
8
Classes and Objects:
A Deeper Look

O B J E C T I V E S
In this chapter you will learn:

■ Encapsulation and data hiding.

■ The notions of data abstraction and abstract data types
(ADTs).

■ To use keyword this.

■ To use static variables and methods.

■ To import static members of a class.

■ To use the enum type to create sets of constants with
unique identifiers.

■ How to declare enum constants with parameters.

Instead of this absurd
division into sexes, they
ought to class people as
static and dynamic.
—Evelyn Waugh

Is it a world to hide virtues
in?
—William Shakespeare

But what, to serve
our private ends,
Forbids the cheating
of our friends?
—Charles Churchill

This above all: to thine own
self be true.
—William Shakespeare

Don’t be “consistent,”
but be simply true.
—Oliver Wendell Holmes, Jr.

Chapter 8 Classes and Objects: A Deeper Look 3

Name: Date:

Section:

Assignment Checklist

Exercises Assigned: Circle assignments Date Due

Prelab Activities

Matching YES NO

Fill in the Blank 11, 12, 13, 14, 15, 16, 17, 18, 19,
20

Short Answer 21, 22, 23, 24, 25, 26

Programming Output 27, 28, 29, 30, 31, 32

Correct the Code 33, 34, 35, 36, 37

Lab Exercises

Exercise 1 — Time: Part 1 YES NO

Follow-Up Questions and Activities 1, 2

Exercise 2 — Time: Part 2 YES NO

Follow-Up Question and Activity 1

Exercise 3 — Complex Numbers YES NO

Follow-Up Questions and Activities 1, 2

Debugging YES NO

Labs Provided by Instructor

1.

 2.

 3.

Postlab Activities

Coding Exercises 1, 2, 3, 4, 5, 6, 7

Programming Challenges 1, 2

Chapter 8 Classes and Objects: A Deeper Look 5

Prelab Activities

Name: Date:

Section:

Matching

After reading Chapter 8 of Java How to Program: Sixth Edition, answer the given questions. These questions are
intended to test and reinforce your understanding of key Java concepts. You may answer these questions either
before or during the lab.

For each term in the left column, write the letter for the description that best matches the term from the right
column.

Term Description

1. composition

2. enum keyword

3. public

4. finalize

5. mutator

6. private

7. attribute

8. static import

9. this

10. package name

a) Such class members can be accessed by any class.

b) Method that is called by the garbage collector to clean up an object be-
fore it is removed from memory.

c) Such class members can be accessed only by the class in which they are
defined.

d) “Has a” relationship.

e) Used implicitly in a class’s non-static methods to refer to both the in-
stance variables and methods of an object of that class.

f) Together, this name and the class name compose the fully qualified
name of the class.

g) Used to declare an enumeration class.

h) Enables programmers to refer to static members as if they were de-
clared in the class that uses them.

i) Another name for an instance variable in a class.

j) Another name for a set method.

Prelab Activities Name:

Fill in the Blank

Chapter 8 Classes and Objects: A Deeper Look 7

Name: Date:

Section:

Fill in the Blank

Fill in the blanks for each of the following statements:

11. Keywords and are access modifiers.

12. Class members declared with access modifier are accessible wherever the program has reference
to an object of the class in which those members are defined.

13. Class members declared with access modifier are accessible only to methods of the class in which
those members are defined.

14. enum types are implicitly , because they declare constants that should not be modified. enum con-
stants are implicitly .

15. There can be only one declaration in each Java source-code file, and it must precede all other
declarations and statements in the file.

16. A(n) variable represents class-wide information.

17. In non-static methods, the keyword is implicitly used to refer to the instance variables and oth-
er non-static methods of the class.

18. A(n) initializes the instance variables of an object of a class when the object is instantiated.

19. Each class and interface in the Java API belongs to a specific that contains a group of related class-
es and interfaces.

20. Instance variables are normally declared , and methods are normally declared .

Prelab Activities Name:

Short Answer

Chapter 8 Classes and Objects: A Deeper Look 9

Name: Date:

Section:

Short Answer

Answer the following questions in the space provided. Your answers should be as concise as possible; aim for two
or three sentences.

21. Why would a class provide overloaded constructors?

22. What are some advantages of creating packages?

23. What is the purpose of a constructor?

Prelab Activities Name:

Short Answer

10 Classes and Objects: A Deeper Look Chapter 8

24. What is the purpose of a set method?

25. What is the purpose of a get method?

26. What is an abstract data type?

Prelab Activities Name:

Programming Output

Chapter 8 Classes and Objects: A Deeper Look 11

Name: Date:

Section:

Programming Output

For each of the given program segments, read the code and write the output in the space provided below each
program. [Note: Do not execute these programs on a computer.]

For questions 27–29 use the following declaration of class Time2:

1 // Fig. 8.5: Time2.java
2 // Time2 class declaration with overloaded constructors.
3
4 public class Time2
5 {
6 private int hour; // 0 - 23
7 private int minute; // 0 - 59
8 private int second; // 0 - 59
9

10 // Time2 no-argument constructor: initializes each instance variable
11 // to zero; ensures that Time2 objects start in a consistent state
12 public Time2()
13 {
14 this(0, 0, 0); // invoke Time2 constructor with three arguments
15 } // end Time2 no-argument constructor
16
17 // Time2 constructor: hour supplied, minute and second defaulted to 0
18 public Time2(int h)
19 {
20 this(h, 0, 0); // invoke Time2 constructor with three arguments
21 } // end Time2 one-argument constructor
22
23 // Time2 constructor: hour and minute supplied, second defaulted to 0
24 public Time2(int h, int m)
25 {
26 this(h, m, 0); // invoke Time2 constructor with three arguments
27 } // end Time2 two-argument constructor
28
29 // Time2 constructor: hour, minute and second supplied
30 public Time2(int h, int m, int s)
31 {
32 setTime(h, m, s); // invoke setTime to validate time
33 } // end Time2 three-argument constructor
34
35 // Time2 constructor: another Time2 object supplied
36 public Time2(Time2 time)
37 {
38 // invoke Time2 three-argument constructor
39 this(time.getHour(), time.getMinute(), time.getSecond());
40 } // end Time2 constructor with a Time2 object argument
41

Fig. L 8.1 | Time2.java (Part 1 of 3.)

