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Indexes

# Auxiliary structures that speed up
operations that are not supported
efficiently by the basic file organization

A Simple Index Example
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Index blocks Data blocks

Entries in an Index

# <key, rid>
# <key, list of rid>
# Data records

Organization of Index Entries

#Tree-structured

= B-tree, R-tree, Quad-tree, kd-tree, ...
# Hash-based

= Static, dynamic
# Other

= Bitmap, VA-file, ...

From BST to BBST to B

# Binary Search Tree
= Worst case??
# Balance Binary Search Tree
= E.g. AVL, Red-Black
#B-tree
= Why not use BBST in databases??




B-tree (B*-tree) Example B-tree Properties
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B-tree Operations B-tree Insert
# Search # Find the appropriate leaf
#Insert # Insert into the leaf
= there’s room > we're done
:@o Delete = NO room
+ split leaf node into two
+ insert a new <key,pointer> pair into leaf’s parent node
® Recursively apply previous step if necessary
= A split of current ROOT leads to a new ROOT
a) Insert key = 32 n=3
B-tree Insert Examples (@ Y
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(b) Insert key = 7 n=3
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(c) Insert key = 160
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(d) New root, insert 45 n=3
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B-tree Delete

# Find the appropriate leaf

# Delete from the leaf
» still at least half full > we’re done
= below half full — coalescing

+ borrow a <key,pointer> from one sibling node, or

+ merge with a sibling node, and delete from a parent
node

# Recursively apply previous step if necessary

B-tree Delete in Practice

# Coalescing is usually not implemented
because it's too hard and not worth it

Static Hash Index
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Hash Function

# A commonly used hash function: K%B
= K is the key value
= B is the number of buckets

Dynamic Hashing

# Problem of static hashing??
# Dynamic hashing
= Extendable Hash Index

Extendable Hash Index ...

# 2M buckets
= M is maximum depth of index

# Multiple buckets can share the same
block

= Empty buckets do not take up space
= Buckets are indexed by a bucket directory

... Extendable Hash Index

# Each block has a local depth 1, which
means that the hash values of the

records in the block has the same
rightmost L bit

#The bucket directory keeps a global
depth d, which is the highest local
depth

Extendable Hash Index
Example

M=4
# Hash function: K % 24
2 index entries per block

'K

Extendable Hashing (I)

Bucket directory Bucket blocks

d=0 L=0

insert 1000
insert 1011

1000 [ ‘=0
1011

ﬂ insert 0100




Extendable Hashing (II) Extendable Hashing (III)

Bucket directory Bucket blocks Bucket directory Bucket blocks
d=1 0 [ 1000 =L d=2 00 [ 1000 =2
0100 0100
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Readings

# Textbook Chapter 21.1 —21.4




