

drinker	address	beerLiked
Sue	123 Main St.	Bud
Sue	321 State St.	Pete's Ale

drinkers

- ♦FD?? Keys??
- ♦3NF?? BCNF??
- ◆Is this a good design??

A New Form of Redundancy

drinker	address	beerLiked
Sue	📙 123 Main St. 💠	Bud
Sue	눶 321 State St. 🗉	Pete's Ale

Sue 321 State St. Bud
Sue 123 Main St. Pete's Ale

Any combination of address and beerLiked for Sue is a valid tuple

Multivalued Dependency (MVD)

- A Multivalued Dependency (MVD) A B is an assertion that if two tuples of a relation agree on all the attributes of A, then their components in the set of attributes B may be swapped, and the result will be two tuples that are also in the relation.
- ♦In the drinkers example:
 - n A?? B?? C=R-AB??
 - n ??

A Couple of Observations about MVD

- MVD characterizes the case where one relation tries to represents more than one *many-to-many* relationships.
- MVD vs. FD (why it's called multivalued dependency)

Trivial MVD

MVD: A

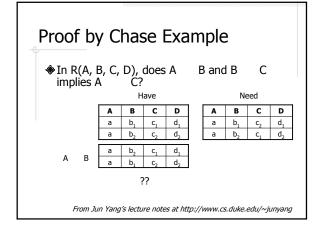
В

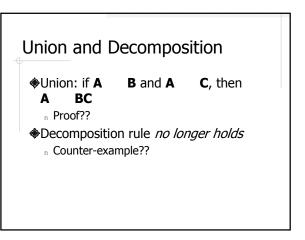
- MVD is trivial if
 - n $B \subseteq A$, or
 - $_{n}$ A \cup B = R

MVD Rules

MVD Complementation
If **A B**, then **A R** - **AB**MVD Transitivity
If **A B** and **B C**, then **A C**-B

MVD Augmentation
If **A B**, then **AC BD** for any **D** ⊆ **C**


 $\begin{array}{c} \text{MVD} + \text{FD Rules} \\ \text{Replication} \\ \text{If } \textbf{A} \quad \textbf{B} \text{, then } \textbf{A} \quad \textbf{B} \\ \text{Coalescence} \\ \text{If } \textbf{A} \quad \textbf{B, C} \quad \textbf{D, C} \cap \textbf{B} = \emptyset \text{, D} \subseteq \textbf{B} \\ \text{then } \textbf{A} \quad \textbf{D} \end{array}$


Proof by Chase

- Given a set of FDs and MVDs D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - $_{\scriptscriptstyle \rm B}$ Start with the hypotheses of d, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in D repeatedly w If we apply an FD, we infer equality of two symbols w If we apply an MVD, we infer more tuples
- If we infer the conclusion of d, we have a proof; otherwise we have a counter-example

From Jun Yang's lecture notes at http://www.cs.duke.edu/~junyang

Proof by Chase Example ◆In R(A, B, C, D), does A B and B C implies A В С D С D Α В b₁ C₁ d_1 а b_1 C₂ d_1 From Jun Yang's lecture notes at http://www.cs.duke.edu/~junyang

Fourth Normal Form (4NF)

A relation R is in 4NF if for every nontrivial MVD A B, A is a super key.

Decompose into 4NF

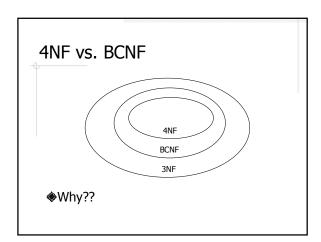
- ♦Find a 4NF violation A B
- Decompose R into:
 - $_{\rm n}$ $\mathbf{R_1} = \mathbf{A} \cup \mathbf{B}$
 - $_{n}$ $R_{2} = (R AB) U A$
- Repeat until all relations are in 4NF

4NF Decomposition Example

- Drinkers(name, addr, beerLiked, favBeer)
 - n FD?? Key??
 - n MVD??

4NF Decomposition vs. BCNF Decomposition

- ◆In 4NF decomposition we do not compute A+
 - _n **A**⁺ does not make sense for MVD
 - · A (R-A) and A A
- Inferring MVDs for the projections are very difficult
 - However, we can usually get by using the rules of transitivity, complementation, and intersection.


Exercise: Prove the Intersection Rule

If A

B, and A

C, then A

 $\boldsymbol{B} \cap \boldsymbol{C}$

