CS422 Principles of Database Systems
Object-Oriented Features in DBMS

Chengyu Sun
California State University, Los Angeles

Bank Accounts Example

4 Bank account % Customer
» account number . id
» balance » hame
» interests rate » address
. creation date ~ one or more phones
» owned by one or 4 Phone
more customers ~ number
- type

w office, home, mobile

The Object-Oriented Approach

public class Account { public class Customer {

int acctNum; int customerId;
double balance; String name;
double interestsRate; String address;
Date createdOn; List<Phones> phones;
List<Customer> owners; W

Iy

public class Phone {
String number;
String type;

The Relational Approach

Accounts

| acctNum ‘ balance ‘interestsRate‘ createdOn |
Customers Phones

|customerld‘ name ‘ address | | number ‘ type |

Customers_Accounts Customers_Phones

| customerld ‘ acctNum | | customerld ‘ phoneNum |

OO0 vs. Relational

#Composite types
#Collection types
#References
#And more ...

» Methods — operations that are associated
with certain types

» Encapsulation, Inheritance and
polymorphism

OO0 Features in DBMS

#Oracle OO features
» Objects
» Collections
#JDBC support for database objects

Object Type

create type phone_t as object (
phone_number char(7),
phone_type char(1)

II
#describe phone_t
#select * from user_types;

Object Column

create table customers (
customer_id integer,

name varchar(15),
address varchar(15),
phone phone_t

)i

Access Object Columns

insert into customers values
(1,70e’,'123 Maple St.’, phone_t ('1234567','H"));

select * from customers ¢

where c.phone.phone_number = *1234567’;

#Constructor of phone_t
#Table alias is required

Object Table

create type customer _t as object (
customer_id integer,

name varchar(15),
address varchar(15),
phone phone_t

)
/
create table customers of customer_t

describe customers
4 set describe depth {1|n|all}

Access Object Tables

#0Object tables can be accessed as
regular tables, or tables with a single
column of an object type

insert into customers values
(1, Joe', '123 Maple St.', phone_t('1234567','H"));

insert into customers values
(customer_t (2,'Sue','234 Main St.', phone_t('2345678','0")));

select * from customers;
select value(c) from customers c;

Object Reference

create type account_t as object (

account_id integer,
balance number(10,2),
interests_rate number(4,2),
created_on date,
owner ref customer_t
)i
/

create table accounts of account_t;

REF and DEREF

insert into accounts values
(1,100.0,1.0,sysdate,
(select ref(c) from customers c where customer_id = 1));
select owner from accounts where account_id = 1;
select deref(owner) from accounts where account_id = 1;

#Reference is implemented with an
unique object id (OID)

Referential Integrity
Constraint — OO Style

alter table accounts
add (scope for (owner) is customers);

alter table accounts
add foreign key (owner) references customers;

A reference can be scoped or unscoped

% Scoped references are more efficient to use
than unscoped ones

% Scoped references can still be dangling

Methods

create type account_t as object (

member function /interests return number
)
/

create type body account_t as
member function /interests return number as

Constructors

constructor function account_t (
p_account_id integer, p_balance number,
p_interests_rate number, p_created_on date,
p_owner_id integer

) return self as result is

begin
self.account_id := p_account_id;
self.balance := p_balance;
self.interests_rate := p_interests_rate;

begin o -
return balance * interests_rate; self.created_qn := p_created_on;
end: select ref(c) into self.owner from customers ¢
end: ! where c.customer-_id = p_owner-_id;
/ ! return;
end;
Inheritance Collection Types

create type account_t as object (
) not final;

create type cd_account_t under account_t (
term integer
)

#A type is FINAL by default

#Varrays
#Nested tables

Varray

Variable arrays, or varray
. Array is bounded by a maximum size
- All elements must be of the same type

» Elements can be accessed individually by index in
a procedural language, but the array is treated as
a whole in SQL.

create type phone_list_t as varray(10) of phone_t,

Using Varrays

Varray information as a type
» select * from user_types;

4 Varray information in a table
» select * from user_varrays;

insert into customers values
(1,'30€','123 Maple St.',
phone_list_t(phone_t('1234567','H"), phone_t('2345678','0")));

select phones from customers;

Nested Table

#A collection type in the form of a table
with a single column
» Each element is a row in the table
» Any number of elements
» Elements are of the same type

» Each element can be accessed individually
in SQL

A Nested Table Example

customer_id | name address phones

1 Joe 123 Maple St. number | _type

1234567 | Home
2345678 | Office

2 Sue 234 Main St. number | type

7654321 | Home
8765432 | Office
0123456 | Mobile

4# Note that the nested table has a single
column of a object type phone_t

Creating a Nested Table

create type phone_list_t as table of phone_t;

create type customer_t as object (
customer_id integer,

name varchar(15),
address varchar(15),
phones phone_list_t
)
/

create table customers of customer_t
nested table phones store as nested_phones;

Using Nested Tables

Nested table information as a type
» select * from user_types;

Nested table information in a table
» select * from user_nested_tables;

insert into table (select phones from customers where customer _id = 1)
values ('0123456','M");

select phone_number

from table (select phones from customers where customer_id = 1) p
where p.phone_type = '0';

Varray vs. Nested Table

Varray # Nested table

» Ordered elements » Unordered elements

» Max size » No max size

» Individual element » Individual element
accessible in PL accessible in SQL

» Small varrays (<4k) » Always stored in
are stored with separate tables
parent table

JDBC Support for Database
Objects

The Java class has to implement SQLData
interface
» getSQLTypeName();
» readSQL(SQLInput stream, String typeName);
» writeSQL(SQLOutput stream);

Update the JDBC Type Map
» connection.getTypeMap().put(“FOQ”,

Class.forName(“Foo"));
Resultset.getObject()

PreparedStatement.setObject()