Prelab Activities Name:

Programming Output

12 Classes and Objects: A Deeper Look Chapter 8

42 // Set Methods
43 // set a new time value using universal time; ensure that
44 // the data remains consistent by setting invalid values to zero
45 public void setTime(int h, int m, int s)
46 {
47 setHour(h); // set the hour
48 setMinute(m); // set the minute
49 setSecond(s); // set the second
50 } // end method setTime
51
52 // validate and set hour
53 public void setHour(int h)
54 {
55 hour = ((h >= 0 && h < 24) ? h : 0);
56 } // end method setHour
57
58 // validate and set minute
59 public void setMinute(int m)
60 {
61 minute = ((m >= 0 && m < 60) ? m : 0);
62 } // end method setMinute
63
64 // validate and set second
65 public void setSecond(int s)
66 {
67 second = ((s >= 0 && s < 60) ? s : 0);
68 } // end method setSecond
69
70 // Get Methods
71 // get hour value
72 public int getHour()
73 {
74 return hour;
75 } // end method getHour
76
77 // get minute value
78 public int getMinute()
79 {
80 return minute;
81 } // end method getMinute
82
83 // get second value
84 public int getSecond()
85 {
86 return second;
87 } // end method getSecond
88
89 // convert to String in universal-time format (HH:MM:SS)
90 public String toUniversalString()
91 {
92 return String.format(
93 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
94 } // end method toUniversalString
95
96 // convert to String in standard-time format (H:MM:SS AM or PM)
97 public String toString()
98 {

Fig. L 8.1 | Time2.java (Part 2 of 3.)

Prelab Activities Name:

Programming Output

Chapter 8 Classes and Objects: A Deeper Look 13

27. What is output by the following code segment?

Your answer:

28. What is output by the following code segment?

Your answer:

99 return String.format("%d:%02d:%02d %s",
100 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
101 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
102 } // end method toString
103 } // end class Time2

1 Time3 t1 = new Time3(5);
2 System.out.printf("The time is %s\n", t1);

1 Time3 t1 = new Time3(13, 59, 60);
2 System.out.printf("The time is %s\n", t1);

Fig. L 8.1 | Time2.java (Part 3 of 3.)

Prelab Activities Name:

Programming Output

14 Classes and Objects: A Deeper Look Chapter 8

29. What is output by the following code segment?

Your answer:

For questions 30–32 use the following declaration of class Person:

1 Time3 t1 = new Time3(0, 30, 0);
2 Time3 t2 = new Time3(t1);
3 System.out.printf("The time is %s\n", t2.toUniversalString());

1 public class Person
2 {
3 private String firstName;
4 private String lastName;
5 private String gender;
6 private int age;
7
8 public Person(String firstName, String lastName)
9 {

10 setName(firstName, lastName);
11 setGender("n/a");
12 setAge(-1);
13 } // end Person constructor
14
15 public Person(String firstName, String lastName, String gender, int age)
16 {
17 setName(firstName, lastName);
18 setGender(gender);
19 setAge(age);
20 } // end Person constructor
21
22 public void setName(String firstName, String lastName)
23 {
24 this.firstName = firstName;
25 this.lastName = lastName;
26 } // end method setName
27
28 public void setGender(String gender)
29 {
30 this.gender = gender;
31 } // end method setGender
32

Fig. L 8.2 | (Part 1 of 2.)

Prelab Activities Name:

Programming Output

Chapter 8 Classes and Objects: A Deeper Look 15

30. What is output by the following code segment?

Your answer:

33 public void setAge(int age)
34 {
35 this.age = age;
36 } // end method setAge
37
38 public String getName()
39 {
40 return String.format(“%s %s”, firstName, lastName);
41 } // end method getName
42
43 public String getGender()
44 {
45 return gender;
46 } // end method getGender
47
48 public int getAge()
49 {
50 return age;
51 } // end method getAge
52
53 public String toString()
54 {
55 if (gender == "n/a" && age == -1)
56 return getName();
57
58 return String.format(“%s is a %d year old %s”, getName(), getAge(),
59 getGender());
60 } // end method toString
61 } // end class Person

1 Person person = new Person("Rus", "Tic", "male", 21);
2 System.out.println(person);

Fig. L 8.2 | (Part 2 of 2.)

Prelab Activities Name:

Programming Output

16 Classes and Objects: A Deeper Look Chapter 8

31. What is output by the following code segment?

Your answer:

32. What is output by the following code segment?

Your answer:

1 Person person = new Person("Anna Lee", "Tic");
2 System.out.println(person);

1 Person person = new Person("Anna Lee", "Tic", "n/a", -1);
2 System.out.println(person);

Prelab Activities Name:

Correct the Code

Chapter 8 Classes and Objects: A Deeper Look 17

Name: Date:

Section:

Correct the Code

Determine if there is an error in each of the following program segments. If there is an error, specify whether it
is a logic error or a compilation error, circle the error in the program and write the corrected code in the space
provided after each problem. If the code does not contain an error, write “no error.” [Note: There may be more
than one error in each program segment.]

