CS422 Principles of Database Systems

Stored Procedures and Triggers

Chengyu Sun
California State University, Los Angeles

Why Use Stored Procedures?

#Performance

» compiled and optimized code

» Save communication overhead
#Security

» Access control

» Less data transferred over the wire
#Simplify application code
#Triggers for data integrity

Why Not To Use Stored
Procedures?

#Portability

#PL are generally more difficult to
develop and maintain than conventional
programming languages
» Less language features
» Less tool support

Procedures and Functions in
Oracle

#Procedure
» No return value

» Usually called by other procedures,
functions, triggers, and/or programs.

#Function
» Returns a value

» Usually used in SQL statements like the
system built-in functions

Example: hello()

create or replace procedure Aello as
begin

dbms_output.put_line('Hello World!");
end hello;
/

% Note that Aello does not have a parameter
list, not even ()

Create Procedures

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] &pel, ...1)]
{IS | AS}
BEGIN

procedure_body
END procedure_name,

Use Procedures

#call hello();
#show errors
#user_procedures

» describe user_procedures

» select object_name from user_procedures;
#drop procedure hello;

Parameter Mode

#| N: the parameter already has a value when
the procedure starts, and the value cannot be
changed in the procedure body; default
mode.

4 OUT: the parameter value will set in the
procedure body.

4| N OUT: the parameter has a value when the
procedure start, and the value may be
changed in the procedure body.

Example: sum2p()

create or replace procedure sum2p

(a in integer, b in integer, s out integer) as
begin

S:=a+b;
end sum2p;

Example: sum2f()

create or replace function sum2f (a in integer, b in integer)
return integer as

s integer default 0;
begin
sum2p(a, b, s);
return s;
end sum2f;

4 Note that the declaration block is between
CREATE...AS and BEGIN, and the DECLARE
keyword is not needed any more.

More Examples

#Factorial

Packages

#A package is a collection of PL/SQL
objects group together under one
package name.

» Procedures and functions

» Cursors, variables, and types
#Package

» Specification - declarations

» Body - implementations

Create Packages

CREATE [OR REPLACE] PACKAGE package_name
{IS | AS}

package_specification
END package_name,

CREATE [OR REPLACE] PACKAGE BODY package_name
{IS | AS}

package_body
END package_name;,

Package Specification Example

create or replace package cs422stu31 as
procedure hello;
procedure sum2p (a in integer, b in integer, s out integer);
function sum2f (a in integer, b in integer) return integer;
end cs422stu3l;

Use Packages

#call cs422stu31.hello();

#select cs422stu31.sum2f(100,5) from
daul;

#select object_name, procedure_name

Triggers

#Procedures that are automatically
invoked when data is changed, e.g.
INSERT, DELETE, and UPDATE.

#Common use of triggers

from user_procedures; » Auditing
#drop package cs422stu3i; » Constraints
» Replication
Example: Change Logger Create Trigger

create or replace trigger change_logger
before insert or update or delete on jitems
begin
if inserting then
insert into log1 (operation) values (‘insert");
elsif deleting then
insert into log1 (operation) values ('delete");
else
insert into log1 (operation) values (‘'update');
end if;
end;

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} triggering_event
ON table_name
[FOR EACH ROW [WHEN trigger_condiition]]
BEGIN

trigger_body
END trigger_name;

Triggering Events

INSERT
4 DELETE
4 UPDATE [OF column1,column2,...]
4 Three predicates available in a trigger body to
determine triggering event type:
- | NSERTI NG
-~ DELETI NG
-~ UPDATI NG

Before or After

#BEFORE: trigger fires before the
triggering event

#AFTER: trigger fires after the event

#| NSTEAD OF: execute the trigger

procedure /nstead of the triggering
event (statement)

Statement Trigger vs. Row
Trigger

#Statement Trigger
» Fires once per statement

#Row Trigger
» FOR EACH ROW

» Fires once per row

Example: Price Logger

#Log the price changes where the new
price is more than 20% higher or lower
than the old price.

@ OLDand : NEW

Use Triggers

#Information about triggers is in the
user_triggers table.

#drop trigger trigger_name

Oracle Restrictions on Triggers

#Avoid infinite triggering
#Assume the triggering event is on R
» R cannot be changed in the trigger body

» Any relation linked to R by a chain of
foreign key constraints cannot be changed
in the trigger body

More Restriction on Row
Triggers

% A row trigger cannot even query a mutating
table, which is
. either the table being modified, or
. the table could be modified due to a CASCADE
foreign key policy
4 Get around the “"mutating table error” is fairly
tricky
(http://asktom.oracle.com/~tkyte/Mutate/)
4 However, most of the time you can use a
statement trigger instead.

Constraints Revisited

#NOT NULL
#DEFAULT
#UNIQUE
#PRIMARY KEY
#Foreign key
#Check

Foreign Key Constraint

#Parent and child tables
#What happens if a tuple in the parent
table is deleted?

» Default: no allowed
» ON DELETE CASCADE
» ON DELETE SET NULL

#How about ON UPDATE??

Limitations of the Check
Constraint

4 The condition must be a boolean expression
that can be evaluated using the row being
inserted or updated

4 The condition cannot contain subqueries

% The condition cannot contain certain SQL
functions or peudocolumns

The condition cannot contain user-defined
functions

Implement Constraints using
Triggers

Students(sid, sname)
Assignments(aid, aname, due)
Turnins(sid, aid, filename)

A new tuple cannot be inserted into Turnins if
current time is past the due date.

4 NOTE: use raise_application_error
(error_code, error_msg) to raise an error
. error_code is between -20,000 and -20,999
~ error_msgis up to 2048 characters long

