
3
Introduction to
Classes and
Objects

You will see something new.
Two things. And I call them
Thing One and Thing Two.
—Dr. Theodor Seuss Geisel

O B J E C T I V E S
In this chapter you will learn:

■ What classes, objects, methods and instance variables are.

■ How to declare a class and use it to create an object.

■ How to declare methods in a class to implement the class’s
behaviors.

■ How to declare instance variables in a class to implement the
class’s attributes.

■ How to call an object’s method to make that method perform
its task.

■ The differences between instance variables of a class and
local variables of a method.

■ How to use a constructor to ensure that an object’s data is
initialized when the object is created.

■ The differences between primitive and reference types.

Nothing can have value
without being an object of
utility.
—Karl Marx

Your public servants serve
you right.
—Adlai E. Stevenson

Knowing how to answer one
who speaks,
To reply to one who sends a
message.
—Amenemope

Chapter 3 Introduction to Classes and Objects 3

Name: Date:

Section:

Assignment Checklist

Exercises Assigned: Circle assignments Date Due

Prelab Activities

Matching YES NO

Fill in the Blank 16, 17, 18, 19, 20, 21, 22, 23, 24,
25

Short Answer 26, 27, 28, 29, 30

Programming Output 31, 32, 33, 34, 35

Correct the Code 36, 37, 38, 39

Lab Exercises

Exercise 1 — Modifying Class Account YES NO

Exercise 2 — Modifying Class GradeBook YES NO

Exercise 3 — Creating an Employee Class YES NO

Debugging YES NO

Labs Provided by Instructor

1.

 2.

 3.

Postlab Activities

Coding Exercises 1, 2, 3, 4, 5, 6, 7, 8, 9

Programming Challenges 1, 2

Chapter 3 Introduction to Classes and Objects 5

Prelab Activities

Name: Date:

Section:

Matching

After reading Chapter 3 of Java How to Program: Sixth Edition, answer the given questions. The questions are
intended to test and reinforce your understanding of key concepts. You may answer the questions either before
or during the lab.

For each term in the left column, write the letter for the description from the right column that best matches the
term.

Term Description

1. field

2. calling method

3. reference

4. new keyword

5. public method

6. class declaration

7. fully qualified class name

8. method call

9. parameter

10. set method

11. default constructor

12. client of an object or a class

13. double

14. null

15. float

a) Used in a class instance creation expression to create an in-
stance of a class.

b) Primitive type that represents a single-precision floating-
point number.

c) Causes Java to execute a method.

d) Also known as an instance variable.

e) A method that assigns a value to a private instance vari-
able.

f) A variable that refers to an object contains one of these as
its value.

g) A method that is accessible from outside of the class in
which it is declared.

h) Default initial value of a reference-type variable.

i) Additional information a method requires to help it per-
form its task.

j) Primitive type that represents a double-precision floating-
point number.

k) The compiler provides one of these for a class that does not
declare any.

l) Encompasses all of the attributes and behaviors of a class.

m) Can be used to access a class if the class is not imported.

n) A class that calls any of an object’s or class’s methods.

o) Receives the return value from a method.

Prelab Activities Name:

Fill in the Blank

Chapter 3 Introduction to Classes and Objects 7

Name: Date:

Section:

Fill in the Blank

Fill in the blanks for each of the following statements:

16. Each method can specify that represent additional information the method requires to perform
its task correctly.

17. Declaring instance variables with access modifier is known as information hiding.

18. Instance variables of the numeric primitive types are initialized to and instance variables of type
boolean are initialized to .

19. Variables declared in the body of a particular method are known as and can be used only in that
method.

20. An import declaration is not required if you always refer to a class with its .

21. Each parameter must specify both a(n) and a(n) .

22. The format specifier %f is used to output values of type or .

23. Programs use variables of to store the location of objects in the computer’s memory.

24. A(n) normally consists of one or more methods that manipulate the attributes that belong to a
particular object.

25. Classes often provide public methods to allows clients of the class to or the values of
private instance variables.

Prelab Activities Name:

Short Answer

Chapter 3 Introduction to Classes and Objects 9

Name: Date:

Section:

Short Answer

Answer the given questions in the spaces provided. Your answers should be as concise as possible; aim for two or
three sentences.

