
1

CS202 Java Object Oriented Programming
Encapsulation, Inheritance, and Polymorphism

Chengyu Sun

California State University, Los Angeles

Access Modifiers

public – can be accessed from anywhere

private – can be accessed only within the
class

protected – can be accessed within the
class, in subclasses, or within the same
package

No modifier – can be accessed within the
same package

Access Control Example

public class Foo {

public int a;

private int b;
protected int c;

public Foo()

{
a = 1;

b = 2;
c = 3;

}

}

public class Bar {

public Bar () {}

public void print(Foo f)

{
System.out.println(f.a); // ??

System.out.println(f.b); // ??
System.out.println(f.c); // ??

}

public static void main(String args[])
{

(new Bar()).print(new Foo());
}

}

Encapsulation

Separate implementation details from
interface

� Control access to internal data

� Account class

� Change class implementation without
breaking code that uses the class

� Point class

Access to Private Fields

Getter and Setter methods

� Point

� getX(), getY()

� setX(), setY()

What not just make x, y public??

Package

A collection of related classes and
interfaces providing access protection
and name space management
� Group related classes together so they are
easier to find and to use

� Package level access finds a middle ground
between public and private access

� Avoid name conflicts
� cs202.cysun.Account and com.boa.Account

2

Creating Packages

Package names

� The “reverse-URL” naming convention

package cs202.cysun;

…

Using Package Members

Only public classes of a package are
accessible from outside the package

Import all classes in a package
� E.g. import javax.swing.*;

Import one class from a package
� E.g. import javax.swing.JOptionPane;

Package and Directory

Package name must match directory structure

� E.g. all classes in the package cs202.cysun must
be under a directory cs202\cysun

Classpath – directories where Java searches
for classes

� Some default classpaths

� Current working directory

� Additional directories specified by the –classpath
option

Package and Directory
Example

package cs202

� Class Foo

java Foo

java cs202.Foo

java –classpath .. cs202.Foo

Account Revisited

Attributes

� Account number

� Owner’s name

� Balance (>=0)

Operations

� Check balance

� Deposit

� Withdraw

� Transfer

Account

More Accounts

Checking Account
� No restriction on deposit or withdraw

Savings Account
� Limited 2 withdraws per month

CD Account
� 30-day term

� Deposit or withdraw only during a 7 day
grace period

3

Inheritance

Code re-use

Subclass inherits members of a superclass
� Class variables

� Methods

� Except constructors

Inherits != Can Access
� public and protected

� Subclass may have more members than the
superclass

CheckingAccount Class

public class CheckingAccount extends Account {

public CheckingAccount(String owner)
{

super(owner);
}

public CheckingAccount(String owner, double balance)

{
super(owner, balance);

}
}

Keyword super

A reference to the superclass

A reference to a constructor of the
superclass

SavingsAccount Class

Restrictions on withdraw

� No more than 2 withdraws per month

Have to re-write the withdraw() method

� ??

Overriding

A subclass method has the same
signature as a method of the superclass

Method signature

� Access modifier

� Return Type

� Name

� List of parameters

Overriding Examples

public double withdraw(double
amount)

public String toString()

� All Java classes implicitly inherits from the
Object class

� toString() is one of the methods defined in
the Object class

4

Inheritance vs. Encapsulation

Inheritance – subclass wants to reuse
code

Encapsulation – changes to the
implementation of one class should not
affect other code, including the code of
subclasses

In practice – pragmatic balance

Class Hierarchy of Account

Account

SavingsAccount CDAccountCheckingAccount

• deposit()
• withdraw()

• transfer()

• withdraw() • deposit()

• withdraw()

Keyword final

A final class cannot be inherited
� public final class Classname {…}

A final variable cannot changes its value

� Similar to constants in other languages

� Convenience

� Readability

� final double PI = 3.1415926;

More about Account

Attributes

� Account number

� Owner’s name

� Balance (>=0)

Operations

� Check balance

� Deposit

� Withdraw

� Transfer

Account

A Closer Look at transfer()

What happens if we want to transfer from a
CheckingAccount to a SavingsAccount?

� Type mismatch?

public double transfer(double amount, Account other)

{

return other.deposit(withdraw(amount));

}

Things Could Get Messy

CheckingAccount
� double transfer(double amount, CheckingAccount a)

� double transfer(double amount, SavingsAccount a)

� double transfer(double amount, CDAccount a)

SavingsAccount
� double transfer(double amount, CheckingAccount a)

� double transfer(double amount, SavingsAccount a)

� double transfer(double amount, CDAccount a)

CDAccount
� double transfer(double amount, CheckingAccount a)

� double transfer(double amount, SavingsAccount a)

� double transfer(double amount, CDAccount a)

5

Polymorphism

An object of a subclass can be used as an
object of the superclass
� E.g. Account a = new CheckingAccount(

“Chengyu”, 10.0);

The reverse is not true
� E.g. CheckingAccount a = new Account(

“Chengyu”, 10.0); // Error!

Why??

Polymorphism Example
public class A {

public A() {}

public void afunc()
{

System.out.println(“afunc”);
}

}

public class B extends A {

public B() {}

public void bfunc()

{
System.out.println(“bfunc”);

}
}

A a1 = new A();

B b1 = new B();

A a2 = new B(); // ??
B b2 = new A(); // ??

a2.afunc(); // ??

a2.bfunc(); // ??

Polymorphism Example
public class A {

public A() {}

public void afunc()
{

System.out.println(“afunc”);
}

}

public class B extends A {

public B() {}

public void bfunc()

{
System.out.println(“bfunc”);

}
}

A a1 = new A();

B b1 = new B();

A a2 = new B(); // OK
B b2 = new A(); // Error!

a2.afunc(); // OK

a2.bfunc(); // Error!

((B) a2).bfunc(); // OK

((B) a1).bfunc(); // Error!

Dynamic Dispatching

When multiple implementations of the
same method exist due to overriding,
which method to invoke is determined
by the actual class of the object

Dynamic means the decision is make at
runtime (as oppose to compile time)

Dynamic Dispatching Example
public class A {

public A() {}

public void afunc()

{
System.out.println(“afunc”);

}
}

public class B extends A {

public B() {}

public void afunc()

{
System.out.println(“b’s afunc”);

}

public void bfunc()
{

System.out.println(“bfunc”);
}

}

A a = new A();
B b = new B();

A a2 = new B();

a.afunc(); // ??

b.afunc(); // ??
a2.afunc(); // ??

