CS520 Web Programming
Object-Relational Mapping with Hibernate

Chengyu Sun
California State University, Los Angeles

The Object-Oriented Paradigm

#The world consists of objects
#S0 we use object-oriented languages to
write applications

#We want to store some of the
application objects (a.k.a. persistent
objects)

#S0 we use a Object Database?

The Reality of DBMS

#Relational DBMS are still predominant
= Best performance
= Most reliable
= Widest support

#Bridge between OO applications and
relational databases
= CLI and embedded SQL
= Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)

4 Application interacts with database through
functions calls

String sql = "select name from items where id = 1";
Connection ¢ = DriverManager.getConnection(url);
Statement stmt = c.createStatement();

ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.printin(rs.getString(“name”));

Embedded SQL

4 SQL statements are embedded in host
language

String name;
#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee — Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

Employee — Database Table

create table employees (
id integer primary key,

name varchar(255),
supervisor integer references employees(id)

)i

From Database to Application

4 So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;
String name;
Employee supervisor;

public Employee(Integer id)
// access database to get name and supervisor

b
b

Problems with CLI and
Embedded SQL ...

#SQL statements are hard-coded in
applications

public Employee(Integerid) {

PreparedStatment p;
p = connection.prepareStatment(
“select * from employees where id = ?”

)

... Problems with CLI and
Embedded SQL ...
#Tedious translation between application
objects and database tables
public Employee(Integer id) {

.F.{.esuItSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);

... Problems with CLI and
Embedded SQL
#Application design has to work around
the limitations of relational DBMS
public Employee(Integer id) {
EesultSet rs = p.executeQuery();

if(rs.next())
{

supervisor = ??

3

The ORM Approach

o
o
Application employee
-
ORM tool : :
' i
i Oracle, MySQL, SQL Server ...
Persistent Data Store Fiat files, XML .

Advantages of ORM

Make RDBMS look like ODBMS

Data are accessed as objects, not rows and
columns

4 Simplify many common operations. E.g.
System.out.printin(e.supervisor.name)

4 Improve portability
= Use an object-oriented query language (OQL)
= Separate DB specific SQL statements from

application code

Caching

Common ORM Tools

4 Java Data Object (JDO)

= One of the Java specifications

= Flexible persistence options: RDBMS, OODBMS, files etc.
Hibernate

= Most popular Java ORM tool right now

= Persistence by RDBMS only
Others

= http://en.wikipedia.org/wiki/Object-relational mappin

= http://www.theserverside.net/news/thread.tss?thread id=29
914

Hibernate Application
Architecture

Transient Objects | Application

porsitant |

Objects
SessionFactory

hibernate Session Transaction

TransactionFactory | ConnectionProvider

JNDI JDBC JTA

Database

A Simple Hibernate Application

4 Java classes
= Enpl oyee. j ava

4 O/R Mapping files
= Enpl oyee. hbm xn

Hibernate configuration file
= hi bernate. cfg.xn

4 (Optional) Logging configuration files
= Log4j . properties

4 Code to access the persistent objects
= Enpl oyeeTest 1. j ava

Java Classes

#Plain Java classes (POJOs); however, it
is recommended that
= Each persistent class has an identity field
= Each persistent class implements the
Serializable interface
= Each persistent field has a pair of getter
and setter, which don't have to be public

O/R Mapping Files

Describe how class fields are mapped to table
columns
4 Three important types of elements in a a
mapping file
» <id>
= <property> - when the field is of simple type
= Association — when the field is of a class type
+ <one-to-one>
+ <many-to-one>
+ <many-to-many>

Hibernate Configuration Files

#Tell hibernate about the DBMS and
other configuration parameters

#Either hibernate.properties or
hibernate.cfg.xml or both

= Sample files come with the downloaded
Hibernate package

Access Persistent Objects

#Sessi on

®Query

#Transaction
= A transaction is required for updates

#http://www.hibernate.org/hib_docs/v3/
api/org/hibernate/package-
summary.html

Hibernate Query Language
(HQL)

#A query language that looks like SQL,
but for accessing objects

#Automatically translated to DB-specific
SQL statements

#sel ect e from Enpl oyee e
where e.id = :id
= From all the Employee objects, find the

one whose id matches the given value

CRUD Example

#EmployeeTest2.java
n Insert()??
* Save or upadate??
= Turn on show_sql
+ Caching and Isolation Levels