33. The following defines class Product, with a no-argument constructor that sets the product’s name to an
empty String and the price to 0.00, and a toProductString method that returns a String containing the
product’s name and its price:

Your answer:

1 public class Product
2 {
3 private String name;
4 private double price;
5
6 public void Product()
7 {
8 name = "";
9 price = 0.00;

10 } // end Product constructor
11
12 public toString()
13 {
14 return String.format(“%s costs %.2d”, name, price);
15 } // end method toString
16 } // end class Product

Prelab Activities Name:

Correct the Code

18 Classes and Objects: A Deeper Look Chapter 8

34. The following defines another constructor for class Product that takes two arguments and assigns those ar-
guments to the corresponding instance variables:

Your answer:

35. The following defines two set methods to set the name and the price of the Product:

Your answer:

1 public Product(String name, double price)
2 {
3 name = name;
4 price = price;
5 }

1 public setName()
2 {
3 this.name = name;
4 }
5
6 public setPrice()
7 {
8 this.price = price;
9 }

Prelab Activities Name:

Correct the Code

Chapter 8 Classes and Objects: A Deeper Look 19

36. The following code segment should create a Product object and display a String containing the values of
the object’s instance variables.

Your answer:

37. The following code segment should create a Product object, set the values of its instance variables and dis-
play a String containing the values of the instance variables:

Your answer:

1 Product p1 = new Product("Milk", 5.5);
2 System.out.printf(“%s %.2f\n”, p1.name, p1.price);

1 Product p1 = new Product();
2 p1.setName();
3 p1.setPrice();
4 System.out.println(p1.toString("Eggs", 3));

Chapter 8 Classes and Objects: A Deeper Look 21

Lab Exercises

Name: Date:

Section:

Lab Exercise 1 — Time: Part 1

The following problem is intended to be solved in a closed-lab session with a teaching assistant or instructor
present. The problem is divided into six parts:

1. Lab Objectives

2. Problem Description

3. Sample Output

4. Program Template (Fig. L 8.3–Fig. L 8.4)

5. Problem-Solving Tips

6. Follow-Up Questions and Activities

The program template represents a complete working Java program with one or more key lines of code replaced
with comments. Read the problem description and examine the output, then study the template code. Using the
problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the program.
Compare your output with the sample output provided. Then answer the follow-up questions. The source code
for the template is available at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 8 of Java How To Program: Sixth Edi-
tion. In this lab, you will practice:

• Modifying methods of a class.

• Accessing instance variables.

• Using set and get methods.

The follow-up questions and activities also will give you practice:

• Understanding the difference between access specifiers public and private.

Problem Description
Modify the set methods in class Time2 of Fig. L 8.1 to return appropriate error values if an attempt is made to
set one of the instance variables hour, minute or second of an object of class Time to an invalid value. [Hint: Use
boolean return types on each method.] Write a program that tests these new set methods and outputs error mes-
sages when incorrect values are supplied.

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

22 Classes and Objects: A Deeper Look Chapter 8

Sample Output

1. Set Hour
2. Set Minute
3. Set Second
4. Add 1 second
5. Exit
Choice:
Enter Hours:
Hour: 10 Minute: 0 Second: 0
Universal time: 10:00:00 Standard time: 10:00:00 AM
1. Set Hour
2. Set Minute
3. Set Second
4. Add 1 second
5. Exit
Choice:
Enter Minutes:
Hour: 10 Minute: 10 Second: 0
Universal time: 10:10:00 Standard time: 10:10:00 AM
1. Set Hour
2. Set Minute
3. Set Second
4. Add 1 second
5. Exit
Choice:
Enter Seconds:
Hour: 10 Minute: 10 Second: 10
Universal time: 10:10:10 Standard time: 10:10:10 AM
1. Set Hour
2. Set Minute
3. Set Second
4. Add 1 second
5. Exit
Choice:
Enter Seconds:
Invalid seconds.
Hour: 10 Minute: 10 Second: 0
Universal time: 10:10:00 Standard time: 10:10:00 AM
1. Set Hour
2. Set Minute
3. Set Second
4. Add 1 second
5. Exit
Choice:

1
10

2
10

3
10

3
99

5

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

Chapter 8 Classes and Objects: A Deeper Look 23

Template

1 // Lab 1: Time2.java
2 // Time2 class definition with methods tick,
3 // incrementMinute and incrementHour.
4
5 public class Time2
6 {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

10
11 // Time2 no-argument constructor: initializes each instance variable
12 // to zero; ensures that Time2 objects start in a consistent state
13 public Time2()
14 {
15 this(0, 0, 0); // invoke Time2 constructor with three arguments
16 } // end Time2 no-argument constructor
17
18 // Time2 constructor: hour supplied, minute and second defaulted to 0
19 public Time2(int h)
20 {
21 this(h, 0, 0); // invoke Time2 constructor with three arguments
22 } // end Time2 one-argument constructor
23
24 // Time2 constructor: hour and minute supplied, second defaulted to 0
25 public Time2(int h, int m)
26 {
27 this(h, m, 0); // invoke Time2 constructor with three arguments
28 } // end Time2 two-argument constructor
29
30 // Time2 constructor: hour, minute and second supplied
31 public Time2(int h, int m, int s)
32 {
33 setTime(h, m, s); // invoke setTime to validate time
34 } // end Time2 three-argument constructor
35
36 // Time2 constructor: another Time2 object supplied
37 public Time2(Time2 time)
38 {
39 // invoke Time2 constructor with three arguments
40 this(time.getHour(), time.getMinute(), time.getSecond());
41 } // end Time2 constructor with Time2 argument
42
43 // Set a new time value using universal time. Perform
44 // validity checks on data. Set invalid values to zero.
45 /* Write header for setTime. */
46 {
47 /* Write code here that declares three boolean variables which are
48 initialized to the return values of setHour, setMinute and setSecond.
49 These lines of code should also set the three member variables. */
50
51 /* Return true if all three variables are true; otherwise, return false. */
52 }
53

