CS202 Java Object Oriented Programming
Input and Output

Chengyu Sun
California State University, Los Angeles

Input and Output

4 Console
= Scanner
= System.out
4 Command line parameters
File
= Reader and Writer
= InputStream and OutputStream
= Scanner

@ GUI

Command Line Parameters

#Parameters of main()

= public static void main(String args[])
#®java Classname <arg0> <argl> ...
#Eclipse

» Run—> Run ... —>Arguments

CLP Example

Add up a list of integers from user input
public class Add {

public static void main(String args[])
{
int sum = 0;
for(inti=0 ; i < args.length ; ++i)
sum += Integer.parselnt(args[i]);

System.out.printin(sum);

}
} // end of class Add

Understand j ava. i o Package

Source

writes
o
m dest
a

A stream
IR o r / reads
4 =]
th o n
A stream

http://java.sun.com/j2se/1.5.0/docs/api/java/io/package-summary.htmil

Stream Types

#Character streams

= Textual information

= Handled by Reader and Writer classes
#Byte streams

= Binary information

= Handled by InputStream and
OutputStream classes

Reader Classes

Writer Classes

BufferedReader]—[LineNumberReader]
InputStreamReader]—[FileReader] OutputStreamWriter]—[FileWriter
FilterReader H PushbackReader]
InputStream Classes OutputStream Classes
‘[FileInputStream] LineNumberInputStream]
‘{ PipedInputStream] DatalnputStream] PipedOutputStream] DataOutputStream]
‘[FilterInputStream BufferedInputStream] FilterOutputStream BufferedOutputStream]
[InputStream %{ ByteArrayInputStream] PushbackInputStream] ByteArrayOutputStream] PrintStream]
Basic Streams by
Source/Destination Basic Stream Operations
Files , #Basic streams only recognize bytes or
= FileReader/Writer/InputStream/OutputStream /7 t
Threads cnaracters
= PipedReader/Writer/InputStream/OutputStream @Operations
4 Memory

= ByteArrayReader/Writer/InputStream/OutputStream
= StringReader/Writer
= StringBufferInputStream
4 General
= InputStream, InputStreamReader
= OutputStream, OutputStreamWriter

= Read/write a single byte or character
= Read/write an array of bytes or characters
#Inconvenient

Wrapper Streams by Function

% Data conversion
» DatalnputStream/OutputStream
% Printing
= PrintStream
% Buffering
» BufferedReader/Writer/InputStream/OutputStream
4 Object serialization
= ObjectInputStream/OutputStream
4 Others

Important Wrapper Streams
and Operations

4 DatalnputStream and DataOutputStream
» Read and write primitive types
= readInt(), readDouble(), ...
= writeInt(int i), writeDoube(double d), ...
4% BufferedReader
= readLine()
BufferedWriter
= write(String s)

“Wrapping” Examples

// buffered text file read/write
BufferedReader br = new BufferedReader(new FileReader(“file”));
BufferedWriter bw = new BufferedWriter(new FileWriter(“file”));

// un-buffered binary file read/write
DatalInputStream di = new DataInputStream(new FileInputStream(“file”));
DataOutputStream do = new DataOutputStream(new FileOutputStream(“file”));

// buffered binary file read/write
DatalInputStream di2 = new DataInputStream(new BufferedInputStream(
new FileInputStream()));
DataOutputStream do2 = new DataOutputStream(new BufferedOutputStream(
new FileOutputStream()));

How to Choose from Stream
Classes

Step 1: Is the data in binary form or textual
form?

= Binary: Input/OutputStream
» Textual: Reader/Writer
4% Step 2: What's the data source or data
destination?
= Files, threads, memory, general
4 Step 3: How to process the data?
= Primitive data types, buffering, ...

File Input Example

#Read from a file in the following format,
and sum up all numbers

31 20 30

22 33 -1 43
23 33 44 45
79 1

Get The File Name

public static void main(String args[])

{
if(args.length ==0)
{

System.err.printin(“usage: java Sum <filename>");

System.exit(1);

// do something with args[0]
¥

Paths
4 Windows @ Unix
= Absolute path = Absolute path
+ c:\path\to\file + /path/to/file
= Relative path = Relative path
+ path\to\file + path/to/file

File separators — /", “\\", File.separator

Read In Each Line

FileReader fr = new FileReader(filename);

// wrapping
BufferedReader br = new BufferedReader(fr);

String line;
while((line = br.readLine()) !'= null)

// do something with s
¥

Break A Line Into Tokens

StringTokenizer st = new StringTokenizer(line);
while(st.hasMoreTokens())
int value = Integer.parselnt(st.nextToken());

// add value to sum

A Few More Things

#1/0 Classes are in the java.io package
= import java.io.*;
4 StringTokenizer is in the java.util package
= import java.util.*;
4 File operations throw all kinds of exceptions
= Catch them, or
= Throw them
Always remember to close a stream

Fi | e Class

#Not directly related to I/O

#Check file status:
= is a file or a directory
= exist, readable, writable
= Nname, path, parent
= length

Binary File vs. Text File

#If we can save data in either binary or
text form, which one do we choose?
= File size
= Convenience
= Speed
#Either way, always use buffering!

Random Access File

#The problem with the strearm model
#Advantages of RandomAccessFi | e
= Deal with both binary and text files
= Provide both read and write methods

= seek(1l ong pos)

% ... but you'll probably never use it.
Why?

