CS422 Principles of Database Systems

Concurrency Control

Chengyu Sun
California State University, Los Angeles

ACID Properties of DB
Transaction

@ Atomicity

Consistency
[solation

Durability

Need for Concurrent Execution

Fully utilize system resources to
maximize performance

#Enhance user experience by improving
responsiveness

Problem of Concurrent

Transactions ...
items
id name price
milk 2.99
beer 6.99

Transaction #1:

-- MIN
select min(price) from items;
-- MAX
select max(price) from items;

... Problem of Concurrent
Transactions

Transaction #2:

-- DELETE

delete from items;

-- INSERT

insert into items values (3, ‘water’, 0.99);

Consider the interleaving of T1 and T2:

MIN, DELETE, INSERT, MAX

Concurrency Control

Ensure the correct execution of
concurrent transactions

Transaction

start transaction;

select balance
from accounts
where id=1;

update accounts
set balance=balance-100
where id=1;

update accounts
set balance=balance+100
where i1d=2;

commit;

1100, (3, W1 (x),r1(y),w1(y)

Schedule

A schedule is the interleaving of the
transactions as executed by the DBMS

Example:
Two transactions

Tyt (%), W (x),r1 (), Wi (Y)
Tat 1Y), Wa(Y),Wa(X)

One possible schedule:
r1(X),W1 (%), (YD, Wa(y),r1(y), W1 (Y), Wa(X)

Serial Schedule

A serial schedule is a schedule in which
the transactions are not interleaved

Serializable Schedule

A serializable schedule is a schedule
that produces the same result as some
serial schedule

A schedule is correctif and only if it is
serializable

Example: Serializable
Schedules

Are the following schedules
serializable??

r100,W1(X), 2 (y),Wo(y),r1(Y), Wi (y),Wa(x)
rl(x)lwl(x)lrZ(Y)Irl(Y)IWZ(Y)IWI(Y)IWZ(X)

rl(X)IWI(X)IrI(Y)IWI(Y)I rZ(Y)IWZ(Y)IWZ(X)

Conflict Operations

#Two operations conflict if the order in
which they are executed can produce
different results

= Write-write conflict, e.g. w, (x) and w, (x)
= Read-write conflict, e.g. r, (y) and w, (y)

Precedence Graph of Schedule
S

The nodes of the graph are transactions
Ti

#There is an arc from node T, to node T,
if there are two conflicting actions a;
and g;, and a; proceeds g; in S

Example: Precedence Graph

1100, w100, F2(Y),r1(Y),Wa(y), W1 (Y),Wa(X)

Do (%)
T,) 2? T,
N

1100, w100, 1Y), w4 (y),ra(y),Way),Wa(X)

G
NS

Determine Serializablility

A schedule is serializable if its
precedence graph is acyclic

Scheduling

Ti 100, wiX), 1Y), wy(@), ...

schedule

r2(2), Wy(Y), ...

- - r1(X), wi(X), ri(A), ...
2 Scheduler ——

ri(A), w(X), r(B), -...

Locking

Produce serializable schedules using
locks

Lock

= lock () — returns immediately if the lock is
available or is already owned by the
current thread/process; otherwise wait

= unlock () —release the lock, i.e. make
the lock available again

Basic Locking Scheme

A transaction must acquire a lock on
some data before performing any
operation on it
= E.g. 1;(x),r; (), ul; (3),5(X),Wa(x), ulx(X)

#Problem: concurrent reads are not
allowed

Shared Locks and Exclusive
Locks

Multiple transactions can each hold a
shared lock on the same data

#If a transaction holds an exclusive lock
on some data, no other transaction can
hold any kind of lock on the same data

Example:
S13(X),r1 (), X3 (), w1(y),81,(x),r2(x),uly (), S15(Y), a(Y)

Example: Releasing Locks Too
Early

#1Is the following schedule serializable??

S15(X),r1(3), ul; (), X1(x), W (X), X15(y), W (y) ulo (), ulx(y),
xl;(y),wy(y),uly(y)

Two-Phase Locking Protocol
(2PL)

A shared lock must be acquired before
reading

A exclusive lock must be acquired
before writing

#1n each transaction, a// lock requests
proceed all unfock requests

Example: 2PL

#Why the following schedule is not
possible under 2PL??

S15(X),r1(3), ul; (), X1(x), W (X), X15(y), W (y) ulo(x),ulx(y),
xl;(y),wy(y),uly(y)

2PL Schedules

|)

Serializable

The Recoverability Problem

Serializability problem

= Ensure correct execution of Ty,..., T, when
all transactions successfully commit

Recoverability problem

= Ensure correct execution of Ty,..., T, when
some of the transactions abort

Example: Unrecoverable
Schedule

#Is the following schedule serializable??
s the following schedule 2PL??

