
1

CS422 Principles of Database Systems
Disk Access

Chengyu Sun

California State University, Los Angeles

Why Study DBMS Internals

To better use DBMS, e.g. query tuning

To learn the design and implementation
of a complex software system

Why Study Disk Access

To understand data organization,
external algorithms, query optimization,
and File API

Disk Drive …

…Actuator

Arm with R/W head

Platter

Track Sector

http://www.youtube.com/watch?v=PCipea9xEXE

… Disk Drive …

Each disk drive contains a number of
rotating platters

Each platter has a number of tracks on
which data is recorded

Each track is divided into equal-sized (in
bytes) sectors

… Disk Drive

The tracks with the same track number
on different platters form a cylinder

Data can be accessed through
read/write heads

Read/write heads can move from one
track to another controlled by an
actuator

2

Access Data on Disk

1. Move the read/write head to the
requested track

2. Rotate the platter so the first
requested byte is beneath the r/w
head

3. Continue to rotate the platter until all
the requested data is transferred

Disk Access Time

Seek time

Rotational delay

Transfer time

Transfer Rate =

Number of Bytes per Track

Time for One Revolution of Platter

Measures of Disk Drive
Performance

Capacity

Average seek time

Rotation speed

Transfer rate

Seagate ST3500410AS

Capacity: 500G

Bytes per sector: 512

Number of sectors per track: 63

Average seek time (read): <8.5ms

Average seek time (write): <9.5ms

RPM: 7200rpm

Sustained transfer rate: 125Mb/s

Examples: Disk Access Time

Use the specs of ST3500410AS to
calculate the time for the following disk
accesses

� Read 1KB on one track

� Read 4KB on one track

� Read 4KB on four tracks

What We Learned from the
Examples

Reading more only costs little

Sequential access is much more
efficient than random access

3

Improve Disk Performance

Caching

Striping

Mirroring

Storing parity

Caching

Read more data than requested

� Read one sector vs. read one track

Transfer data from cache

� No seek time

� No rotational delay

� Transfer rate 3Gb/s (SATA)

Striping

Multiple small disks are faster than one large
disk …

… but only when the I/O requests are evenly
distributed among the disks

Sector 0

Sector 1

Sector 2

Sector 3

…

Sector 0

Sector 1

…

Sector 0

Sector 1

…Virtual Disk

Physical Disk 0

Physical Disk 1

Example: Striping

Suppose we using N disks for striping,
and each disk has k sectors. An access
to virtual sector x is mapped to an

access to which sector on which disk??

Mirroring

Store the same data on two or more
disks

Improve reliability

Do not improve speed

� Same read speed

� Slower write (why??)

Storing Parity …

Let S be a set of bits. The parity of S is

� 1 if S contains odd number of 1’s

� 0 if S contains even number of 1’s

1 0 0 1 1 0

1 1 0 0 1 0

1 0 0 1 0 1

1 1 0 0 ?? ??

Disk 1

Disk 2

Disk 3

Parity Disk

4

… Storing Parity

Backup any number of disks with one
disk

Can only recovery from single disk
failure

Storing Parity without a Parity
Disk

1

0

1

0

0

1

0

1

1

1

0

0

0

??

0

0

1

1

0

??

1

0

1

1

1

??

0

1

Disk 1 Disk 2 Disk 3 Disk 4

?? 1 0 1

What’s the benefit of distributing parity to all disks??

RAID …

Redundant Array of Inexpensive Drives

RAID 0 – striping

RAID 1 – mirroring

RAID 1+0 – mirroring + striping

RAID 2 – striping (bit)

RAID 3 – striping (byte) + parity

RAID 4 – striping + parity

… RAID

RAID 5 – striping + parity (no separate
parity disk)

RAID 6 – striping + 2*parity (no
separate parity disk)

OS Disk Access API

Block-level API

File-level API

Block and Page …

A block is similar to a sector except that
the size is determined by the OS

� E.g. NTFS default block size on Vista is 4KB

A file always starts at the beginning of a
block

� Tradeoff between large and small block
sizes??

5

… Block and Page

A page is a block-sized area of main
memory

Each block/page is uniquely numbered
by the OS

OS Block-Level API

read_block(n,p) – read block n into page p

write_block(n,p) – write page p to block n

allocate(n,k) – allocate k continuous blocks; the
new blocks should be as close to block n as possible

deallocate(n,k) – mark k continuous blocks
starting at block n as unused

OS File-Level API

Similar to the API of
RandomAccessFile in Java

� http://java.sun.com/javase/6/docs/api/java

/io/RandomAccessFile.html

� Read and write various data types

� seek(long position)

Example: RandomAccessFile

RandomAccessFile f =
new RandomAccessFile(“test”, “rws”);

f.seek(8000);
f.writeInt(101);

f.seek(4000);
int n = f.readInt();

f.close();

DBMS Disk Access API …

Approach 1: use OS block-level API

� Full control of disk access

�Most efficient

� Not constrained by OS limitations (e.g. file size)

� Complex to implement

� Disks must be mounted as raw disk

� Difficult to administrate

… DBMS Disk Access API …

Approach 2: use OS file-level API

� Easy to implement

� Easy to administrate

� No block I/O

�Much less efficient

� No paging, which is required by DBMS buffer
management

6

… DBMS Disk Access API

Approach 3: build a block I/O API on
top of OS’s file I/O API

� The approach taken by most DBMS

SimpleDB Disk Access API

Package simpledb.file

� FileMgr

� Block

� Page

Readings

Chapter 12 of the textbook

SimpleDB disk access API