Fig. L 8.3 | Time2.java. (Part 1 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

24 Classes and Objects: A Deeper Look Chapter 8

54 // validate and set hour
55 /* Write header for the setHour method. */
56 {
57 /* Write code here that determines whether the hour is valid.
58 If so, set the hour and return true. */
59
60 /* If the hour is not valid, set the hour to 0 and return false. */
61 }
62
63 // validate and set minute
64 /* Write the header for the setMinute method. */
65 {
66 /* Write code here that determines whether the minute is valid.
67 If so, set the minute and return true. */
68
69 /* If the minute is not valid, set the minute to 0 and return false. */
70 }
71
72 // validate and set second
73 /* Write the header for the setSecond method. */
74 {
75 /* Write code here that determines whether the second is valid.
76 If so, set the second and return true. */
77
78 /* If the second is not valid, set the second to 0 and return false. */
79 }
80
81 // Get Methods
82 // get hour value
83 public int getHour()
84 {
85 return hour;
86 } // end method getHour
87
88 // get minute value
89 public int getMinute()
90 {
91 return minute;
92 } // end method getMinute
93
94 // get second value
95 public int getSecond()
96 {
97 return second;
98 } // end method getSecond
99
100 // Tick the time by one second
101 public void tick()
102 {
103 setSecond(second + 1);
104
105 if (second == 0)
106 incrementMinute();
107 } // end method tick
108

Fig. L 8.3 | Time2.java. (Part 2 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

Chapter 8 Classes and Objects: A Deeper Look 25

109 // Increment the minute
110 public void incrementMinute()
111 {
112 setMinute(minute + 1);
113
114 if (minute == 0)
115 incrementHour();
116 } // end method incrementMinute
117
118 // Increment the hour
119 public void incrementHour()
120 {
121 setHour(hour + 1);
122 } // end method incrementHour
123
124 // convert to String in universal-time format (HH:MM:SS)
125 public String toUniversalString()
126 {
127 return String.format(
128 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
129 } // end method toUniversalString
130
131 // convert to String in standard-time format (H:MM:SS AM or PM)
132 public String toString()
133 {
134 return String.format("%d:%02d:%02d %s",
135 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
136 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
137 } // end method toStandardString
138 } // end class Time2

1 // Lab 1: Time2Test.java
2 // Program adds validation to Fig. 8.7 example
3 import java.util.Scanner;
4
5 public class Time2Test
6 {
7 public static void main(String args[])
8 {
9 Scanner input = new Scanner(System.in);

10
11 Time2 time = new Time2(); // the Time2 object
12
13 int choice = getMenuChoice();
14
15 while (choice != 5)
16 {
17 switch (choice)
18 {
19 case 1: // set hour
20 System.out.print("Enter Hours: ");
21 int hours = input.nextInt();
22

Fig. L 8.4 | Time2Test.java. (Part 1 of 2.)

Fig. L 8.3 | Time2.java. (Part 3 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

26 Classes and Objects: A Deeper Look Chapter 8

Problem-Solving Tips
1. Use boolean return types for the set methods.

2. Each set method should return true if the value is valid and false if it is not.

3. If you have any questions as you proceed, ask your lab instructor for assistance.

23 /* Write code here that sets the hour. If the hour is invalid,
24 display an error message. */
25
26 break;
27 case 2: // set minute
28 System.out.print("Enter Minutes: ");
29 int minutes = input.nextInt();
30
31 /* Write code here that sets the minute. If the minute is invalid,
32 display an error message. */
33
34 break;
35 case 3: // set seconds
36 System.out.print("Enter Seconds: ");
37 int seconds = input.nextInt();
38
39 /* Write code here that sets the second. If the second is invalid,
40 display an error message. */
41
42 break;
43 case 4: // add 1 second
44 time.tick();
45 break;
46 } // end switch
47
48 System.out.printf("Hour: %d Minute: %d Second: %d\n",
49 time.getHour(), time.getMinute(), time.getSecond());
50 System.out.printf("Universal time: %s Standard time: %s\n",
51 time.toUniversalString(), time.toString());
52
53 choice = getMenuChoice();
54 } // end while
55 } // end main
56
57 // prints a menu and returns a value corresponding to the menu choice
58 private static int getMenuChoice()
59 {
60 Scanner input = new Scanner(System.in);
61
62 System.out.println("1. Set Hour");
63 System.out.println("2. Set Minute");
64 System.out.println("3. Set Second");
65 System.out.println("4. Add 1 second");
66 System.out.println("5. Exit");
67 System.out.print("Choice: ");
68
69 return input.nextInt();
70 } // end method getMenuChoice
71 } // end class Time2Test

Fig. L 8.4 | Time2Test.java. (Part 2 of 2.)

Lab Exercises Name:

Lab Exercise 1 — Time: Part 1

Chapter 8 Classes and Objects: A Deeper Look 27

Follow-Up Questions and Activities
1. What is the purpose of declaring the instance variables of class Time2 private?

2. Change all the methods in class Time2 from public methods to private methods, then try to recompile the
class and execute the program again. Does anything occur differently? If so, explain why.