26. List the parts of a method header and why each one is important.

27. How are constructors and methods similar? How are they different?

28. What is the relationship between a client of an object and the object’s public members?

Prelab Activities Name:

Short Answer

10 Introduction to Classes and Objects Chapter 3

29. What types of declarations are contained within a class declaration?

30. Distinguish between a primitive-type variable and a reference-type variable.

Prelab Activities Name:

Programming Output

Chapter 3 Introduction to Classes and Objects 11

Name: Date:

Section:

Programming Output

For each of the given program segments, read the code and write the output in the space provided below each
program. [Note: Do not execute these programs on a computer.]

Use the following class definition for Programming Output Exercises 31–35.

31. What is output by the following main method?

Your answer:

1 public class Account
2 {
3 private double balance; // instance variable that stores the balance
4
5 // constructor
6 public Account(double initialBalance)
7 {
8 // validate that initialBalance is greater than 0.0;
9 // if it is not, balance is initialized to the default value 0.0

10 if (initialBalance > 0.0)
11 balance = initialBalance;
12 } // end Account constructor
13
14 // credit (add) an amount to the account
15 public void credit(double amount)
16 {
17 balance = balance + amount; // add amount to balance
18 } // end method credit
19
20 // return the account balance
21 public double getBalance()
22 {
23 return balance; // gives the value of balance to the calling method
24 } // end method getBalance
25
26 } // end class Account

1 public static void main(String args[])
2 {
3 Account account1 = new Account(35.50);
4
5 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());
6 } // end main

Prelab Activities Name:

Programming Output

12 Introduction to Classes and Objects Chapter 3

32. What is output by the following main method?

Your answer:

33. What is output by the following main method?

Your answer:

1 public static void main(String args[])
2 {
3 Account account1 = new Account(-20.17);
4
5 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());
6 } // end main

1 public static void main(String args[])
2 {
3 Account account1 = new Account(15.33);
4
5 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());
6 System.out.println("adding $2.53 to account1 balance");
7
8 account1.credit(2.53);
9 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());

10 } // end main

Prelab Activities Name:

Programming Output

Chapter 3 Introduction to Classes and Objects 13

34. What is output by the following main method?

Your answer:

35. What is output by the following main method?

Your answer:

1 public static void main(String args[])
2 {
3 Account account1 = new Account(27.70);
4
5 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());
6 System.out.println("adding $3.75 to account1 balance");
7
8 account1.credit(3.757);
9 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());

10 } // end main

1 public static void main(String args[])
2 {
3 Account account1 = new Account(7.99);
4
5 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());
6 System.out.println("adding -$1.14 to account1 balance");
7
8 account1.credit(-1.14);
9 System.out.printf("account1 balance: $%.2f\n", account1.getBalance());

10 } // end main

Prelab Activities Name:

Correct the Code

Chapter 3 Introduction to Classes and Objects 15

Name: Date:

Section:

Correct the Code

Determine if there is an error in each of the following program segments. If there is an error, specify whether it
is a logic error or a compilation error, circle the error in the program and write the corrected code in the space
provided after each problem. If the code does not contain an error, write “no error.” [Note: There may be more
than one error in each program segment.]

Use the following class definitions for Correct the Code Exercises 36–39.

36. The following code segment should create a new GradeBook object:

1 // Lab 2: GradeBook.java
2 // GradeBook class with a constructor to initialize the course name.
3
4 public class GradeBook
5 {
6 private String courseName; // course name for this GradeBook
7
8 // constructor initializes courseName with String supplied as argument
9 public GradeBook(String name)

10 {
11 courseName = name; // initializes courseName
12 } // end constructor
13
14 // method to set the course name
15 public void setCourseName(String name)
16 {
17 courseName = name; // store the course name
18 } // end method setCourseName
19
20 // method to retrieve the course name
21 public String getCourseName()
22 {
23 return courseName;
24 } // end method getCourseName
25
26 // display a welcome message to the GradeBook user
27 public void displayMessage()
28 {
29 // this statement calls getCourseName to get the
30 // name of the course this GradeBook represents
31 System.out.printf("Welcome to the grade book for\n%s!\n",
32 getCourseName());
33 } // end method displayMessage
34
35 } // end class GradeBook

1 GradeBook gradeBook = Grade ook("Introduction to Java",);b 25

Prelab Activities Name:

Correct the Code

16 Introduction to Classes and Objects Chapter 3

Your answer:

37. The following code segment should set the GradeBook’s course name:

Your answer:

38. The following code segment should ask the user to input a course name. That should then be set as the
course name of your gradeBook.

