
1

CS422 Principles of Database Systems
Concurrency Control

Chengyu Sun

California State University, Los Angeles

ACID Properties of DB
Transaction

Atomicity

Consistency

Isolation

Durability

Need for Concurrent Execution

Fully utilize system resources to
maximize performance

Enhance user experience by improving
responsiveness

Problem of Concurrent
Transactions …

id name price

1 milk 2.99

2 beer 6.99

items

Transaction #1:

-- MIN
select min(price) from items;
-- MAX
select max(price) from items;

… Problem of Concurrent
Transactions

Consider the interleaving of T1 and T2:

MIN, DELETE, INSERT, MAX

Transaction #2:

-- DELETE
delete from items;
-- INSERT
insert into items values (3, ‘water’, 0.99);

Concurrency Control

Ensure the correct execution of
concurrent transactions

2

Transaction

start transaction;

select balance

from accounts

where id=1;

update accounts

set balance=balance–100

where id=1;

update accounts

set balance=balance+100

where id=2;

commit;

r1(x),r1(x),w1(x),r1(y),w1(y)

Schedule

A schedule is the interleaving of the
transactions as executed by the DBMS

Example:

T1: r1(x),w1(x),r1(y),w1(y)
T2: r2(y),w2(y),w2(x)

Two transactions

r1(x),w1(x),r2(y),w2(y),r1(y),w1(y),w2(x)

One possible schedule:

Serial Schedule

A serial schedule is a schedule in which
the transactions are not interleaved

Serializable Schedule

A serializable schedule is a schedule
that produces the same result as some
serial schedule

A schedule is correct if and only if it is
serializable

Example: Serializable
Schedules

Are the following schedules
serializable??

r1(x),w1(x),r2(y),w2(y),r1(y),w1(y),w2(x)

r1(x),w1(x),r2(y),r1(y),w2(y),w1(y),w2(x)

r1(x),w1(x),r1(y),w1(y),r2(y),w2(y),w2(x)

Conflict Operations

Two operations conflict if the order in
which they are executed can produce
different results
� Write-write conflict, e.g. w1(x) and w2(x)

� Read-write conflict, e.g. r1(y) and w2(y)

3

Precedence Graph of Schedule
S

The nodes of the graph are transactions
Ti

There is an arc from node Ti to node Tj

if there are two conflicting actions ai

and aj, and ai proceeds aj in S

Example: Precedence Graph

T1 T2??

r1(x),w1(x),r2(y),r1(y),w2(y),w1(y),w2(x)

r1(x),w1(x),r1(y),w1(y),r2(y),w2(y),w2(x)

T1 T2??

Determine Serializablility

A schedule is serializable if its
precedence graph is acyclic

Scheduling

Scheduler

T1

T2

Ti

r1(X), w1(X), r1(Y), w1(Z),

r2(Z), w2(Y),

ri(A), wi(X), ri(B),

r1(X), w1(X), ri(A), ...

schedule

Locking

Produce serializable schedules using
locks

Lock
� lock() – returns immediately if the lock is

available or is already owned by the
current thread/process; otherwise wait

� unlock() – release the lock, i.e. make

the lock available again

Basic Locking Scheme

A transaction must acquire a lock on
some data before performing any
operation on it

� E.g. l1(x),r1(x),ul1(x),l2(x),w2(x),ul2(x)

Problem: concurrent reads are not
allowed

4

Shared Locks and Exclusive
Locks

Multiple transactions can each hold a
shared lock on the same data

If a transaction holds an exclusive lock
on some data, no other transaction can
hold any kind of lock on the same data

Example:

sl1(x),r1(x),xl1(y),w1(y),sl2(x),r2(x),ul1(y),sl2(y),r2(y)

Example: Releasing Locks Too
Early

Is the following schedule serializable??

sl1(x),r1(x),ul1(x),xl2(x),w2(x),xl2(y),w2(y),ul2(x),ul2(y),
xl1(y),w1(y),ul1(y)

Two-Phase Locking Protocol
(2PL)

A shared lock must be acquired before
reading

A exclusive lock must be acquired
before writing

In each transaction, all lock requests
proceed all unlock requests

Example: 2PL

Why the following schedule is not
possible under 2PL??

sl1(x),r1(x),ul1(x),xl2(x),w2(x),xl2(y),w2(y),ul2(x),ul2(y),
xl1(y),w1(y),ul1(y)

2PL Schedules

Serializable

Serial

2PL

The Recoverability Problem

Serializability problem

� Ensure correct execution of T1,...,Tk when
all transactions successfully commit

Recoverability problem

� Ensure correct execution of T1,...,Tk when
some of the transactions abort

5

Example: Unrecoverable
Schedule

Is the following schedule serializable??