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

Chapter 8 Classes and Objects: A Deeper Look 29

Name: Date:

Section:

Lab Exercise 2 — Time: Part 2

The following problem is intended to be solved in a closed-lab session with a teaching assistant or instructor
present. The problem is divided into six parts:

1. Lab Objectives

2. Problem Description

3. Sample Output

4. Program Template (Fig. L 8.5–Fig. L 8.6)

5. Problem-Solving Tips

6. Follow-Up Question and Activity

The program template represents a complete working Java program with one or more key lines of code replaced
with comments. Read the problem description and examine the output, then study the template code. Using the
problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the program.
Compare your output with the sample output provided. Then answer the follow-up question. The source code
for the template is available at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 8 of Java How To Program: Sixth Edi-
tion. In this lab you will practice:

• Creating new methods in a class.

• Calling methods of a class from the class’s other methods.

The follow-up question and activity also will give you practice:

• Understanding modularization.

Problem Description
Modify class Time2 of Fig. L 8.1 to include a tick method that increments the time stored in a Time2 object by
one second. Provide method incrementMinute to increment the minute and method incrementHour to incre-
ment the hour. The Time2 object should always remain in a consistent state. Write a program that tests the tick
method, the incrementMinute method and the incrementHour method to ensure that they work correctly. Be
sure to test the following cases:

a) incrementing into the next minute,

b) incrementing into the next hour and

c) incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

30 Classes and Objects: A Deeper Look Chapter 8

Sample Output

Enter the time
Hours: 23
Minutes: 59
Seconds: 59
1. Add 1 second
2. Add 1 Minute
3. Add 1 Hour
4. Add seconds
5. Exit
Choice: 1
Hour: 0 Minute: 0 Second: 0
Universal time: 00:00:00 Standard time: 12:00:00 AM
1. Add 1 second
2. Add 1 Minute
3. Add 1 Hour
4. Add seconds
5. Exit
Choice: 2
Hour: 0 Minute: 1 Second: 0
Universal time: 00:01:00 Standard time: 12:01:00 AM
1. Add 1 second
2. Add 1 Minute
3. Add 1 Hour
4. Add seconds
5. Exit
Choice: 3
Hour: 1 Minute: 1 Second: 0
Universal time: 01:01:00 Standard time: 1:01:00 AM
1. Add 1 second
2. Add 1 Minute
3. Add 1 Hour
4. Add seconds
5. Exit
Choice: 4
Enter seconds to tick: 60
Hour: 1 Minute: 2 Second: 0
Universal time: 01:02:00 Standard time: 1:02:00 AM
1. Add 1 second
2. Add 1 Minute
3. Add 1 Hour
4. Add seconds
5. Exit
Choice: 5

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

Chapter 8 Classes and Objects: A Deeper Look 31

Template

1 // Lab 2: Time2.java
2 // Time2 class definition with methods tick,
3 // incrementMinute and incrementHour.
4
5 public class Time2
6 {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

10
11 // Time2 no-argument constructor: initializes each instance variable
12 // to zero; ensures that Time2 objects start in a consistent state
13 public Time2()
14 {
15 this(0, 0, 0); // invoke Time2 constructor with three arguments
16 } // end Time2 no-argument constructor
17
18 // Time2 constructor: hour supplied, minute and second defaulted to 0
19 public Time2(int h)
20 {
21 this(h, 0, 0); // invoke Time2 constructor with three arguments
22 } // end Time2 one-argument constructor
23
24 // Time2 constructor: hour and minute supplied, second defaulted to 0
25 public Time2(int h, int m)
26 {
27 this(h, m, 0); // invoke Time2 constructor with three arguments
28 } // end Time2 two-argument constructor
29
30 // Time2 constructor: hour, minute and second supplied
31 public Time2(int h, int m, int s)
32 {
33 setTime(h, m, s); // invoke setTime to validate time
34 } // end Time2 three-argument constructor
35
36 // Time2 constructor: another Time2 object supplied
37 public Time2(Time2 time)
38 {
39 // invoke Time2 constructor with three arguments
40 this(time.getHour(), time.getMinute(), time.getSecond());
41 } // end Time2 constructor with Time2 argument
42
43 // Set Methods
44 // set a new time value using universal time; perform
45 // validity checks on data; set invalid values to zero
46 public void setTime(int h, int m, int s)
47 {
48 setHour(h); // set the hour
49 setMinute(m); // set the minute
50 setSecond(s); // set the second
51 } // end method setTime
52

Fig. L 8.5 | Time2.java. (Part 1 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

32 Classes and Objects: A Deeper Look Chapter 8

53 // validate and set hour
54 public void setHour(int h)
55 {
56 hour = ((h >= 0 && h < 24) ? h : 0);
57 } // end method setHour
58
59 // validate and set minute
60 public void setMinute(int m)
61 {
62 minute = ((m >= 0 && m < 60) ? m : 0);
63 } // end method setMinute
64
65 // validate and set second
66 public void setSecond(int s)
67 {
68 second = ((s >= 0 && s < 60) ? s : 0);
69 } // end method setSecond
70
71 // Get Methods
72 // get hour value
73 public int getHour()
74 {
75 return hour;
76 } // end method getHour
77
78 // get minute value
79 public int getMinute()
80 {
81 return minute;
82 } // end method getMinute
83
84 // get second value
85 public int getSecond()
86 {
87 return second;
88 } // end method getSecond
89
90 // Tick the time by one second
91 /* Write header for method tick */
92 {
93 /* Write code that increments the second by one, then determines whether
94 the minute needs to be incremented. If so, call incrementMinute. */
95 }
96
97 // Increment the minute
98 /* Write header for method incrementMinute */
99 {
100 /* Write code that increments the minute by one, then determines whether
101 the hour needs to be incremented. If so, call incrementHour. */
102 }
103
104 // Increment the hour
105 /* Write header for method incrementHour. */
106 {
107 /* Write code that increments the hour by one. */
108 }