Caching in Hibernate

#0bject cache
= Caching Java objects
= Simple and effective implementation
+ Hash objects using identifiers as key
#Query cache
= Caching query results

= No implementation that is both simple and
effective

Cache Scopes

#Session
#®Process
#®Cluster

First-Level Cache

#Session scope
#Always on (and cannot be turned off)

#Ensure that there are no
duplicate/inconsistent objects in the
same session

Second-Level Cache

#Pluggable Cache Providers

= Process cache
+ E.g. EHCache, GSCache

= Cluster cache
+ E.g. Swar nCache, JBossCache

#Distinguished by
= Cache scope
= Concurrency policies

Isolation Example ...

Sells bar beer price
Joe's Bud 2.50
Joe's Miller 2.75
Sue's Bud 2.50
Sue’s Miller 3.00

4 Sue is querying Sel | s for the highest and
lowest price Joe charges.

4 Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50

... Isolation Example

Sue’s transaction:
-- MAX
SELECT MAX(price) FROMSells WHERE bar="Joe"s’;
-- MIN
SELECT M N(price) FROMSells WHERE bar="Joe"s’;
COWM T;

Joe’s transaction:
-- DEL
DELETE FROMSells WHERE bar="'Joe"s’;
-- INS
| NSERT | NTO Sells VALUES(‘Joe”"s’, *Heineken’, 3.50);
COW T;

Potential Problems of
Concurrent Transactions

#Caused by /interleaving operations
#Caused by aborted operations

@For example:
= MAX, DEL, MIN, INS
= MAX, DEL, INS, MIN

Transaction Isolation Levels

Serializable
- Phantom reads
Read Repeatable

Non-repeatable reads
Read Committed

- Dirty reads

Read Uncommitted

- Conflicting writes

Hibernate Cache Concurrency
Policies

‘ Transactional ‘ —— Read Repeatable

‘ Read-Write ‘ — Read Committed

‘ Non-strict Read-Write ‘

/ Read Uncommitted

‘ Read-only

Currency Support of Hibernate
Cache Providers

Read-only Non-strict Read-Write | Transactional
Read-Write
EHCache X X X
OSCache X X X
SwarmCache X X
JBossCache X X

hbm2ddl

#Generate DDL statements from Java
classes and mapping files

#db/ hi ber nat e- exanpl es. ddl -
generated automatically by hbm2ddl

More About Mapping

4 Basic mapping # Collections
= <id> 4 Subclasses
» <property> 4 Components
= Association @ Other
+ many-to-one o)
+ one-to-many = Bidirectional
+ one-to-one association

« many-to-many

Collection of Simple Types

public class Customer {
Integer id;

String name;
String address;

Set<String> phones;

Map Set of Simple Types

<set name="phones" table="phones">
<key column="customer_id"/>
<element type="string" column="phone"/>

</set>
a

id |« | customer_id phone

customers phones

Map List of Simple Types

<list name="phones" table="phones">
<key column="customer_id"/>
<index column="phone_order"/>
<element type="string" column="phone"/>

</list>
a

customers phones

id |« | customer_id phone phone_order

Collection of Object Types

public class Account {
Integer id;

Double balance;
Date createdOn;

List<Customer> owners;

Map List of Object Types

<list name="owners" table="ownship">
<key column="account_id"/>
<index column="owner_order"/>
<many-to-many class="Customer" column="customer_id"/>

</list>
a4

customers ownship accounts

id |«—| customer_id |owner_order| account id —* id

Inheritance

public class CDAccount extends Account {

Integer term;

Map Subclass — Table Per
Concrete Class

accounts

| id \balance\ created_on

cd_accounts

| id \balance\ created_on term

Map Subclasses — Table Per
Subclass

<joined-subclass name="CDAccount" table="cd_accounts">
<key column="account_id"/>
<property name="term"/>

</joined-subclass>

cd accounts [a | tem]
!

accounts [id [balance | created_on

Map Subclasses — Table Per
Hierarchy

<discriminator column="account_type" type="string"/>

<subclass name="CDAccount" discriminator-value="CD">
<property name="term"/>

</subclass>
accounts @
| id ‘balance‘ created_on ‘ term

Components

public class Address {

String street, city, state, zip;
b

public class User {
Integer id;