Is the following schedule 2PL??

w1(x),r2(x),w2(x),c2,a1

Recoverable Schedule

In a recoverable schedule, each
transaction commits only after each
transaction from which it has read
committed

Serializable and Recoverable
(I)

serializable recoverable
serial

ACR Schedules

Cascading rollback

� w1(x),w1(y),w2(x),r2(y),a1

A schedule avoids cascading rollback
(ACR) if transactions only read values
written by committed transactions

Serializable and Recoverable
(II)

serializable recoverable

ACR

serial

Strict 2PL

2PL

A transaction releases all write-related
locks (e.g. exclusive locks) after the
transaction is completed

� After <COMMIT,T> or <ABORT,T> is
flushed to disk

� After <COMMIT,T> or <ABORT,T> is
created in memory (would this work??)

6

Example: Strict 2PL

Why the following schedule is not
possible under Strict 2PL??

w1(x),r2(x),w2(x),c2,c1

Serializable and Recoverable
(III)

serializable recoverable

ACR

strict

serial

Deadlock

T1: w1(x),w1(y)

T2: w2(x),w2(y)

xl1(x),w1(x),xl2(y),w2(y),…

Necessary Conditions for
Deadlock

Mutual exclusion

Hold and wait

No preemption

Circular wait

Handling Deadlocks

Deadlock prevention

Deadlock avoidance

Deadlock detection

Resource Numbering

Impose a total ordering of all shared
resources

A process can only request locks in
increasing order

Why the deadlock example shown
before can no longer happen??

7

About Resource Numbering

A deadlock prevention strategy

Not suitable for databases

Wait-Die

Suppose T1 requests a lock that
conflicts with a lock held by T2

� If T1 is older than T2, then T1 waits for the

lock

� If T1 is newer than T2, T1 aborts (i.e.
“dies”)

Why does this strategy work??

About Wait-Die

A deadlock avoidance strategy (not
deadlock detection as the textbook
says)

Transactions may be aborted to avoid
deadlocks

Wait-For Graph

Each transaction is a node in the graph

An edge from T1 to T2 if T1 is waiting
for a lock that T2 holds

A cycle in the graph indicates a
deadlock situation

About Wait-for Graph

A deadlock detection strategy

Transactions can be aborted to break a cycle
in the graph

Difficult to implement in databases because
transaction also wait for buffers

� For example, assume there are only two buffer
pages

� T1: xl1(x), pin(b1)

� T2: pin(b2), pin(b3), xl2(x)

Problem of Phantoms

We can regulate the access of existing
resources with locks, but how about
new resources (e.g. created by
appending new file blocks or inserting
new records)??

8

Handle Phantoms

Lock “end of file/table”

Lock Granularity

record block table

fewer locks but less concurrency

more locks but better concurrency

Multiversion Locking

Each version of a block is time-stamped
with the commit time of the transaction
that wrote it

When a read-only transaction requests
a value from a block, it reads from the
block that was most recently committed
at the time when this transaction began

How Multiversion Locking
Works

Which version of b1 and b2 does T3 read??

T1: w1(b1), w1(b2)
T2: w2(b1), w2(b2)
T3: r3(b1), r3(b2)
T4: w4(b2)

w1(b1),w1(b2),c1,w2(b1),r3(b1),w4(b2),c4,r3(b2),c3,w2(b1),c2

About Multiversion Locking

Read-only transactions do not need to
obtain any lock, i.e. never wait

Implementation: use log to revert the
current version of a block to a previous
version

SQL Isolation Levels

Isolation Level Lock Usage

Serializable

Repeatable read

Read committed

Read uncommitted No slock

Slocks released early;
no slock on eof

Slocks held to completion;
no slock on eof

Slocks held to completion;
slock on eof

9

Concurrency Control in
SimpleDB

Transactions
� simpledb.tx

Concurrency Manager
� simpledb.tx.concurrency

SimpleDB Transaction

Keep track of the buffers it uses in
BufferList

Block-level locking

� Acquire slock before reading

� Acquire xlock before writing

� Dummy block for EOF

Transaction Commit

Flush buffers and log records

Release all locks

Unpin all buffers

Concurrency Manager

Each transaction has its own
concurrency manager

Concurrency manager keeps tracks of
the locks held by the transaction

A lock table is shared by all concurrency
managers

Lock Table

Keeps lock in a Map

� Key: block

� Value: -1 (xlock), 0 (no lock), >0 (slock)

Lock() and unlock() are synchronized
methods so only one transaction can modify
the lock map at a time

Transaction aborts if it waits for a lock for too

long, i.e. avoid deadlock

Life Cycle of a Java Thread

New
Thread

Not

Runnable

Dead

Running
(Runnable)start

yield

run method

terminates

10

Wait() and Notify()

Methods of the Object class

wait() and wait(long timeout)

� Thread becomes not runnable

� Thread is placed in the wait set of the
object

notify() and notifyAll()

� Awake one or all threads in the wait set,
i.e. make them runnable again

Readings

Textbook Chapter 14.4-14.6

SimpleDB source code

� simpledb.tx

� simpledb.tx.concurrency

