
1

CS422 Principles of Database Systems
Oracle PL/SQL

Chengyu Sun

California State University, Los Angeles

Limitations of SQL

Most programming language are
Turing-complete

SQL is not

PSM and PL

Persistent Stored Modules (PSM)

n Commonly known as Stored Procedures

n Stored in the database as other schema
objects

Procedural Languages (PL)

n Programming language for writing stored
procedures

n Based on SQL, Java, C#, Perl, Python, …

Oracle PL/SQL

SQL and things you would expect from a
conventional programming language:

n Variables and types

n Control flow statements

n Procedures and functions

n Packages

No just for creating stored procedures e.g.
can be used like other SQL statements

Example: Hello World

NOTE: the slash (/) at the end execute the
PL/SQL code

/** A simple PL/SQL example */
begin

-- print out “Hello World!”
dbms_output.put_line('Hello World!');

end;
/

Comments

C-style comments: /* comments */

SQL-style comments: -- comments

2

Output

DBMS_OUTPUT is one of the built-in

packages in Oracle
n PUT()

n PUT_LINE()

Display the content of the output buffer
in SQL*Plus
n SET SERVEROUTPUT ON

Block Structure

[DECLARE
declaration_statements]

BEGIN
executable_statements

[EXCEPTION
exception_handling_statements]

END;

Example: Sum

NOTE: Be careful with SQL keywords

declare
a integer := 10;
b integer default 2;
s integer;

begin
b := 5;
s := a + b;
dbms_output.put_line('sum is ' || s);

end;

Variable Types

All SQL types

Some PL/SQL types
n boolean: true, false, or null
n string: same as varchar2
n record: composite type

n ref cursor: pointer to a cursor

Taking the type of a table column, e.g.

price items.price%type;

Operators

Assignment

n :=

Arithmetic

n +,-,*,/,mod

Comparison

n =

n >,>=,<,<=

n !=, <>, ^=, ~=

Logical

n AND, OR, NOT

Concatenation

n ||

SQL

n LIKE, IS NULL

n IN, BETWEEN…AND

n All functions

Example: Price Cap

declare
l_price items.price%type;

begin
select max(price) into l_price from items;
if l_price <= 9.99 then

dbms_output.put_line(' highest price is ' || l_price);
else

update items set price = 9.99 where price > 9.99;
dbms_output.put_line('price capped at 9.99.');

end if;
end;

3

Naming Conventions

We want to avoid using the same
names for variables and table columns

A simple naming convention:

n Prefix local variable with l_

n Prefix package global variable with g_

n Prefix parameters with p_

SELECT…INTO

SELECT result must be a single row.

SELECT select_list INTO variable_list
FROM table_list
[WHERE condition]
[ORDER BY order_list];

Branch Statement

NOTE: don’t forget the semicolon (;) after
END IF.

IF condition1 THEN
statements1

ELSIF condition2 THEN
statements2

ELSE
statements3

END IF;

CASE Statement

Note the difference between CASE Statement
and CASE Expression.

CASE expression
WHEN value1 THEN

statements
[WHEN value2 THEN

statements]
[ELSE

statements]
END CASE;

CASE
WHEN condition1 THEN

statements
[WHEN constition2 THEN

statements]
[ELSE

statements]
END CASE;

Example – Factorial

declare
n integer ;
factorial integer := 1;
i integer := 1;

begin
n := 5;
while i <= n loop

factorial := factorial * i;
i := i+1;

end loop;
dbms_output.put_line(n || '! = ' || factorial);

end;

Loop Statements

LOOP
statements
EXIT WHEN condition;
statements

END LOOP;

WHILE condition LOOP
statements

END LOOP;

FOR loop_variable IN [REVERSE]
lower_bound..upper_bound LOOP

statements
END LOOP;

4

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

5

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Cursors

An iterator of a collection of tuples

We can use a cursor to process the
rows returned by a SELECT statement

Example: Random Output
declare

l_name string(32);
l_price number;

cursor c is select name, price from items;
begin

open c;
fetch c into l_name, l_price;

while c%found loop
if dbms_random.random > 0 then

dbms_output.put_line(l_name || ' ' || l_price);
end if;

fetch c into l_name, l_price;
end loop;

close c;
end;

Using Cursors

Declaration

OPEN

FETCH

CLOSE

Attributes

PL/SQL objects like tables,rows, columns, and
cursors have attributes associated with them.

Attributes can be access with the % operator.

Some useful attributes:

n Column attributes: %TYPE

n Table attributes: %ROWTYPE

n Cursor attributes: %FOUND, %NOTFOUND

Cursor FOR Loop

FOR record_name IN cursor_name LOOP
statements

END LOOP;

6

Cursors with Parameters
declare

…
cursor c (p_min_price number, p_max_price number) is

select name, price from items
where price >= p_min_price

and price <= p_max_price;
begin

….
open c (1.99, 19.99);

close c;
…

open c (99.99, 199.99);
close c;

…
end;

Example: Exception

NOTE: the program does not resume after an
exception is handled.

declare
l_price items.price%type;

begin
select price into l_price from items;
dbms_output.put_line(l_price);

exception
when too_many_rows then

dbms_output.put_line('there are too many prices.');
end;

System Exceptions

Some predefined system exceptions:
n TOO_MANY_ROWS

n ZERO_DIVIDE

n INVALID_NUMBER

n SELF_IS_NULL

n SUBSCRIPT_OUTSIDE_LIMIT

n LOGIN_DENIED

n …

n OTHERS
w Error code is stored in SQLCODE

User Defined Exception

DECLARE
exception_name EXCEPTION;

BEGIN
IF condition THEN
RAISE exception_name;

END IF;
EXCEPTION

WHEN exception_name THEN
statements

END;

About PL/SQL Programming

It’s just programming like you always do

Bring out your CS201 textbook and do some
exercises with PL/SQL

Ask “How to do X” questions in the class
forum

Avoid re-implementing SQL

n For example, to compute max(price), use SELECT
MAX(price) instead of a cursor to iterate through
all tuples

