CS202 Java Object Oriented Programming

Encapsulation, Inheritance, and Polymorphism

Chengyu Sun
California State University, Los Angeles

Access Modifiers

#public - can be accessed from anywhere

#private — can be accessed only within the
class

#protected - can be accessed within the
class, in subclasses, or within the same
package

No modifier — can be accessed within the
same package

Access Control Example

Encapsulation

blic class F blic class B: . . .
publc class Foo { puplic class Bar ¢ #Separate implementation details from
public int a; public Bar () {} H
private int b; Interface
protected int c; ?ublic void print(Foo f) a Control access to internal data
public Foo() System.out.printin(f.a); // ?? «+ Account class
{ System.out.printin(f.b); // ?? . . .
a=1 System.out.printin(f.c); // 7? = Change class implementation without
b=2 breaking code that uses the class
¥ public static void main(String args[]) + Point class
(new Bar()).print(new Foo());
)
)
Access to Private Fields Package

@ Getter and Setter methods

= Point
* getX(), getY()
+ setX(), setY()

#What not just make x, y public??

#A collection of related classes and
interfaces providing access protection
and name space management
= Group related classes together so they are

easier to find and to use
= Package level access finds a middle ground
between public and private access
= Avoid name conflicts
+ cs202.cysun.Account and com.boa.Account

Creating Packages

package cs202.cysun;

#Package names
= The “reverse-URL"” naming convention

Using Package Members

4 Only public classes of a package are
accessible from outside the package

% Import all classes in a package
= E.g. import javax.swing.*;
Import one class from a package
= E.g. import javax.swing.JOptionPane;

Package and Directory

4 Package name must match directory structure
= E.g. all classes in the package cs202.cysun must
be under a directory cs202\cysun
4# Classpath — directories where Java searches
for classes
= Some default classpaths
= Current working directory
= Additional directories specified by the —classpath
option

Package and Directory
Example

#package cs202
= Class Foo

#java Foo
#java cs202.Foo
#java —classpath .. c¢s202.Foo

Account Revisited

Account

Attributes # Operations
= Account number » Check balance
= Owner’s name = Deposit
= Balance (>=0) = Withdraw

= Transfer

More Accounts

#Checking Account

= No restriction on deposit or withdraw
#Savings Account

= Limited 2 withdraws per month
#CD Account

= 30-day term

= Deposit or withdraw only during a 7 day
grace period

Inheritance

4 Code re-use
Subclass inherits members of a superclass
= Class variables
= Methods
» Except constructors
4 Inherits != Can Access
= public and protected

= Subclass may have more members than the
superclass

CheckingAccount Class

public class CheckingAccount extends Account {
public CheckingAccount(String owner)
super(owner);

public CheckingAccount(String owner, double balance)

{

super(owner, balance);

Keyword super

#A reference to the superclass

@A reference to a constructor of the
superclass

SavingsAccount Class

#®Restrictions on withdraw
= No more than 2 withdraws per month

#Have to re-write the withdraw() method
n??

Overriding

#A subclass method has the same
signature as a method of the superclass
#Method signature
= Access modifier
= Return Type
= Name
= List of parameters

Overriding Examples

#public double withdraw(double
amount)
@public String toString()

= All Java classes implicitly inherits from the
Object class

= toString() is one of the methods defined in
the Object class

Inheritance vs. Encapsulation

#Inheritance — subclass wants to reuse
code

#Encapsulation — changes to the
implementation of one class should not
affect other code, including the code of
subclasses

#In practice — pragmatic balance

Class Hierarchy of Account

« deposit()
o withdraw()

el

‘CheckingAccount‘ ‘SavingsAccount‘ ‘ CDAccount ‘

* withdraw() « deposit()
o withdraw()

Keyword final

#A final class cannot be inherited
= public final class Classname {...}

#A final variable cannot changes its value
= Similar to constantsin other languages
= Convenience

= Readability
= final double Pl = 3.1415926;

More about Account

Account

4 Attributes 4 Operations
= Account number = Check balance
= Owner’s name = Deposit
= Balance (>=0) = Withdraw

= Transfer

A Closer Look at transfer()

public double transfer(double amount, Account other)

{

return other.deposit(withdraw(amount));

3

4 What happens if we want to transfer from a
CheckingAccount to a SavingsAccount?
= Type mismatch?

Things Could Get Messy

CheckingAccount
= double transfer(double amount, CheckingAccount a)
= double transfer(double amount, SavingsAccount a)
= double transfer(double amount, CDAccount a)

4 SavingsAccount
= double transfer(double amount, CheckingAccount a)
= double transfer(double amount, SavingsAccount a)
= double transfer(double amount, CDAccount a)

% CDAccount
= double transfer(double amount, CheckingAccount a)
= double transfer(double amount, SavingsAccount a)
= double transfer(double amount, CDAccount a)

Polymorphism

4 An object of a subclass can be used as an
object of the superclass
= E.g. Account a = new CheckingAccount(
“Chengyu”, 10.0);
4 The reverse is not true

= E.g. CheckingAccount a = new Account(
“Chengyu”, 10.0); // Error!

 Why??

Polymorphism Example

public class A {

A al = new A();
public AQ) {} B bl = new B();
public void afunc() A a2 = new B(); // ??

B b2 = new A(); // ??
System.out.printin(“afunc”);

) a2.afunc(); // ??

public class B extends A { a2.bfunc(); // ??
public B() {}
public void bfunc()
System.out.printin(“bfunc”);

3
b

Polymorphism Example
public class A { Aal = new A();
public AQ) {¥ B bl = new B();

public void afunc() A a2 =new B(); // OK

B b2 = new A(); // Error!
System.out.printIn(“afunc”);

3 a2.afunc(); // OK
public class B extends A { a2.bfunc(); // Error!
public B {} ((B) a2).bfunc(); // OK
public void bfunc() ((B) a1).bfunc(); // Error!
System.out.printin(“bfunc”);
}

b

Dynamic Dispatching

#When multiple implementations of the
same method exist due to overriding,
which method to invoke is determined
by the actual class of the object

@ Dynamic means the decision is make at
runtime (as oppose to compile time)

Dynamic Dispatching Example

public class A { public class B extends A {
public AQ) {} public B() {}
public void afunc() public void afunc()

System.out.printIn(“afunc”); System.out.printin(“b’s afunc”);

}
Aa = new A(); public void bfunc()
B b = new B();)
System.out.printin(“bfunc”);
A a2 = new B(); , }

a.afunc(); // ??
b.afunc(); // ??
a2.afunc(); // ??