Your answer:

1 setCourseName(gradeBook, "Advanced Java")

1 Scanner input = new Scanner(System.in);
2
3 System.out.println("Please enter the course name:");
4 inputName =
5
6 gradeBook.setCourseName();

Scanner.readLine();

Prelab Activities Name:

Correct the Code

Chapter 3 Introduction to Classes and Objects 17

39. The following code segment should output the grade book’s current course name:

Your answer:

1 System.out.printf("The grade book's course name is: \n", gradeBook.);courseName

Chapter 3 Introduction to Classes and Objects 19

Lab Exercises

Name: Date:

Section:

Lab Exercise 1 — Modifying Class Account

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Description of the Problem

3. Sample Output

4. Program Template (Fig. L 3.1 and Fig. L 3.2)

5. Problem-Solving Tips

The program template represents a complete working Java program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of Java How to Program: Sixth Edition.
In this lab, you will practice:

• Creating methods.

• Invoking methods and receiving return values from methods.

• Testing a condition using an if statement.

• Outputting variables with a printf statement.

Description of the Problem
Modify class Account (Fig. L 3.1) to provide a method called debit that withdraws money from an Account.
Ensure that the debit amount does not exceed the Account’s balance. If it does, the balance should be left un-
changed and the method should print a message indicating "Debit amount exceeded account balance." Mod-
ify class AccountTest (Fig. L 3.2) to test method debit.

Sample Output

account1 balance: $50.00
account2 balance: $0.00

Enter withdrawal amount for account1: 25.67

subtracting 25.67 from account1 balance
account1 balance: $24.33
account2 balance: $0.00

Enter withdrawal amount for account2: 10.00

subtracting 10.00 from account2 balance
Debit amount exceeded account balance.
account1 balance: $24.33
account2 balance: $0.00

Lab Exercises Name:

Lab Exercise 1 — Modifying Class Account

20 Introduction to Classes and Objects Chapter 3

Program Template

1 // Lab 1: Account.java
2 // Account class with a constructor to
3 // initialize instance variable balance.
4
5 public class Account
6 {
7 private double balance; // instance variable that stores the balance
8
9 // constructor

10 public Account(double initialBalance)
11 {
12 // validate that initialBalance is greater than 0.0;
13 // if it is not, balance is initialized to the default value 0.0
14 if (initialBalance > 0.0)
15 balance = initialBalance;
16 } // end Account constructor
17
18 // credit (add) an amount to the account
19 public void credit(double amount)
20 {
21 balance = balance + amount; // add amount to balance
22 } // end method credit
23
24
25
26 // return the account balance
27 public double getBalance()
28 {
29 return balance; // gives the value of balance to the calling method
30 } // end method getBalance
31
32 } // end class Account

Fig. L 3.1 | Account.java.

1 // Lab 1: AccountTest.java
2 // Create and manipulate an Account object.
3 import java.util.Scanner;
4
5 public class AccountTest
6 {
7 // main method begins execution of Java application
8 public static void main(String args[])
9 {

10 Account account1 = new Account(50.00); // create Account object
11 Account account2 = new Account(-7.53); // create Account object
12
13 // display initial balance of each object
14 System.out.printf("account1 balance: $%.2f\n",
15 account1.getBalance());
16 System.out.printf("account2 balance: $%.2f\n\n",
17 account2.getBalance());
18

Fig. L 3.2 | AccountTest.java. (Part 1 of 2.)

/* write code to declare method debit. */

Lab Exercises Name:

Lab Exercise 1 — Modifying Class Account

Chapter 3 Introduction to Classes and Objects 21

Problem-Solving Tips
1. Declare public method debit with a return type of void.

