
1

CS422 Principles of Database Systems
Object-Oriented Features in DBMS

Chengyu Sun

California State University, Los Angeles

Bank Accounts Example

Bank account

n account number

n balance

n interests rate

n creation date

n owned by one or
more customers

Customer

n id

n name

n address

n one or more phones

Phone

n number

n type

w office, home, mobile

The Object-Oriented Approach

public class Account {

int acctNum;
double balance;
double interestsRate;

Date createdOn;
List<Customer> owners;

};

public class Customer {

int customerId;
String name;
String address;

List<Phones> phones;
};

public class Phone {
String number;
String type;

}

The Relational Approach

Accounts

interestsRatebalance createdOnacctNum

Customers

name addresscustomerId

Customers_Accounts

acctNumcustomerId

Phones

typenumber

Customers_Phones

phoneNumcustomerId

OO vs. Relational

Composite types

Collection types

References

And more …
n Methods – operations that are associated
with certain types

n Encapsulation, Inheritance and
polymorphism

OO Features in DBMS

Oracle OO features

n Objects

n Collections

JDBC support for database objects

2

Object Type

describe phone_t

select * from user_types;

create type phone_t as object (
phone_number char(7),

phone_type char(1)
);
/

Object Column

create table customers (

customer_id integer,
name varchar(15),

address varchar(15),
phone phone_t

);

Access Object Columns

Constructor of phone_t

Table alias is required

insert into customers values
(1,’Joe’,’123 Maple St.’, phone_t (‘1234567’,’H’));

select * from customers c
where c.phone.phone_number = ‘1234567’;

Object Table

describe customers

set describe depth {1|n|all}

create type customer_t as object (
customer_id integer,
name varchar(15),

address varchar(15),
phone phone_t

);

/
create table customers of customer_t;

Access Object Tables

Object tables can be accessed as
regular tables, or tables with a single
column of an object type

insert into customers values

(1, 'Joe', '123 Maple St.', phone_t('1234567','H'));

insert into customers values
(customer_t (2,'Sue','234 Main St.', phone_t('2345678','O')));

select * from customers;

select value(c) from customers c;

Object Reference

create type account_t as object (

account_id integer,
balance number(10,2),

interests_rate number(4,2),
created_on date,

owner ref customer_t
);
/

create table accounts of account_t;

3

REF and DEREF

Reference is implemented with an
unique object id (OID)

insert into accounts values

(1,100.0,1.0,sysdate,
(select ref(c) from customers c where customer_id = 1));

select owner from accounts where account_id = 1;

select deref(owner) from accounts where account_id = 1;

Referential Integrity
Constraint – OO Style

A reference can be scoped or unscoped

Scoped references are more efficient to use
than unscoped ones

Scoped references can still be dangling

alter table accounts
add (scope for (owner) is customers);

alter table accounts

add foreign key (owner) references customers;

Methods

create type account_t as object (
...

member function interests return number
);
/

create type body account_t as

member function interests return number as
begin

return balance * interests_rate;
end;

end;

/

Constructors
constructor function account_t (

p_account_id integer, p_balance number,
p_interests_rate number, p_created_on date,

p_owner_id integer
) return self as result is

begin
self.account_id := p_account_id;
self.balance := p_balance;

self.interests_rate := p_interests_rate;
self.created_on := p_created_on;

select ref(c) into self.owner from customers c
where c.customer_id = p_owner_id;

return;
end;

Inheritance

A type is FINAL by default

create type account_t as object (
...

) not final;

create type cd_account_t under account_t (

term integer
);

Collection Types

Varrays

Nested tables

4

Varray

Variable arrays, or varray
n Array is bounded by a maximum size

n All elements must be of the same type

n Elements can be accessed individually by index in
a procedural language, but the array is treated as
a whole in SQL.

create type phone_list_t as varray(10) of phone_t;

Using Varrays

Varray information as a type

n select * from user_types;

Varray information in a table

n select * from user_varrays;

insert into customers values
(1,'Joe','123 Maple St.',

phone_list_t(phone_t('1234567','H'), phone_t('2345678','O')));

select phones from customers;

Nested Table

A collection type in the form of a table
with a single column

n Each element is a row in the table

n Any number of elements

n Elements are of the same type

n Each element can be accessed individually
in SQL

A Nested Table Example

Note that the nested table has a single
column of a object type phone_t

234 Main St.Sue2

123 Maple St.Joe1

phonesaddressnamecustomer_id

Office2345678

Home1234567

typenumber

Office8765432

Mobile0123456

Home7654321

typenumber

Creating a Nested Table

create type phone_list_t as table of phone_t;
/

create type customer_t as object (
customer_id integer,
name varchar(15),

address varchar(15),
phones phone_list_t

)
/

create table customers of customer_t
nested table phones store as nested_phones;

Using Nested Tables

Nested table information as a type

n select * from user_types;

Nested table information in a table

n select * from user_nested_tables;

insert into table (select phones from customers where customer_id = 1)
values ('0123456','M');

select phone_number

from table (select phones from customers where customer_id = 1) p
where p.phone_type = 'O';

5

Varray vs. Nested Table

Varray

n Ordered elements

n Max size

n Individual element

accessible in PL

n Small varrays (<4k)
are stored with

parent table

Nested table

n Unordered elements

n No max size

n Individual element

accessible in SQL

n Always stored in
separate tables

JDBC Support for Database
Objects

The Java class has to implement SQLData
interface
n getSQLTypeName();

n readSQL(SQLInput stream, String typeName);

n writeSQL(SQLOutput stream);

Update the JDBC Type Map
n connection.getTypeMap().put(“FOO”,
Class.forName(“Foo”));

Resultset.getObject()

PreparedStatement.setObject()