Fig. L 8.5 | Time2.java. (Part 2 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

Chapter 8 Classes and Objects: A Deeper Look 33

109
110 // convert to String in universal-time format (HH:MM:SS)
111 public String toUniversalString()
112 {
113 return String.format(
114 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
115 } // end method toUniversalString
116
117 // convert to String in standard-time format (H:MM:SS AM or PM)
118 public String toString()
119 {
120 return String.format("%d:%02d:%02d %s",
121 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
122 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
123 } // end method toStandardString
124 } // end class Time2

1 // Lab 2: Time2Test.java
2 // Demonstrating the Time2 class set and get methods
3 import java.util.Scanner;
4
5 public class Time2Test
6 {
7 public static void main(String args[])
8 {
9 Scanner input = new Scanner(System.in);

10
11 Time2 time = new Time2();
12
13 System.out.println("Enter the time");
14 System.out.print("Hours: ");
15 time.setHour(input.nextInt());
16 System.out.print("Minutes: ");
17 time.setMinute(input.nextInt());
18 System.out.print("Seconds: ");
19 time.setSecond(input.nextInt());
20
21 int choice = getMenuChoice();
22
23 while (choice != 5)
24 {
25 switch (choice)
26 {
27 case 1: // add 1 second
28 time.tick();
29 break;
30 case 2: // add 1 minute
31 time.incrementMinute();
32 break;
33 case 3: // and 1 hour
34 time.incrementHour();
35 break;

Fig. L 8.6 | Time2Test.java. (Part 1 of 2.)

Fig. L 8.5 | Time2.java. (Part 3 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Time: Part 2

34 Classes and Objects: A Deeper Look Chapter 8

Problem-Solving Tips
1. Use the set methods of class Time2 to assign new values to the appropriate Time2 instance variables.

2. The tick and increment methods do not return anything; therefore, they should be declared to return
void.

3. Complete your testing by running the application and testing all three cases mentioned in the problem
description. Note that methods incrementMinute and incrementHour can be tested by changing the
time to a value for which the next call to tick will cause either (or both) of these methods to be called.
For example, at 11:59:59, the next tick will cause both the hour and minute to be incremented.

4. If you have any questions as you proceed, ask your lab instructor for assistance.

Follow-Up Question and Activity
1. Explain why a programmer would choose to implement method tick in class Time2 rather than a class that

uses Time2 objects.

36 case 4: // add arbitrary seconds
37 System.out.print("Enter seconds to tick: ");
38 int ticks = input.nextInt();
39
40 for (int i = 0; i < ticks; i++)
41 time.tick();
42
43 break;
44 } // end switch
45
46 System.out.printf("Hour: %d Minute: %d Second: %d\n",
47 time.getHour(), time.getMinute(), time.getSecond());
48 System.out.printf("Universal time: %s Standard time: %s\n",
49 time.toUniversalString(), time.toString());
50
51 choice = getMenuChoice();
52 } // end while
53 } // end main
54
55 // prints a menu and returns a value corresponding to the menu choice
56 private static int getMenuChoice()
57 {
58 Scanner input = new Scanner(System.in);
59
60 System.out.println("1. Add 1 second");
61 System.out.println("2. Add 1 Minute");
62 System.out.println("3. Add 1 Hour");
63 System.out.println("4. Add seconds");
64 System.out.println("5. Exit");
65 System.out.print("Choice: ");
66
67 return input.nextInt();
68 } // end method getMenuChoice
69 } // end class Time2Test

Fig. L 8.6 | Time2Test.java. (Part 2 of 2.)

Lab Exercises Name:

Lab Exercise 3 — Complex Numbers

Chapter 8 Classes and Objects: A Deeper Look 35

Name: Date:

Section:

Lab Exercise 3 — Complex Numbers

The following problem is intended to be solved in a closed-lab session with a teaching assistant or instructor
present. The problem is divided into six parts:

1. Lab Objectives

2. Problem Description

3. Sample Output

4. Program Template (Fig. L 8.7–Fig. L 8.8)

5. Problem-Solving Tips

6. Follow-Up Questions and Activities

The program template represents a complete working Java program with one or more key lines of code replaced
with comments. Read the problem description and examine the output, then study the template code. Using the
problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the program.
Compare your output with the sample output provided. Then answer the follow-up questions. The source code
for the template is available at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 8 of Java How To Program: Sixth Edi-
tion. In this lab, you will practice:

• Using the this reference.

• Initializing class objects.

• Using overloaded constructors.

The follow-up questions and activities will also give you practice:

• Enhancing a class’s functionality with a new method.

Problem Description
Create a class called Complex for performing arithmetic with complex numbers. Complex numbers have the form

realPart + imaginaryPart * i

where i is

Write a program to test your class. Use floating-point variables to represent the private data of the class. Provide
a constructor that enables an object of this class to be initialized when it is declared. Provide a no-argument con-
structor with default values in case no initializers are provided. Provide public methods that perform the follow-
ing operations:

a) Add two Complex numbers: The real parts are added together and the imaginary parts are added together.

b) Subtract two Complex numbers: The real part of the right operand is subtracted from the real part of
the left operand, and the imaginary part of the right operand is subtracted from the imaginary part of
the left operand.

c) Print Complex numbers in the form (a, b), where a is the real part and b is the imaginary part.