String username, password;
Address address;

Map Components

<component name="address" class="Address">
<property name="street"/>
<property name="city"/>
<property name="state"/>
<property name="zip"/>

</component>
users
| id ‘ ‘street‘ city ‘state‘ zip ‘ |

Components Inside Collection

<list name="history" table="bibtex_history">

<key column="bibtex_id" />
<index column="bibtex_order" />

<composite-element class="BibtexEntry">

<property name="content" />

<many-to-one name="editor" class="User" />

<property name="lastModified" column="last_modified" />
</composite-element>

</list>

Bidirectional Association

public class Account { public class Customer {

Integer id; Integer id;
Double balance; String name;
Date createdOn; String address;

List<Customer> owners; Set<String> phones;

Set<Account> accounts;

Bidirectional Association
Mapping

<class name="Customer" table="customers">

<set name="accounts" table="ownership" inverse="true">
<key column="customer_id" />
<many-to-many class="Account" column="account_id" />
</set>

</class>

O/R Mapping vs. ER-Relational
Conversion

Tips for Hibernate Mapping

O/R Mapping ER-Relational Conversion #Understand relational design
Class « . Entity Set = Know what the database schema should
looks like before doing the mappin
<property> Attribute . J PPINg
#Understand OO design
Association ~ +———— Relationship = Make sure the application design is object-
oriented
Subclass Subclass
o table per concrete class <—— ¢ OO method
o table per class hierarchy «<—— ¢ NULL method
o table per subclass «—» o ER method
OO Design and Hibernate
Mapping Example Design #1
#User (student or instructor) class User { class Section {
#A class section has a group of students Integer id; Integer instructor;
and an instructor String name; Set<User> students;
} }

Does the design pass the "English test”??

Design #2
class User { class Section {
Integer id; User instructor;
String name; Set<User> students;
} b

Does the design pass the "English test”??

Design #3
class User { class Section {
Integer id; User instructor;
String name; List<User> students;
} ¥

Lists or sets??

Design #4

class User {

Integer id;
String name;
Set<Section> sectionsTakenOrTaught;

¥

class Section { Uni-direction or

. bi-direction association??
User instructor;

Set<User> students;

Lazy Loading

#Hibernate is “lazy” by default
s Account -> Cust oners -> Phones
#But sometimes we want to be “eager”

= Performance optimization, i.e. reduce the
number of query requests

= Disconnected clients

Fetch Strategies

#Select and subselect
#Batch size
#Join fetch

from Account a left join fetch a.owners

Hibernate Support in Spring

#HibernateTemplate

= http://www.springframework.org/docs/api/
org/springframework/orm/hibernate/Hibern

ateTemplate.html
4#CSNS source code under
src/ csns/ nodel / dao/ hi ber nat e
#And much more (covered later in the
lectures on Spring)

The Spring Advantage
Without Spring With Spring
Transaction tx = null; getHibernateTemplate()
try .saveOrUpdate(user);
{

tx = s.beginTransaction();
s.saveOrUpdate(e);
tx.commit();

catch(Exception e)
if(tx !'= null) tx.rollback();

e.printStackTrace();
¥

Hibernate Projects ...

% http://www.hibernate.org/
Hibernate Core
Hibernate Annotations

= Use Java Annotations instead of XML to specify
data mapping

Hibernate EntityManager
= For EJB
Hibernate Shards
= For using multiple databases at the same time

10

... Hibernate Projects

Hibernate Validator
= Enforces database integrity constraints both in
database and in Java code using annotation
4 Hibernate Search
= Integrate Hibernate with full text search engines
like Lucene
Hibernate Tools
= Generate Java code from database schema,
Eclipse plugins, additional Ant tasks etc.

NHibernate (Hibernate for .NET)

Readings

#®Java Persistence with Hibernate by
Christian Bauer and Gavin King (or
Hibernate in Action by the same
authors)

#Hibernate Core reference at
http://www.hibernate.org
= Chapter 3-10, 14

More Readings

@ Database Systems — The Complete Book by
Garcia-Molina, Ullman, and Widom
= Chapter 2: ER Model
= Chapter 3.2-3.3: ER to Relational Conversion
= Chapter 4.1-4.4: OO Concepts in Databases
= Chapter 9: OQL
= Chapter 8.7: Transactions

11

