
1

CS422 Principles of Database Systems
Stored Procedures and Triggers

Chengyu Sun

California State University, Los Angeles

Why Use Stored Procedures?

Performance
n compiled and optimized code

n Save communication overhead

Security
n Access control

n Less data transferred over the wire

Simplify application code

Triggers for data integrity

Why Not To Use Stored
Procedures?

Portability

PL are generally more difficult to
develop and maintain than conventional
programming languages

n Less language features

n Less tool support

Procedures and Functions in
Oracle

Procedure

n No return value

n Usually called by other procedures,
functions, triggers, and/or programs.

Function

n Returns a value

n Usually used in SQL statements like the
system built-in functions

Example: hello()

Note that hello does not have a parameter
list, not even ()

create or replace procedure hello as
begin

dbms_output.put_line('Hello World!');
end hello;
/

Create Procedures

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN

procedure_body
END procedure_name;

2

Use Procedures

call hello();

show errors

user_procedures

n describe user_procedures

n select object_name from user_procedures;

drop procedure hello;

Parameter Mode

IN: the parameter already has a value when

the procedure starts, and the value cannot be
changed in the procedure body; default
mode.

OUT: the parameter value will set in the

procedure body.

IN OUT: the parameter has a value when the

procedure start, and the value may be
changed in the procedure body.

Example: sum2p()

create or replace procedure sum2p
(a in integer, b in integer, s out integer) as

begin
s := a+b;

end sum2p;

Example: sum2f()

Note that the declaration block is between
CREATE…AS and BEGIN, and the DECLARE
keyword is not needed any more.

create or replace function sum2f (a in integer, b in integer)
return integer as

s integer default 0;
begin

sum2p(a, b, s);
return s;

end sum2f;

More Examples

Factorial

Packages

A package is a collection of PL/SQL
objects group together under one
package name.
n Procedures and functions

n Cursors, variables, and types

Package
n Specification - declarations

n Body - implementations

3

Create Packages

CREATE [OR REPLACE] PACKAGE package_name
{IS | AS}

package_specification
END package_name;

CREATE [OR REPLACE] PACKAGE BODY package_name
{IS | AS}

package_body
END package_name;

Package Specification Example

create or replace package cs422stu31 as
procedure hello;
procedure sum2p (a in integer, b in integer, s out integer);
function sum2f (a in integer, b in integer) return integer;

end cs422stu31;

Use Packages

call cs422stu31.hello();

select cs422stu31.sum2f(100,5) from
daul;

select object_name, procedure_name
from user_procedures;

drop package cs422stu31;

Triggers

Procedures that are automatically
invoked when data is changed, e.g.
INSERT, DELETE, and UPDATE.

Common use of triggers

n Auditing

n Constraints

n Replication

Example: Change Logger

create or replace trigger change_logger
before insert or update or delete on items
begin

if inserting then
insert into log1 (operation) values ('insert');

elsif deleting then
insert into log1 (operation) values ('delete');

else
insert into log1 (operation) values ('update');

end if;
end;

Create Trigger

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} triggering_event
ON table_name
[FOR EACH ROW [WHEN trigger_condition]]
BEGIN

trigger_body
END trigger_name;

4

Triggering Events

INSERT

DELETE

UPDATE [OF column1,column2,…]

Three predicates available in a trigger body to
determine triggering event type:
n INSERTING

n DELETING

n UPDATING

Before or After

BEFORE: trigger fires before the

triggering event

AFTER: trigger fires after the event

INSTEAD OF: execute the trigger
procedure instead of the triggering
event (statement)

Statement Trigger vs. Row
Trigger

Statement Trigger

n Fires once per statement

Row Trigger
n FOR EACH ROW

n Fires once per row

Example: Price Logger

Log the price changes where the new
price is more than 20% higher or lower
than the old price.

:OLD and :NEW

Use Triggers

Information about triggers is in the
user_triggers table.

drop trigger trigger_name

Oracle Restrictions on Triggers

Avoid infinite triggering

Assume the triggering event is on R

n R cannot be changed in the trigger body

n Any relation linked to R by a chain of
foreign key constraints cannot be changed
in the trigger body

5

More Restriction on Row
Triggers

A row trigger cannot even query a mutating
table, which is
n either the table being modified, or

n the table could be modified due to a CASCADE
foreign key policy

Get around the “mutating table error” is fairly
tricky
(http://asktom.oracle.com/~tkyte/Mutate/)

However, most of the time you can use a
statement trigger instead.

Constraints Revisited

NOT NULL

DEFAULT

UNIQUE

PRIMARY KEY

Foreign key

Check

Foreign Key Constraint

Parent and child tables

What happens if a tuple in the parent
table is deleted?

n Default: no allowed

n ON DELETE CASCADE

n ON DELETE SET NULL

How about ON UPDATE??

Limitations of the Check
Constraint

The condition must be a boolean expression
that can be evaluated using the row being
inserted or updated

The condition cannot contain subqueries

The condition cannot contain certain SQL
functions or peudocolumns

The condition cannot contain user-defined
functions

Implement Constraints using
Triggers

A new tuple cannot be inserted into Turnins if
current time is past the due date.

NOTE: use raise_application_error
(error_code, error_msg) to raise an error
n error_code is between -20,000 and -20,999

n error_msg is up to 2048 characters long

Students(sid, sname)
Assignments(aid, aname, due)
Turnins(sid, aid, filename)