-1

Lab Exercises Name:

Lab Exercise 3 — Complex Numbers

36 Classes and Objects: A Deeper Look Chapter 8

Sample Output

Template

a = (9.5, 7.7)
b = (1.2, 3.1)
a + b = (10.7, 10.8)
a - b = (8.3, 4.6)

1 // Lab 3: Complex.java
2 // Definition of class Complex
3
4 public class Complex
5 {
6 private double real;
7 private double imaginary;
8
9 // Initialize both parts to 0

10 /* Write header for a no-argument constructor. */
11 {
12 /* Write code here that calls the Complex constructor that takes 2
13 arguments and initializes both parts to 0 */
14 } // end Complex no-argument constructor
15
16 // Initialize real part to r and imaginary part to i
17 /* Write header for constructor that takes two arguments—-real part r and
18 imaginary part i. */
19 {
20 /* Write line of code that sets real part to r. */
21 /* Write line of code that sets imaginary part to i. */
22 }
23
24 // Add two Complex numbers
25 public Complex add(Complex right)
26 {
27 /* Write code here that returns a Complex number in which the real part is
28 the sum of the real part of this Complex object and the real part of the
29 Complex object passed to the method; and the imaginary part is the sum
30 of the imaginary part of this Complex object and the imaginary part of
31 the Complex object passed to the method. */
32 }
33
34 // Subtract two Complex numbers
35 public Complex subtract(Complex right)
36 {
37 /* Write code here that returns a Complex number in which the real part is
38 the difference between the real part of this Complex object and the real
39 part of the Complex object passed to the method; and the imaginary part
40 is the difference between the imaginary part of this Complex object and
41 the imaginary part of the Complex object passed to the method. */
42 }

Fig. L 8.7 | Complex.java. (Part 1 of 2.)

Lab Exercises Name:

Lab Exercise 3 — Complex Numbers

Chapter 8 Classes and Objects: A Deeper Look 37

Problem-Solving Tips
1. For the add and subtract methods of class Complex, return a new Complex object with the results of

the calculations.

2. If you have any questions as you proceed, ask your lab instructor for assistance.

Follow-Up Questions and Activities
1. In the ComplexTest class of Lab Exercise 3, instead of adding b to a, add a to b. Also instead of subtracting

b from a, subtract a from b. Are the results different from the previous results in Lab Exercise 3?

2. In class Complex, define a multiply method that returns the product of two Complex numbers. Suppose you
are trying to compute the product of two complex numbers a + bi and c + di. The real part will be ac – bd,
while the imaginary part will be ad + bc. Modify ComplexTest to test your solution.

43
44 // Return String representation of a Complex number
45 public String toString()
46 {
47 return String.format("(%.1f, %.1f)", real, imaginary);
48 } // end method toComplexString;
49 } // end class Complex

1 // Exercise 8.12: ComplexTest.java
2 // Test the Complex number class
3
4 public class ComplexTest
5 {
6 public static void main(String args[])
7 {
8 // initialize two numbers
9 Complex a = new Complex(9.5, 7.7);

10 Complex b = new Complex(1.2, 3.1);
11
12 System.out.printf("a = %s\n", a);
13 System.out.printf("b = %s\n", b);
14 System.out.printf("a + b = %s\n", a.add(b));
15 System.out.printf("a - b = %s\n", a.subtract(b));
16 } // end main
17 } // end class ComplexTest

Fig. L 8.8 | ComplexTest.java

Fig. L 8.7 | Complex.java. (Part 2 of 2.)

Lab Exercises Name:

Debugging

Chapter 8 Classes and Objects: A Deeper Look 39

Name: Date:

Section:

Debugging

The program in this section does not compile. Fix all the compilation errors so that the program will compile
successfully. Once the program compiles, execute the program, and compare the output with the sample output.
Then eliminate any logic errors that may exist. The sample output demonstrates what the program’s output
should be once the code is corrected. The source code is available at www.deitel.com and at www.prenhall.com/
deitel.

Sample Output

Broken Code

Monthly balances for one year at .04
Balances:

Saver 1 Saver 2
Base $2000.00 $3000.00
Month 1: $2006.67 $3010.00
Month 2: $2013.36 $3020.03
Month 3: $2020.07 $3030.10
Month 4: $2026.80 $3040.20
Month 5: $2033.56 $3050.33
Month 6: $2040.33 $3060.50
Month 7: $2047.14 $3070.70
Month 8: $2053.96 $3080.94
Month 9: $2060.81 $3091.21
Month 10: $2067.68 $3101.51
Month 11: $2074.57 $3111.85
Month 12: $2081.48 $3122.22

After setting interest rate to .05
Balances:
Saver 1 Saver 2
$2090.16 $3135.23

1 // Exercise 8.6 solution: SavingAccount
2 // SavingAccount class definition
3
4 public class SavingAccount
5 {
6 // interest rate for all accounts
7 private static double annualInterestRate = 0;
8
9 private final double savingsBalance; // balance for currrent account

10
11 // constructor, creates a new account with the specified balance
12 public void SavingAccount(double savingsBalance)
13 {
14 savingsBalance = savingsBalance;
15 } // end constructor
16

Lab Exercises Name:

Debugging

40 Classes and Objects: A Deeper Look Chapter 8

17 // get monthly interest
18 public void calculateMonthlyInterest()
19 {
20 savingsBalance += savingsBalance * (annualInterestRate / 12.0);
21 } // end method calculateMonthlyInterest
22
23 // modify interest rate
24 public static void modifyInterestRate(double newRate)
25 {
26 annualInterestRate =
27 (newRate >= 0 && newRate <= 1.0) ? newRate : 0.04;
28 } // end method modifyInterestRate
29
30 // get string representation of SavingAccount
31 public String toString()
32 {
33 return String.format("$%.2f", savingsBalance);
34 } // end method toSavingAccountString
35 } // end class SavingAccount

