CS422 Principles of Database Systems

Indexes

Chengyu Sun
California State University, Los Angeles

Indexes

Auxiliary structures that speed up
operations that are not supported
efficiently by the basic file organization

A Simple Index Example

10 10

20 20

30 1 30

O] 90— 2

50 50

60 60

0
70

80 | —
80

Index blocks Data blocks

Entries in an Index

<key, rid>
<key, list of rid>
Data records

Organization of Index Entries

#Tree-structured

= B-tree, R-tree, Quad-tree, kd-tree, ...
Hash-based

= Static, dynamic
Other

= Bitmap, VA-file, ...

From BST to BBST to B

Binary Search Tree
= Worst case??
Balance Binary Search Tree
= E.g. AVL, Red-Black
#B-tree
= Why not use BBST in databases??

B-tree (B*-tree) Example B-tree Properties

100 |

Each node occupies one block
/ :L{ # Order n

keys, n+1 pointers

internal 0] | 120[150] " 0 KEYS, nrl P

nodes [T] [1< # Nodes (except root) must be at least half full
leaf = Internal node: [(n+1) /21 pointers
,fjdes / = Leaf node: | (n+1) /2] pointers

&
515 [11] [30]35] 100]101[110] [120]130] Ts0l12eT179 # All leaf nodes are on the same level
\ [

ANNE S AN e A
NI

B-tree Operations B-tree Insert
Search # Find the appropriate leaf
#Insert # Insert into the leaf
= there’s room > we're done
:@o Delete = NO room
+ split leaf node into two
+ insert a new <key,pointer> pair into leaf’s parent node
® Recursively apply previous step if necessary
= A split of current ROOT leads to a new ROOT
a) Insert key = 32 n=3
B-tree Insert Examples (@ Y
. 8
#(a) simple case —
= Space available in leaf v \.
(b) leaf overflow =
(c) non-leaf overflow / N\
T I
% (d) new root 1o o 2o
SRR

HGM Notes HGM Notes

(b) Insert key = 7 n=3

100

7

™~
430 |

N %

— 11
31

HGM Notes

(c) Insert key = 160

SN T

100
160

| 120
150
| ¥8Q
I

180

1150
—-156
g [

160
179
<180
<200

HGM Notes

(d) New root, insert 45 n=3

ool 29] R | |RaF| | 9%
[| || 1 |
I = IS —

HGM Notes

B-tree Delete

Find the appropriate leaf

Delete from the leaf
» still at least half full > we’re done
= below half full — coalescing

+ borrow a <key,pointer> from one sibling node, or

+ merge with a sibling node, and delete from a parent
node

Recursively apply previous step if necessary

B-tree Delete in Practice

Coalescing is usually not implemented
because it's too hard and not worth it

Static Hash Index

] —
record
H rimal —
pb|ockry overflow blocks

hash index

Hash Function

A commonly used hash function: K%B
= K is the key value
= B is the number of buckets

Dynamic Hashing

Problem of static hashing??
Dynamic hashing
= Extendable Hash Index

Extendable Hash Index ...

2M buckets
= M is maximum depth of index

Multiple buckets can share the same
block

= Empty buckets do not take up space
= Buckets are indexed by a bucket directory

... Extendable Hash Index

Each block has a local depth 1, which
means that the hash values of the

records in the block has the same
rightmost L bit

#The bucket directory keeps a global
depth d, which is the highest local
depth

Extendable Hash Index
Example

M=4
Hash function: K % 24
2 index entries per block

'K

Extendable Hashing (I)

Bucket directory Bucket blocks

d=0 L=0

insert 1000
insert 1011

1000 [‘=0
1011

ﬂ insert 0100

Extendable Hashing (II) Extendable Hashing (III)

Bucket directory Bucket blocks Bucket directory Bucket blocks
d=1 0 [1000 =L d=2 00 [1000 =2
0100 0100
1 — 10 | —
1011 | =t 01 1110 [=2
11 | |

ﬂ insert 1110

1011 =t

Readings

Textbook Chapter 21.1 —21.4

