
1

CS422 Principles of Database Systems
Introduction to Transactions

Chengyu Sun

California State University, Los Angeles

Adapted from Jeffrey Ullman’s lecture notes at
http://www-db.stanford.edu/~ullman/dscb.html

SQL Statements

create table products (
id integer primary key,

category char(3),

description varchar2(2048),
price number(10,2)

);

insert into products values (1,’CPU’,’Intel P4’,199.99);
insert into products values (2,’MB’,’ASUS Motherboard’, 128.99);

select * from product;

Transaction

A group of of statements

select id, price from products;

update products set price = 99.99 where id = 1;

commit;

Transaction
starts

Transaction
ends

Start and End of A Transaction
in Oracle

Start
n First DML statement after connection or

the end of last transaction

End
n First DDL or DCL statement (except
SAVEPOINT) after a transaction starts

n Failed DML statements are automatically
rolled back

n Disconnect

ACID

Database transactions are expected to
have ACID properties

n Atomic

n Consistent

n Isolated

n Durable

Atomicity

A transaction completes or fails as a whole,
e.g. either all operations in the transaction
are performed or none of them are.

Example: transfer $100 from account A to
account B

Read A (SELECT)

If A > 100
A -= 100 (UPDATE)

B += 100 (UPDATE)
COMMIT

system crash

2

Consistency

Transaction should preserve database
constraints.

Durability

The changes made by committed
transactions are guaranteed to be
permanent, despite possible system
failures.

Example: deposit $100 to an account A

UPDATE Accounts SET balance = balance+100 WHERE account = ‘A’;
COMMIT;

system crash

Isolation

Databases are often accessed by many
user at the same time.

Generally speaking, multiple
transactions running concurrently
should not interfere with each other.

More specifically, it should appear to
the user that the database system
execute one transaction at a time.

Isolation Example …

Sue is querying Sells for the highest and
lowest price Joe charges.

Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50

3.00MillerSue’s

2.50BudSue’s

2.75MillerJoe’s

2.50BudJoe’s

pricebeerbarSells

… Isolation Example

Sue’s transaction:
-- MAX
SELECT MAX(price) FROM Sells WHERE bar=‘Joe’’s’;

-- MIN
SELECT MIN(price) FROM Sells WHERE bar=‘Joe’’s’;
COMMIT;

Joe’s transaction:
-- DEL
DELETE FROM Sells WHERE bar=‘Joe’’s’;

-- INS
INSERT INTO Sells VALUES(‘Joe’’s’, ‘Heineken’, 3.50);
COMMIT;

Potential Problems of
Concurrent Transactions

Caused by interleaving operations

Caused by aborted operations

3

SQL Isolation Levels

Serializable

Repeatable read

Read committed

Read uncommitted

Read Uncommitted

May read data written by an transaction
that has not committed (and may
never)

For example, Sue may see the price
3.50 even if Joe’s transaction later
aborts

Read Committed

Read only committed data, but not
necessarily the same data every time.

For example, the interleaving of
(MAX)(DEL)(INS)(MIN) is possible

n MAX à 2.75

n MIN à 3.50

Read Repeatable

Read only committed data, and,
everything seen the first time will be
seen the second time.

For example, the interleaving of
(MAX)(DEL)(INS)(MIN) is still possible,
however:
n MAX à 2.75

n MIN à 2.50

Serializable

It appears to the user that the
transactions are executed one at a
time.

For example, Sue will see either

n MAXà 2.75 and MINà 2.50, or

n MAXà 3.50 and MINà 3.50

Isolation Levels in Oracle

Only READ COMMITTED and
SERIALIZABLE are supported

READ COMMITTED is default

Change to serializable:

set transaction isolation level serializable;

4

Beyond Introduction

Implementation of concurrency control
and failure recovery is quite complex

Read Chapter 17, 18, 19 or take CS522
if you are interested.