1 // Exercise 8.6 solution: SavingAccountTest.java
2 // Program that tests SavingAccount class
3
4 public class SavingAccountTest
5 {
6 public static void main(String args[])
7 {
8 SavingAccount saver1 = new SavingAccount(2000);
9 SavingAccount saver2 = new SavingAccount(3000);

10 SavingAccount.annualInterestRate = 0.04;
11
12 System.out.println("Monthly balances for one year at .04");
13 System.out.println("Balances:");
14
15 System.out.printf("%20s%10s\n", "Saver 1", "Saver 2");
16 System.out.printf("%-10s%10s%10s\n", "Base",
17 saver1.toString(), saver2.toString());
18
19 for (int month = 1; month <= 12; month++)
20 {
21 String monthLabel = String.format("Month %d:", month);
22 saver1.calculateMonthlyInterest();
23 saver2.calculateMonthlyInterest();
24
25 System.out.printf("%-10s%10s%10s\n", monthLabel,
26 saver1.toString(), saver2.toString());
27 } // end for
28
29 SavingAccount.modifyInterestRate(.05);
30 saver1.calculateMonthlyInterest();
31 saver2.calculateMonthlyInterest();
32
33 System.out.println("\nAfter setting interest rate to .05");
34 System.out.println("Balances:");
35 System.out.printf("%-10s%10s\n", "Saver 1", "Saver 2");

Lab Exercises Name:

Debugging

Chapter 8 Classes and Objects: A Deeper Look 41

36 System.out.printf("%-10s%10s\n",
37 saver1.toString(), saver2.toString());
38 } // end main
39 } // end class SavingAccountTest

Chapter 8 Classes and Objects: A Deeper Look 43

Postlab Activities

Name: Date:

Section:

Coding Exercises

These coding exercises reinforce the lessons learned in the lab and provide additional programming experience
outside the classroom and laboratory environment. They serve as a review after you have successfully completed
the Prelab Activities and Lab Exercises.

For each of the following problems, write a program or a program segment that performs the specified action:

1. Write the class declaration for class Square that has a private instance variable side of type double and a
no-argument constructor that sets the side to 1.0 by calling a method named setSide that you will declare
in Coding Exercise 2.

2. Write a method setSide for the class you defined in Coding Exercise 1. Set the side variable to the argument
of the method. Also make sure that the side is not less than 0.0. If it is, keep the default setting of 1.0.

Postlab Activities Name:

Coding Exercises

44 Classes and Objects: A Deeper Look Chapter 8

3. Write a method getSide for the class you modified in Coding Exercise 2 that retrieves the value of instance
variable side.

4. Define another constructor for the class that you modified in Coding Exercise 3 that takes one argument, the
side, and uses the Square’s set method to set the side.

5. Write a method computeArea for the class that you modified in Coding Exercise 4 that computes the area of
a Square.

Postlab Activities Name:

Coding Exercises

Chapter 8 Classes and Objects: A Deeper Look 45

6. Define a toString method for the class that you modified in Coding Exercise 5 that will return a String

containing the value of side and the area of the Square.

7. Define application class SquareTest to test the Square class you defined in Coding Exercises 1–6. Ensure that
all your methods and constructors work properly.

Postlab Activities Name:

Programming Challenges

Chapter 8 Classes and Objects: A Deeper Look 47

Name: Date:

Section:

Programming Challenges

The Programming Challenges are more involved than the Coding Exercises and may require a significant amount
of time to complete. Write a Java program for each of the problems in this section. The answers to these problems
are available at www.deitel.com and www.prenhall.com/deitel. Pseudocode, hints or sample outputs are pro-
vided for each problem to aid you in your programming.

1. Create a class Rectangle. The class has attributes length and width, each of which defaults to 1. Provide
methods that calculate the perimeter and the area of the rectangle. Provide set and get methods for both
length and width. The set methods should verify that length and width are each floating-point numbers
greater than or equal to 0.0 and less than 20.0. Write a program to test class Rectangle.

Hints:

• This class is very similar to the class you developed in the Coding Exercises section.

• Your output should appear as follows:

1. Set Length
2. Set Width
3. Exit
Choice:
Enter length:
Length: 10.00
Width: 1.00
Perimeter: 22.00
Area: 10.00
1. Set Length
2. Set Width
3. Exit
Choice:
Enter width:
Length: 10.00
Width: 15.00
Perimeter: 50.00
Area: 150.00
1. Set Length
2. Set Width
3. Exit
Choice:
Enter length:
Length: 1.00
Width: 15.00
Perimeter: 32.00
Area: 15.00
1. Set Length
2. Set Width
3. Exit
Choice:

1
10

2
15

1
99

3

Postlab Activities Name:

Programming Challenges

48 Classes and Objects: A Deeper Look Chapter 8

2. Create a more sophisticated Rectangle class than the one you created in Programming Challenge 1. This class
stores only the Cartesian coordinates of the four corners of the rectangle. The constructor calls a set method
that accepts four sets of coordinates and verifies that each of these is in the first quadrant with no single x-
or y-coordinate larger than 20.0. The set method also verifies that the supplied coordinates specify a rectan-
gle. Provide methods to calculate the length, width, perimeter and area. The length is the larger of the
two dimensions. Include a predicate method isSquare which determines whether the rectangle is a square.
Write a program to test class Rectangle.

Hint:

• Your output should appear as follows:

Enter rectangle's coordinates
x1:
y1:
x2:
y2:
x3:
y3:
x4:
y4:
Length: 9.00
Width: 7.00
Perimeter: 32.00
Area: 63.00

10
8
10
1
1
1
1
8

	©: © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

