Schema

Modify constraints

� Add, remove

Modify columns

� Add, remove

� Name

� Type

Exactly what operations are supported depend on the DBMS.

Delete Table

drop table table_name;

Examples: Populate Tables

Populate the tables we created so far

� 9. Insert a record in each table

� 10. Create all sections for 2009

SQL Literals

Number: 10, 30.2

String: ‘CPU’, ‘John’’s Kitchen’

Date: ‘2007-06-01’

Time: ‘12:00:00’

Boolean: ‘t’, ‘f’, 1, 0

NULL

Sample Database: University

id namedepartments

id name department_idfaculty

id name graduation_date major_idstudents

id letter valuegrades

id title department_idcourses

id course_id instructor_id yearsections

id student_id section_id grade_idenrollment

Examples: Simple Selection

11. Find the sections taught by
instructor #1 in 2004

12. List the names of the students
whose names start with “A” in
alphabetic order

13. List the id’s of the courses that were
offered before 2009

SQL Operators

Arithmetic

� +, -, *, /, %

Comparison

� <, >, <=, >=,=,<>

� between

Logical

� and, or, not

String

� like

� ||

Other

� is null

� in

� distinct

� order by

LIKE

Pattern matching

� %: any zero or more characters

� .: any single character

� [abc], [a-z], [0-9]: range

� * -- zero or more instances of the
preceding character

Example: Functions

14. Find the students who graduated in
June

15. Find the students who graduated in
the last six months

Functions in PostgreSQL

http://www.postgresql.org/docs/8.3/int
eractive/functions.html

Common Functions in
Databases

Numerical functions

String functions

Date and time functions

NULL related functions

Aggregation functions

Most functions are DBMS specific.

Numerical functions

Precision functions

Power and square root

Logarithmic functions

Trigonometric functions

Random number generator

String Functions

String length

Concatenation

Locate/extract substring

Trim white spaces

Change cases

Format numbers or dates

Date and Time Functions

Extract date or time field

Add or subtract a time interval

Get current date or time

Convert string to date or time

NULL Related Functions

If NULL then something

If something then NULL

Examples: Joins

16. Find the names of the departments
that offer the course “Databases”

17. Find the names of the faculty who
taught the course “Databases”

18. Find the courses that were not
offered in 2001

Join Syntax

Equi-join syntax

Inner join syntax

Inner Join

a.k.a Join

Combine two rows (one from each
table) if they meet the join condition

In other words, the results include the
matching rows from the two tables

Inner Join Example

A B

1 10

2 12

C D

1 23

3 32

4 34

table1 table2

table1 inner join table2 on A=C

A B C D

1 10 1 23

Outer Joins

Include the results of an Inner Join and
the unmatched rows from one or both
join tables

Left Outer Join

a.k.a. Left Join

table1 left outer join table2 on A=C

A B C D

1 10 1 23

2 12 null null

A B

1 10

2 12

C D

1 23

3 32

4 34

table1

table2

Right Outer Join

a.k.a. Right Join

table1 right outer join table2 on A=C

A B C D

1 10 1 23

null null 3 32

null null 4 34

A B

1 10

2 12

C D

1 23

3 32

4 34

table1

table2

Full Outer Join

a.k.a. Full Join

table1 full outer join table2 on A=C

A B C D

1 10 1 23

2 12 null null

null null 3 32

null null 4 34

A B

1 10

2 12

C D

1 23

3 32

4 34

table1

table2

Examples: Subqueries

19. Find the student with the earliest
graduation date

20. Find the departments that offered
classes in 2001

21. Find the faculty who taught classes
in 2001

Query Results

Query results are either a table or a
value*

� E.g. select * from products or
select count(*) from products

Query results can be used in places
where a table/value can be used

* A value can also be considered as a table with only

one row and one column

Correlated Subquery

The inner query uses column(s) from
the outer query

� For example:

select * from faculty f where exists
(select * from sections

where year = 2001
and instructor_id = f.id);

How Correlated Subqueries
Work

Outer query

(1, Turing, 10)

(2, Newton, 20)