2. Use a parameter to enable the program to specify the amount the user wishes to withdraw.

3. In the body of method debit, use an if statement to test whether the withdrawal amount is more than
the balance. Output an appropriate message if the condition is true.

4. Use another if statement to test whether the withdrawal amount is less than or equal to the balance.
Decrement the balance appropriately.

5. If you have any questions as you proceed, ask your lab instructor for help.

19 // create Scanner to obtain input from command window
20 Scanner input = new Scanner(System.in);
21 double withdrawalAmount; // withdrawal amount read from user
22
23 System.out.print("Enter withdrawal amount for account1: ");
24 withdrawalAmount = input.nextDouble(); // obtain user input
25 System.out.printf("\nsubtracting %.2f from account1 balance\n",
26 withdrawalAmount);
27
28
29 // display balances
30 System.out.printf("account1 balance: $%.2f\n",
31 account1.getBalance());
32 System.out.printf("account2 balance: $%.2f\n\n",
33 account2.getBalance());
34
35 System.out.print("Enter withdrawal amount for account2: ");
36 withdrawalAmount = input.nextDouble(); // obtain user input
37 System.out.printf("\nsubtracting %.2f from account2 balance\n",
38 withdrawalAmount);
39
40
41 // display balances
42 System.out.printf("account1 balance: $%.2f\n",
43 account1.getBalance());
44 System.out.printf("account2 balance: $%.2f\n",
45 account2.getBalance());
46 } // end main
47
48 } // end class AccountTest

Fig. L 3.2 | AccountTest.java. (Part 2 of 2.)

/* write code to withdraw money from account */

/* write code to withdraw from account */

Lab Exercises Name:

Lab Exercise 2 — Modifying Class GradeBook

Chapter 3 Introduction to Classes and Objects 23

Name: Date:

Section:

Lab Exercise 2 — Modifying Class GradeBook

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Problem of the Description

3. Sample Output

4. Program Template (Fig. L 3.3 and Fig. L 3.4)

5. Problem-Solving Tips

The program template represents a complete working Java program, with one or more key lines of code replaced
with comments. Read the problem description, and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of Java How to Program: Sixth Edition.
In this lab, you will practice:

• Declaring an instance variable.

• Providing a set method to modify an instance variable’s value.

• Declaring methods with parameters.

Description of the Problem
Modify class GradeBook (Fig. L 3.3). Include a second String instance variable that represents the name of the
course’s instructor. Provide a set method to change the instructor’s name and a get method to retrieve it. Modify
the constructor to specify two parameters—one for the course name and one for the instructor’s name. Modify
method displayMessage such that it first outputs the welcome message and course name, then outputs
"This course is presented by: " followed by the instructor’s name. Modify the test application (Fig. L 3.4)
to demonstrate the class’s new capabilities.

Sample Output

Welcome to the grade book for
CS101 Introduction to Java Programming!
This course is presented by: Sam Smith

Changing instructor name to Judy Jones

Welcome to the grade book for
CS101 Introduction to Java Programming!
This course is presented by: Judy Jones

Lab Exercises Name:

Lab Exercise 2 — Modifying Class GradeBook

24 Introduction to Classes and Objects Chapter 3

Program Template

1 // Lab 2: GradeBook.java
2 // GradeBook class with a constructor to initialize the course name.
3
4 public class GradeBook
5 {
6 private String courseName; // course name for this GradeBook
7
8
9 // constructor initializes courseName with String supplied as argument

10 public GradeBook(String name)
11 {
12 courseName = name; // initializes courseName
13 } // end constructor
14
15 // method to set the course name
16 public void setCourseName(String name)
17 {
18 courseName = name; // store the course name
19 } // end method setCourseName
20
21 // method to retrieve the course name
22 public String getCourseName()
23 {
24 return courseName;
25 } // end method getCourseName
26
27
28
29 // display a welcome message to the GradeBook user
30 public void displayMessage()
31 {
32 // this statement calls getCourseName to get the
33 // name of the course this GradeBook represents
34 System.out.printf("Welcome to the grade book for\n%s!\n",
35 getCourseName());
36
37 } // end method displayMessage
38
39 } // end class GradeBook

Fig. L 3.3 | GradeBook.java.

