

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	A.B.	WickedAle
Janeway	Voyager	WickedAle	Pete's	WickedAle
Spock	Enterprise	Bud	A.B.	Bud
		Drinkers		

Key

A is a key of relation R if

- A functionally determines all attributes of R
- ⁿ No proper subset of **A** functionally determines all attributes of R

name	addr	beersLiked	manf	favBeer
Janeway	Voyager	Bud	А.В.	WickedAle
Janeway	Voyager	WickedAle	Pete's	WickedAle
Spock	Enterprise	Bud	А.В.	Bud
		Drinkers	-	

A Few Things about Keys

- A relation may have multiple keys
- A key may consist of multiple attributes
- Superset of a key is called a super key
- A key has to be *minimal*, but not necessarily *minimum*
- The definition doesn't say anything about uniqueness

......

Simple Closure Example $\ensuremath{\mathbb{R}}$: {A,B,C} $\ensuremath{\mathbb{S}}$ S: {A B, B C} $\ensuremath{\mathbb{R}}$ {A}+ ?? $\ensuremath{\mathbb{R}}$ {B}+ ?? $\ensuremath{\mathbb{R}}$ {C}+ ?? $\ensuremath{\mathbb{R}}$ {C}+ ??

♦R(A, B, C, D, E, F)
♦S: AB C, BC AD, D E, CF B

♦{A,B}⁺ ??♦Is {A,B} a key ??

Projection

- We often want to break one relation into two or more relations
 - E.g. breaks (A,B,C,D) into (A,B,C) and (C,D)
- The resulting relations can be considered as *projections* of the original relation

Compute Functional Dependencies for Projections

♦R(A, B, C, D)
♦R'(A, C, D)
♦S: A B, B C, C D

Closure of Functional Dependencies
A C, A D, C D: basis
A C, C D: minimal basis