
CS422 Principles of Database Systems
Stored Procedures and Triggers

Chengyu Sun

California State University, Los Angeles

Stored Procedures

User-created functions that are stored
in the database just like other schema
elements

Procedure vs. Function

� A procedure does not return any value,
while a function does

� In PostgreSQL, a procedure is simply a
function that returns void

Example: Hello World

create function hello() returns void as $$
begin

raise notice 'Hello world in PL/pgSQL';
end;
$$ language plpgsql;

Example: Add10

create function add10(a integer) returns integer as $$
declare

b integer;
begin

b := 10;
return a + b;

end;
$$ language plpgsql;

Procedural Language (PL)

A programming language for writing
stored procedures

Usually based on some existing
language like SQL, Java, C#, Perl,
Python …

� E.g. PL/SQL, PL/Java, PL/Perl …

Why Use Stored Procedures?

Performance
� compiled and optimized code

� Save communication overhead

Security
� Access control

� Less data transferred over the wire

Simplify application code

Triggers for data integrity

Why Not To Use Stored
Procedures?

Portability

PL are generally more difficult to
develop and maintain than conventional
programming languages

� Less language features

� Less tool support

PostgreSQL PL/pgSQL

SQL + things you would expect from a
conventional programming language:

� Variables and types

� Control flow statements

� Functions

http://www.postgresql.org/docs/8.3/int
eractive/plpgsql.html

Elements of a Programming
Language

Comments

Literals

Variables and Types

Operators and expressions

Statements
� Special statements, e.g. input and output

Functions

Classes

Packages

Elements of PL/pgSQL

Comments
Literals

Variables and types
Operators and expression

Statements
Functions

Classes
Packages

Same as in SQL

Mostly the same as in SQL, with
a few special types and operators

Not supported

Basic Function Syntax

CREATE [OR REPLACE] FUNCTION name (parameters)
RETURNS type AS $$

DECLARE
declarations

BEGIN
statements

END;
$$ LANGUAGE plpgsql;

DROP FUNCTION name (argtype [, ...]);

Examples: Basics

Implement a function that takes two
integer parameters and displays the
sum

Basic Syntax and Output

Variable declaration

The assignment operator :=

RAISE

� Levels: DEBUG, LOG, INFO, NOTICE,
WARNING, EXCEPTION

� Format output with %

� http://www.postgresql.org/docs/8.3/intera
ctive/plpgsql-errors-and-messages.html

SELECT…INTO

SELECT result must be a single row.

SELECT select_list INTO variable_list
FROM table_list
[WHERE condition]
[ORDER BY order_list];

Branch Statement

NOTE: don’t forget the semicolon (;) after
END IF.

IF condition1 THEN
statements1

ELSIF condition2 THEN
statements2

ELSE
statements3

END IF;

Loop Statements

LOOP
statements
EXIT WHEN condition;
statements

END LOOP;

WHILE condition LOOP
statements

END LOOP;

FOR loop_variable IN [REVERSE]
lower_bound..upper_bound LOOP

statements
END LOOP;

Examples: Statements

Implement a function that returns the
name of a student given the student’s
id

Implement a function that calculates
factorial

Naming Conventions

We want to avoid using the same
names for variables and table columns

A simple naming convention:

� Prefix parameters with p_

� Prefix local variable with l_

� Prefix package global variable with g_

Special Types

%TYPE

%ROWTYPE

Each table defines a type

SetOf

Cursor

Examples: Types

Implement a function that randomly
returns two student records

Cursor

An iterator for a collection of records

We can use a cursor to process the
rows returned by a SELECT statement

Using Cursors

Declaration

OPEN

FETCH

CLOSE

Cursor - Open

OPEN cursor FOR query

The query is executed

The position of the cursor is before the
first row of the query results

Cursor - Fetch

FETCH cursor INTO target

Move the cursor to the next row

Return the row

Cursor - Fetch

FETCH cursor INTO target

Move the cursor to the next row

Return the row

Cursor - Fetch

If there is no next row

� target is set to NULL(s)

� A special variable FOUND is set to false

Cursor - Close

CLOSE cursor;

Query FOR Loop

FOR target IN query LOOP
statements

END LOOP;

Examples: Cursor and Query
For Loop

Implement a function that randomly
select 20% of the students

� Using cursor

� Using query for loop

About PL Programming

It’s just programming like you always do

Debug code one small piece at a time

Ask “How to do X” questions in the class
forum

Avoid re-implementing SQL

� For example, to compute max(price), use SELECT
MAX(price) instead of using a cursor to iterate
through all rows

Triggers

Procedures that are automatically
invoked when data is changed, e.g.
INSERT, DELETE, and UPDATE.

Common use of triggers

� Enforcing data integrity constraints

� Auditing

� Replication

Trigger Example

Create a trigger that audit the changes
to the grades in the enrollment table

create table grade_changes (
enrollment_id integer,
old_grade_id integer,
new_grade_id integer,
timestamp timestamp

);

Trigger Example: Trigger

create trigger grade_audit
after update
on enrollment
for each row
execute procedure grade_audit();

Trigger Syntax

CREATE TRIGGER name
{ BEFORE | AFTER } { event [OR ...] }
ON table
[FOR EACH { ROW | STATEMENT }]
EXECUTE PROCEDURE funcname (arguments);

DROP TRIGGER name ON table;

Triggering Events

INSERT

DELETE

UPDATE

Before or After

BEFORE: trigger fires before the
triggering event

AFTER: trigger fires after the event

Statement Trigger vs. Row
Trigger

Statement Trigger

� Default

� Fires once per statement

Row Trigger
� FOR EACH ROW

� Fires once per row

Trigger Example: Function

create or replace function grade_audit()
returns trigger as $$

begin
if new.id = old.id and new.grade_id <> old.grade_id then

insert into grade_changes values (
new.id, old.grade_id, new.grade_id,
current_timestamp);

end if;
return null;

end;
$$ language plpgsql;

About Trigger Functions

No parameters

Return type must be trigger

Special variables

� NEW, OLD

� Others:
http://www.postgresql.org/docs/8.3/intera
ctive/plpgsql-trigger.html

Return Value of a Trigger
Function

Statement triggers and after-row
triggers should return NULL

Before-row trigger can return NULL to

skip the operation on the current row

For row-level insert and update
triggers, the returned row becomes the
row that will be inserted or will replace
the row being updated

Examples: Enforce Data
Integrity Constraints

Create a trigger to enforce the
constraint that a professor can only
teach the courses offered by his or her
own department

� RAISE EXCEPTION would abort the

statement