1 // Lab 2: GradeBookTest.java
2 // GradeBook constructor used to specify the course name at the
3 // time each GradeBook object is created.
4
5 public class GradeBookTest
6 {
7 // main method begins program execution
8 public static void main(String args[])
9 {

10 // create GradeBook object
11 GradeBook gradeBook1 = new GradeBook(
12 "CS101 Introduction to Java Programming");

Fig. L 3.4 | GradeBookTest.java. (Part 1 of 2.)

/* write code to declare a second String instance variable */

/* write code to declare a get and a set method for the instructor’s name */

/* write code to output the instructor’s name */

Lab Exercises Name:

Lab Exercise 2 — Modifying Class GradeBook

Chapter 3 Introduction to Classes and Objects 25

Problem-Solving Tips
1. In class GradeBook, declare a String instance variable to represent the instructor’s name.

2. Declare a public set method for the instructor’s name that does not return a value and takes a String

as a parameter. In the body of the set method, assign the parameter’s value to the variable that represents
the instructor’s name.

3. Declare a public get method that returns a String and takes no parameters. This method should return
the instructor’s name.

4. Modify the constructor to take two String parameters. Assign the parameter that represents the instruc-
tor’s name to the appropriate instance variable.

5. Add a System.out.printf statement to method displayMessage to output the value of the instance
variable you declared earlier.

6. If you have any questions as you proceed, ask your lab instructor for help.

13
14 gradeBook1.displayMessage(); // display welcome message
15
16
17
18 } // end main
19
20 } // end class GradeBookTest

Fig. L 3.4 | GradeBookTest.java. (Part 2 of 2.)

/* write code to change instructor’s name and output changes */

Lab Exercises Name:

Lab Exercise 3 — Creating an Employee Class

Chapter 3 Introduction to Classes and Objects 27

Name: Date:

Section:

Lab Exercise 3 — Creating an Employee Class

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Description of the Problem

3. Sample Output

4. Program Template (Fig. L 3.5 and Fig. L 3.6)

5. Problem-Solving Tips

The program template represents a complete working Java program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 3 of Java How to Program: Sixth Edition.
In this lab, you will practice:

• Creating a class declaration.

• Declaring instance variables.

• Declaring a constructor.

• Declaring set and get methods.

• Writing a test application to demonstrate the capabilities of another class.

Description of the Problem
Using only programming techniques from this chapter and Chapter 2 of Java How to Program: Sixth Edition,
create a class called Employee that includes three pieces of information as instance variables—a first name (type
String), a last name (type String) and a monthly salary (type double). Your class should have a constructor that
initializes the three instance variables. Provide a set and a get method for each instance variable. If the monthly
salary is not positive, set it to 0.0. Write a test application named EmployeeTest that demonstrates class Employ-
ee’s capabilities. Create two Employee objects and display the yearly salary for each Employee. Then give each
Employee a 10% raise and display each Employee’s yearly salary again.

Sample Output

Employee 1: Bob Jones; Yearly Salary: 34500.00
Employee 2: Susan Baker; Yearly Salary: 37809.00

Increasing employee salaries by 10%
Employee 1: Bob Jones; Yearly Salary: 37950.00
Employee 2: Susan Baker; Yearly Salary: 41589.90

Lab Exercises Name:

Lab Exercise 3 — Creating an Employee Class

28 Introduction to Classes and Objects Chapter 3

Program Template

Problem-Solving Tips
1. Class Employee should declare three instance variables.

2. The constructor must declare three parameters, one for each instance variable. The value for the salary
should be validated to ensure it is not negative.

3. Declare a public set and get method for each instance variable. The set methods should not return values
and should each specify a parameter of a type that matches the corresponding instance variable (String
for first name and last name, double for the salary). The get methods should receive no parameters and
should specify a return type that matches the corresponding instance variable.