Inner
Query

WHERE
conditions

result
Inner
Query

WHERE
conditions

(5, Joe, 30)
Inner
Query

WHERE
conditions

result

Examples: Set Operations

22. List all the names of the students
and the faculty

23. List the names that appear in both
the students table and the faculty
table

24. List the names that appear in the
students table but not in the
faculty table

Set Operations

Union

� {1,2,3} ∪ {2,3,4} = {1,2,3,4}

Intersect

� {1,2,3} ∩ {2,3,4} = {2,3}

Difference

� {1,2,3} – {2,3,4} = {1}

Set Operations in Databases

UNION

INTERCEPT

EXCEPT

About UNION

Combine result tables of SELECT statements

The result tables must have the same number
of columns

The corresponding columns must have the
same (or at least “compatible”) type

Duplicates in union results
� UNION – automatically remove duplicates

� UNION ALL – keep duplicates

INTERSECT and EXCEPT

Same syntax as UNION

Some databases do not support
INTERCEPT and EXCEPT, but the
operations can be done in different
ways

� How??

Example: Aggregation
Functions

25. Find the earliest graduation date

26. Find the number of courses offered
by the Computer Science Department

Aggregation Functions

Operate on multiple rows and return a
single result
� sum

� avg

� count

� max and min

Be Careful with NULL

3

2

1

product_id

200null1342193

100

20

quantity

nullnull

1001020301

priceupc

inventory

max(price)?? min(price)?? avg(price)??

count(upc)?? count(*)??

sum(quantity) ??

Example: Aggregation Queries

27. List the number of students in each
section

28. List the number courses offered by
department

29. List the number of students
graduated by year

30. Find the years in which there were
more than 2 students graduated

Understand GROUP BY …

Without aggregation/GROUP BY

select section_id, student_id from enrollment;

113

143

243

433

453

653

student_idsection_id

… Understand GROUP BY

With aggregation/GROUP BY

select section_id, count(student_id) from enrollment
group by section_id;

Grouping
attribute

Aggregation
attribute

113

143

243

433

453

653

student_idsection_id

count=1

count=2

count=1

count=2

How GROUP BY Works

1. Calculate the results without
aggregation/GROUP BY

2. Divide the result rows into groups that
share the same value in the grouping
attribute(s)

3. Apply the aggregation function(s) to the
aggregation attribute(s) for each group

The result attributes must be either a group attribute or
a aggregation attribute.

HAVING vs. WHERE

1. Calculate the results without
aggregation/GROUP BY

2. Divide the result rows into
groups that share the same value
in the grouping attribute(s)

3. Apply the aggregation function(s)
to the aggregation attribute(s)
for each group

4. Final results

WHERE conditions

HAVING conditions

Example: Top N Queries

31. Find the top 2 sections with the
most students

32. Find the names of the top 3 faculty
who taught the most number of
sections

Top N Queries in PostgreSQL

Using ORDER BY, LIMIT and OFFSET

select * from students
order by graduation_date asc
limit 3
offset 2;

What if there is a tie??

Examples: Update and Delete

33. Change the name and
department_id of faculty #5 to “John”
and 10, respectively

34. Delete all the enrollment records of
the Elocution class in 2001

35. Change all the B+ grades in the
Calculus class in 2001 to A-

Update and Delete

delete from table [where condition(s)];

update table set field=value [, …]
[where condition(s)];

Need for Transactions …

Not all operations can be done with a single,
atomic SQL statement, e.g. transferring
money from one bank account to anther:

-- 1. Check the balance of account #1
select balance from accounts where id = 1;

-- 2. Withdraw $100 from account #1
update accounts set balance = balance – 100

where id = 1;

-- 3. Deposit $100 to account #2
update accounts set balance = balance + 100

where id = 2;

… Need for Transactions …

Bad things could happen due to
concurrent access and/or system failure

My wife withdraws
all the money in
account #1

-- 1. Check the balance of account #1
select balance from accounts where id = 1;

-- 2. Withdraw $100 from account #1
update accounts set balance = balance – 100

where id = 1;

-- 3. Deposit $100 to account #2
update accounts set balance = balance + 100

where id = 2;

… Need for Transactions …

Bad things could happen due to
concurrent access and/or system failure

-- 1. Check the balance of account #1
select balance from accounts where id = 1;

-- 2. Withdraw $100 from account #1
update accounts set balance = balance – 100

where id = 1;

-- 3. Deposit $100 to account #2
update accounts set balance = balance + 100

where id = 2;

My wife checks the
balances of both
accounts and notices
that $100 is missing

… Need for Transactions

Bad things could happen due to
concurrent access and/or system failure

-- 1. Check the balance of account #1
select balance from accounts where id = 1;

