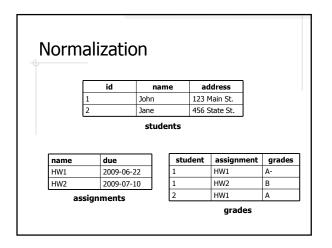
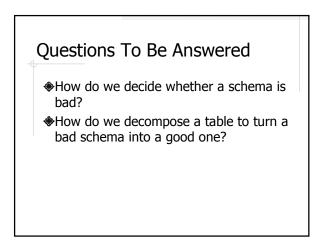
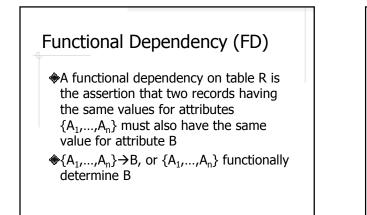


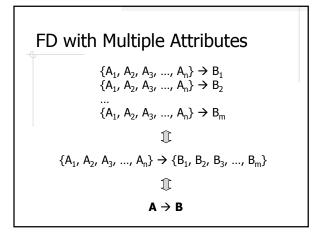
id	name	address	assignment	due	grad
1	John	123 Main St.	HW1	2009-06-22	A-
1	John	123 Main St.	HW2	2009-07-10	В
2	Jane	456 State St.	HW1	2009-06-22	A
	•	anomaly anomaly	ss_records /		

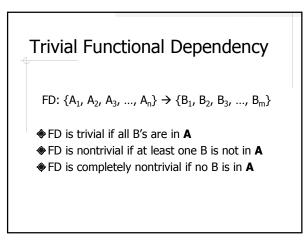


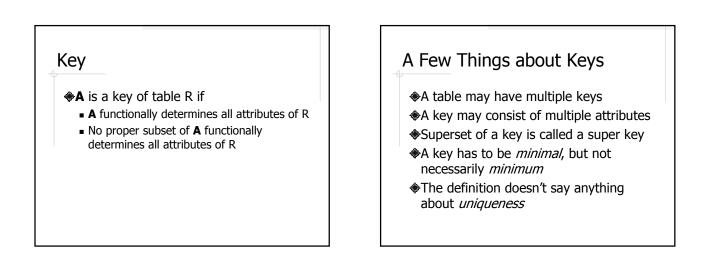


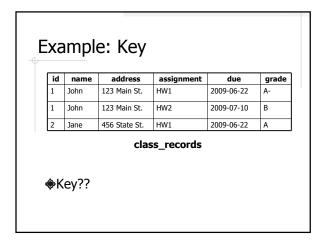


id	name	address	assignment	due	grad
1	John	123 Main St.	HW1	2009-06-22	A-
1	John	123 Main St.	HW2	2009-07-10	В
2	Jane	456 State St.	HW1	2009-06-22	A







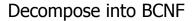


Boyce-Codd Normal Form (BCNF)

♦A table R is in BCNF if for every nontrivial FD A → B in R, A is a super key of R.

Or

The key, the whole key, and nothing but the key, so help me Codd.



- ♦ Given table **R** with FD's F
- ♦ Look among F for a BCNF violation $\mathbf{A} \rightarrow \mathbf{B}$
- Compute A⁺
- Decompose R into:

$$\mathbf{R_1} = \mathbf{A}^+$$

$$\mathbf{R_2} = (\mathbf{R} - \mathbf{A}^+) \cup \mathbf{A}$$

Continue decomposition with R₁ and R₂ until all resulting tables are BCNF

Closure of Attributes A+

- Given
 a set of attributes A
 - a set of functional dependencies S
- Closure of A under S, A⁺, is the set of all possible attributes that are functionally determined by A based on the functional dependencies inferable from S

Simple Closure Example

R: {A,B,C}
S: {A→B, B→C}
{A}+ ??
{B}+ ??
{C}+ ??

Armstrong's Axioms

Reflexivity If $\mathbf{B} \subseteq \mathbf{A}$, then $\mathbf{A} \rightarrow \mathbf{B}$

Transitivity If $\mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{B} \rightarrow \mathbf{C}$, then $\mathbf{A} \rightarrow \mathbf{C}$

Augmentation If $\mathbf{A} \rightarrow \mathbf{B}$, then $\mathbf{AC} \rightarrow \mathbf{BC}$ for any \mathbf{C}

Two More FD Rules

Union

If $\mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{A} \rightarrow \mathbf{C}$, then $\mathbf{A} \rightarrow \mathbf{BC}$

Decomposition If $\mathbf{A} \rightarrow \mathbf{BC}$, then $\mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{A} \rightarrow \mathbf{C}$

Computing A^+ *Initialize $A^+ = A$ *Search in S for $B \rightarrow C$ where $B \subseteq A^+$ $C \notin A^+$ *Add C to A^+ *Repeat until nothing can be added to A^+

Computing A+ Example

R(A, B, C, D, E, F)S: AB→C, BC→AD, D→E, CF →B

♦{A,B}⁺ ??
♦Is {A,B} a key ??
♦How do we find out the key(s) from R??

id	name	address	assignment	due	grade
1	John	123 Main St.	HW1	2009-06-22	A-
1	John	123 Main St.	HW2	2009-07-10	В
2	Jane	456 State St.	HW1	2009-06-22	A
		cla	ss_records		

