
1

CS422 Principles of Database Systems
Indexes

Chengyu Sun

California State University, Los Angeles

Indexes

Auxiliary structures that speed up
operations that are not supported
efficiently by the basic file organization

A Simple Index Example

Data blocks

10 10

20

30

40

50

60

70

80

20

30

40

50

60

70

80

Index blocks

Entries in an Index

<key, rid>

<key, list of rid>

Data records

Organization of Index Entries

Tree-structured

� B-tree, R-tree, Quad-tree, kd-tree, …

Hash-based

� Static, dynamic

Other

� Bitmap, VA-file, …

From BST to BBST to B

Binary Search Tree

� Worst case??

Balance Binary Search Tree

� E.g. AVL, Red-Black

B-tree

� Why not use BBST in databases??

2

B-tree (B+-tree) Example

100

30 150120

3530 101100 110 130120 156150 17953 11

root

internal
nodes

leaf
nodes

B-tree Properties

Each node occupies one block

Order n

� n keys, n+1 pointers

Nodes (except root) must be at least half full
� Internal node: (n+1)/2 pointers

� Leaf node: (n+1)/2 pointers

All leaf nodes are on the same level

B-tree Operations

Search

Insert

Delete

B-tree Insert

Find the appropriate leaf

Insert into the leaf

� there’s room � we’re done

� no room

� split leaf node into two

� insert a new <key,pointer> pair into leaf’s parent node

Recursively apply previous step if necessary
� A split of current ROOT leads to a new ROOT

B-tree Insert Examples

(a) simple case

� space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root

HGM Notes

(a) Insert key = 32 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3
2

HGM Notes

3

(b) Insert key = 7 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3 5

7

7

HGM Notes

(c) Insert key = 160 n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
8
0

1
6
0

1
7
9

HGM Notes

(d) New root, insert 45 n=3

1
0

2
0

3
0

1 2 3 1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

3
0new root

HGM Notes

B-tree Delete

Find the appropriate leaf

Delete from the leaf
� still at least half full � we’re done

� below half full – coalescing
� borrow a <key,pointer> from one sibling node, or

� merge with a sibling node, and delete from a parent
node

Recursively apply previous step if necessary

B-tree Delete in Practice

Coalescing is usually not implemented
because it’s too hard and not worth it

Static Hash Index

record

H primary
block overflow blocks

hash index

4

Hash Function

A commonly used hash function: K%B

� K is the key value

� B is the number of buckets

Dynamic Hashing

Problem of static hashing??

Dynamic hashing

� Extendable Hash Index

Extendable Hash Index …

2M buckets

� M is maximum depth of index

Multiple buckets can share the same
block

� Empty buckets do not take up space

� Buckets are indexed by a bucket directory

… Extendable Hash Index

Each block has a local depth L, which

means that the hash values of the
records in the block has the same
rightmost L bit

The bucket directory keeps a global
depth d, which is the highest local

depth

Extendable Hash Index
Example

M = 4

Hash function: K % 24

2 index entries per block

Extendable Hashing (I)

L=0

1000

1011

insert 1000
insert 1011

Bucket directory Bucket blocks

d=0

L=0d=0

insert 0100

5

Extendable Hashing (II)

1000

0100

L=1

1011 L=1

Bucket directory Bucket blocks

0d=1

1

insert 1110

Extendable Hashing (III)

1000

0100

L=2

1110 L=2

Bucket directory Bucket blocks

00d=2

10

01

11

1011 L=1

Readings

Textbook Chapter 21.1 – 21.4