-- 2. Withdraw $100 from account #1
update accounts set balance = balance – 100

where id = 1;

-- 3. Deposit $100 to account #2
update accounts set balance = balance + 100

where id = 2;

System crash

Transaction

A transaction is a group of SQL
statements treated by the DBMS as a
single unit of work

Transaction Statements

Start a transaction
� BEGIN, START TRANSACTION

End a transaction
� COMMIT

� ROLLBACK

Nested transaction
� SAVEPOINT

� ROLLBACK TO SAVEPOINT

Example: Transactions

Use a transaction to add two records to
the faculty table

� 36. Abort the transaction

� 37. Commit the transaction

What happens if another transaction access the faculty
table at the same time??

ACID Properties

Database transactions are expected to
have ACID properties

� Atomic

� Consistent

� Isolated

� Durable

Atomicity

A transaction completes or fails as a
whole, i.e. either all operations in the
transaction are performed or none of
them are.

Consistency

Transaction should preserve database
constraints.

Durability

The changes made by committed
transactions are guaranteed to be
permanent, despite possible system
failures.

Isolation

Databases are often accessed by many
users at the same time.

Multiple transactions running
concurrently should not interfere with
each other, i.e. it should appear to the
user that each transaction is executed
in isolation.

SQL Isolation Levels

Read uncommitted

Read committed

Repeatable read

Serializable

Isolation Example

6.99beer2

2.99milk1

pricenameid

items

Transaction #1:

-- MIN
select name, price from items where price = (select min(price) from items);
-- MAX
select name, price from items where price = (select max(price) from items);
-- COUNT
select count(*) from items;

Read Uncommitted

A transaction may read data written by
another transaction that has not
committed

Dirty Read

Transaction #2:

-- UPDATE
update items set price = 7.99 where name = ‘beer’;
-- ABORT
rollback;

Consider the interleaving of T1 and T2:

MIN, UPDATE, MAX, COUNT, ABORT

Read Committed

A transaction reads only committed
data.

Non-repeatable Read

Transaction #2:

-- UPDATE
update items set price = 7.99 where name = ‘milk’;
-- COMMIT
commit;

Consider the interleaving of T1 and T2:

MIN, UPDATE, COMMIT, MAX, COUNT

Repeatable Read

A transaction reads only committed
data, and, everything seen the first time
will be seen the second time.

Phantom Read

Transaction #2:

-- INSERT
insert into items values (3, ‘wine’, 10.99);
-- COMMIT
commit;

Consider the interleaving of T1 and T2:

MIN, MAX, INSERT, COMMIT, COUNT

Serializable

It appears to the user that the
transactions are executed one at a
time.

Isolation Levels in PostgreSQL

Read committed (default)

Serializable

About Concurrent
Transactions

Concurrency is needed to maximize
performance

Concurrent transactions can lead to
problems due to aborted operations and
interleaving operations

4 isolation levels

3 problems

Example: Indexes and Views

38. Create an index on the name
column of the students table

39. Create a view showing the id,
course name, instructor’s name, and
the number of students in each section

40. Remove the view

Search with an Index

Amy Bob Joe John Lisa Meg Sally Val

John

Bob

Amy Joe

Meg

Lisa Sally

[1
,

Jo
e
,

…
]

[2
,

B
o
b
,

…
]

[3
,

L
is

a
,

…
]

[4
,

A
m

y
,

…
]

[5
,

Jo
h
n
,…

]

[6
,

S
a
lly

,
…

]

[7
,

V
a
l,
 …

]

[8
,

M
e
g
,

…
]

Index

Table

About Indexes

Indexes make query execution more efficient

Many DBMS automatically create indexes for
primary key and unique columns

There are many different types of indexes
designed for different types of data and
operations

� E.g. B-tree, R-tree, Hash Index

About Views

A view can be used as a table in SQL
statements

Most views cannot be updated

The data in a view is dynamically
computed, i.e. changes to base tables
are automatically reflected in the view

Why Views

Present the data in a user friendly way while
keeping the base tables normalized

Simplify SQL queries

Security reasons

� Views can be access controlled just like tables

� Expose only part of the data to certain type of
users

Summary

Create and maintain database schema

Query and update data

Transactions and ACID

Indexes and views