1 // Lab 3: Employee.java
2 // Employee class.
3
4 /* Begin class declaration of Employee class. */
5
6 /* Declare three instance variables here. */
7
8 /* Add a constructor that declares a parameter for each instance variable. Assign
9 each parameter value to the appropriate instance variable. Write code that

10 validates the value of salary to ensure that it is not negative. */
11
12 /* Declare set and get methods for the first name instance variable. */
13
14 /* Declare set and get methods for the last name instance variable. */
15
16 /* Declare set and get methods for the monthly salary instance variable. Write code
17 that validates the salary to ensure that it is not negative. */
18
19 /* End class declaration of Employee class. */

Fig. L 3.5 | Employee.java.

1 // Lab 3: EmployeeTest.java
2 // Application to test class Employee.
3
4 /* Begin class declaration of EmployeeTest class. */
5
6 /* Begin main method declaration. */
7
8 / * Create two Employee objects and assign them to Employee variables. */
9

10 /* Output the first name, last name and salary for each Employee. */
11
12 /* Give each Employee a 10% raise. */
13
14 /* Output the first name, last name and salary of each Employee again. */
15
16 /* End main method declaration */
17
18 /* End class declaration of EmployeeTest class. */

Fig. L 3.6 | EmployeeTest.java.

Lab Exercises Name:

Lab Exercise 3 — Creating an Employee Class

Chapter 3 Introduction to Classes and Objects 29

4. When you call the constructor from the test class, you must pass it three arguments that match the pa-
rameters declared by the constructor.

5. Giving each employee a raise will require a call to the get method for the salary to obtain the current
salary and a call to the set method for the salary to specify the new salary.

6. A salary is a dollar amount, so you should output the salary using the %.2f specifier to provide two digits
of precision.

7. If you have any questions as you proceed, ask your lab instructor for help.

Lab Exercises Name:

Debugging

Chapter 3 Introduction to Classes and Objects 31

Name: Date:

Section:

Debugging

The program in this section does not compile. Fix all the compilation errors so that the program will compile
successfully. Once the program compiles, execute the program, and compare its output with the sample output;
then eliminate any logic errors that may exist. The sample output demonstrates what the program’s output
should be once the program’s code is corrected. The source code is available at the Web sites www.deitel.com
and www.prenhall.com/deitel.

Sample Output

Broken Code

Created John Smith, age 19
Happy Birthday to John Smith

1 // Person.java
2 // Creates and manipulates a person with a first name, last name and age
3
4 public class Person
5 {
6 private String firstName;
7 private String lastName;
8 private int age;
9

10 public void Person(String first, String last, int years)
11 {
12 firstName = first;
13 lastName = last;
14
15 if (years < 0)
16 age = years;
17 } // end Person constructor
18
19 public String getFirstName(String FirstName)
20 {
21 return firstName;
22 } // end method getFirstName
23
24 public setFirstName(String first)
25 {
26 firstName = first;
27 } // end method setFirstName
28
29 public String getLastName()
30 {
31 return;
32 } // end method getLastName

Fig. L 3.7 | Person.java. (Part 1 of 2.)

Lab Exercises Name:

Debugging

32 Introduction to Classes and Objects Chapter 3

33
34 public void setLastName(String last)
35 {
36 lastName = last;
37 } // end method setLastName
38
39 public int getAge()
40 {
41 return years;
42 } // end method getAge
43
44 public void setAge(int years)
45 {
46 if (years > 0)
47 age = years;
48 } // end method setAge
49 } // end class Person

1 // PersonTest.java
2 // Test application for the Person class
3
4 public class PersonTest
5 {
6 public static void main(String args[])
7 {
8 Person person = Person("John", "Smith", 19);
9

10 System.out.printf("Created %s %s, age %d\n",
11 getFirstName(), getLastName(), getAge());
12
13 person.setAge = person.getAge() + 1;
14 System.out.printf("Happy Birthday to %s %s\n",
15 person.getFirstName(), person.getLastName());
16 } // end main
17 } // end class PersonTest

Fig. L 3.8 | PersonTest.java.

Fig. L 3.7 | Person.java. (Part 2 of 2.)