W1(X),F2(X),Wo(X),C,81

Recoverable Schedule

#1n a recoverable schedule, each
transaction commits only after each
transaction from which it has read
committed

Serializable and Recoverable

(I

serializable recoverable

-

ACR Schedules

Cascading rollback
- WI(X)IWI(Y)IWZ(X)IrZ(Y)Ia1

A schedule avoids cascading rollback
(ACR) if transactions only read values
written by committed transactions

Serializable and Recoverable

(II)

serial
-

ACR

serializable recoverable

Strict 2PL
#:2PL
A transaction releases all write-related

locks (e.g. exclusive locks) after the

transaction is completed

= After <COMMIT,T> or <ABORT,T> is
flushed to disk

= After <COMMIT,T> or <ABORT,T> is
created in memory (would this work??)

Example: Strict 2PL

#Why the following schedule is not
possible under Strict 2PL??

W1(X),Fa(X),Wa(X),Cp,Cy

Serializable and Recoverable
(IIT)

serial

—_
strict

serializable recoverable

ACR

Deadlock

*T0 wy(X),wy(y)
#T,1 wy(x),Wx(Y)

X100, w1 () Xly(y), Wa(Y), .-

Necessary Conditions for
Deadlock

Mutual exclusion
#Hold and wait
#No preemption
Circular wait

Handling Deadlocks

Deadlock prevention
Deadlock avoidance
Deadlock detection

Resource Numbering

#Impose a total ordering of all shared
resources

A process can only request locks in
increasing order

® Why the deadlock example shown
before can no longer happen??

About Resource Numbering

A deadlock prevention strategy
Not suitable for databases

Wait-Die

@ Suppose T, requests a lock that
conflicts with a lock held by T,

= If T, is older than T,, then T, waits for the
lock

= If T, is newer than T,, T, aborts (i.e.
\\diesll)
& Why does this strategy work??

About Wait-Die

A deadlock avoidance strategy (not
deadlock detection as the textbook
says)

Transactions may be aborted to avoid
deadlocks

Wait-For Graph

Each transaction is a node in the graph
#An edge from T, to T, if T, is waiting
for a lock that T, holds

A cycle in the graph indicates a
deadlock situation

About Wait-for Graph

A deadlock detection strategy

Transactions can be aborted to break a cycle
in the graph
Difficult to implement in databases because
transaction also wait for buffers
= For example, assume there are only two buffer
pages
* Ty: xly(x), pin(b,)
* T, pin(by), pin(bs), xl,(x)

Problem of Phantoms

#We can regulate the access of existing
resources with locks, but how about
new resources (e.g. created by
appending new file blocks or inserting
new records)??

Handle Phantoms

#| ock “end of file/table”

Lock Granularity

fewer locks but less concurrency

record block table

more locks but better concurrency

Multiversion Locking

Each version of a block is time-stamped
with the commit time of the transaction
that wrote it

#When a read-only transaction requests
a value from a block, it reads from the
block that was most recently committed
at the time when this transaction began

How Multiversion Locking
Works

Ty: wy(by), wy(b,)
Tyt Wy(by), wy(b,)
T3t r3(by), r3(by)
Tt Wy(by)

Wl(bl)lwl(bZ)lcllWZ(bl)lr3(bl)lw4(b2)1c4lr3(bZ)IC3IW2(b1)IC2

Which version of b; and b, does T; read??

About Multiversion Locking

Read-only transactions do not need to
obtain any lock, i.e. never wait
Implementation: use log to revert the

current version of a block to a previous
version

SQL Isolation Levels

Isolation Level Lock Usage

Slocks held to completion;

Serializable slock on eof

Repeatable read Slocks held to completion;
no slock on eof

Read committed Slocks released early;
no slock on eof

Read uncommitted No slock

Concurrency Control in
SimpleDB

Transactions
m simpledb.tx

Concurrency Manager
m simpledb.tx.concurrency

SimpleDB Transaction

Keep track of the buffers it uses in
BufferList
Block-level locking
= Acquire slock before reading
= Acquire xlock before writing
= Dummy block for EOF

Transaction Commit

Flush buffers and log records
Release all locks
Unpin all buffers

Concurrency Manager

Each transaction has its own
concurrency manager

Concurrency manager keeps tracks of
the locks held by the transaction

#® A Jock table is shared by all concurrency
managers

Lock Table

Keeps lock in a Map
= Key: block
= Value: -1 (xlock), 0 (no lock), >0 (slock)

Lock() and unlock() are synchronized
methods so only one transaction can modify
the lock map at a time

Transaction aborts if it waits for a lock for too
long, i.e. avoid deadlock

Life Cycle of a Java Thread

yield
(New \ Running Not \
\Thread / start (Runnable) \Runnable/

run method
terminates

Wait() and Notify()

Methods of the Object class
#wait () and wait (long timeout)
= Thread becomes not runnable

= Thread is placed in the wait set of the
object

#notify () and notifyAll ()

= Awake one or all threads in the wait set,
i.e. make them runnable again

Readings

@ Textbook Chapter 14.4-14.6
SimpleDB source code

= simpledb.tx

= simpledb.tx.concurrency

10