Chapter 3 Introduction to Classes and Objects 33

Postlab Activities

Name: Date:

Section:

Coding Exercises

These coding exercises reinforce the lessons learned in the lab and provide additional programming experience
outside the classroom and laboratory environment. They serve as a review after you have successfully completed
the Prelab Activities and Lab Exercises.

For each of the following problems, write a program or a program segment that performs the specified action.

1. Write an empty class declaration for a class named Student.

2. Declare five instance variables in the class from Coding Exercise 1: A String variable for the first name, a
String variable for the last name and three double variables that are used to store a student’s exam grades.

3. In the class from Coding Exercise 2, declare a constructor that takes five parameters—two Strings and three
doubles. Use these parameters to initialize the instance variables declared earlier.

Postlab Activities Name:

Coding Exercises

34 Introduction to Classes and Objects Chapter 3

4. Modify the class from Coding Exercise 3 to include a get and a set method for each of the instance variables
in the class.

5. Modify the class from Coding Exercise 4 to include a getAverage method that calculates and returns the av-
erage of the three exam grades.

6. Declare an empty test class to use the capabilities of your new Student class from Coding Exercise 5.

7. In the class from Coding Exercise 6, declare a main method that creates an instance of class Student.

Postlab Activities Name:

Coding Exercises

Chapter 3 Introduction to Classes and Objects 35

8. Add statements to the main method of Coding Exercise 7 to test class Student’s get methods. Output the
name and average for the student.

9. Add statements to the main method of Coding Exercise 8 that test the set methods of class Student, then out-
put the new name and average of the Student object to show that the set methods worked correctly.

Postlab Activities Name:

Programming Challenges

Chapter 3 Introduction to Classes and Objects 37

Name: Date:

Section:

Programming Challenges

The Programming Challenges are more involved than the Coding Exercises and may require a significant amount
of time to complete. Write a Java program for each of the problems in this section. The answers to these problems
are available at www.deitel.com and www.prenhall.com/deitel. Pseudocode, hints or sample outputs are pro-
vided for each problem to aid you in your programming.

1. Create a class called Invoice that a hardware store might use to represent an invoice for an item sold at the
store. An Invoice should include four pieces of information as instance variables—a part number (type
String), a part description (type String), a quantity of the item being purchased (type int) and a price per
item (double). Your class should have a constructor that initializes the four instance variables. Provide a set and
a get method for each instance variable. In addition, provide a method named getInvoiceAmount that calcu-
lates the invoice amount (i.e., multiplies the quantity by the price per item), then returns the amount as a dou-
ble value. If the quantity is not positive, it should be set to 0. If the price per item is not positive, it should be
set to 0.0. Write a test application named InvoiceTest that demonstrates class Invoice’s capabilities.

Hints:

• To solve this exercise, mimic your solutions to Lab Exercises 1–3.

• Validate the input values for the quantity and the price per item in the constructor and in the appropri-
ate set methods.

• Your output should appear as follows:

Original invoice information
Part number: 1234
Description: Hammer
Quantity: 2
Price: 14.95
Invoice amount: 29.90

Updated invoice information
Part number: 001234
Description: Yellow Hammer
Quantity: 3
Price: 19.49
Invoice amount: 58.47

Original invoice information
Part number: 5678
Description: Paint Brush
Quantity: 0
Price: 0.00
Invoice amount: 0.00

Updated invoice information
Part number: 5678
Description: Paint Brush
Quantity: 3
Price: 9.49
Invoice amount: 28.47

Postlab Activities Name:

Programming Challenges

38 Introduction to Classes and Objects Chapter 3

2. Create a class called Date that includes three pieces of information as instance variables—a month (type
int), a day (type int) and a year (type int). Your class should have a constructor that initializes the three
instance variables and assumes that the values provided are correct. Provide a set and a get method for each
instance variable. Provide a method displayDate that displays the month, day and year separated by forward
slashes (/). Write a test application named DateTest that demonstrates class Date’s capabilities.

Hints:

• To solve this exercise, mimic your solutions to Lab Exercises 1–3.

• For the purpose of this chapter, it is not necessary to validate the values passed to the constructor or the
set methods.

• Your output should appear as follows:

The initial date is: 7/4/2004
Date with new values is: 11/1/2003

	©: © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

