More SQL

Relations as Bags
Grouping and Aggregation
Database Modification

Union, Intersection, and Difference

@ Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

+ ( subquery ) UNION ( subquery )
+ ( subquery ) INTERSECT ( subquery )
+ (' subquery ) EXCEPT ( subquery )

Example

€ From relations Likes(drinker, beer),
Sells(bar, beer, price) and
Frequents(drinker, bar), find the
drinkers and beers such that:
1. The drinker likes the beer, and

2. The drinker frequents at least one bar that
sells the beer.

Solution
The drinker frequents
r th lis th
(SELECT * FROM Likes) b

INTERSECT
(SELECTdrinker—beer
FROM Sells, Frequents
WHERE Frequents.bar = Sells.bar
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Bag Semantics

@ Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics.

+ That is, duplicates are eliminated as the
operation is applied.

Motivation: Efficiency

@ When doing projection in relational
algebra, it is easier to avoid eliminating
duplicates.

+ Just work tuple-at-a-time.

@ When doing intersection or difference,
it is most efficient to sort the relations
first.

+ At that point you may as well eliminate the
duplicates anyway.




Controlling Duplicate Elimination

@ Force the result to be a set by
SELECT DISTINCT . ..
@ Force the result to be a bag (i.e., don't

eliminate duplicates) by ALL, as in
... UNIONALL...

Example: DISTINCT

@ From Sells(bar, beer, price), find all the
different prices charged for beers:
SELECT DI STI NCT price
FROM Sel | s;
@ Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price.

Example: ALL

@ Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
(SELECT dri nker FROM Frequents)
EXCEPT ALL
(SELECT dri nker FROM Likes);
@ Lists drinkers who frequent more bars than

they like beers, and does so as many times
as the difference of those counts.

Join Expressions

@ SQL provides a number of expression
forms that act like varieties of join in
relational algebra.

+ But using bag semantics, not set
semantics.

@ These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

Products and Natural Joins

@ Natural join is obtained by:
R NATURAL JOIN S;
@ Product is obtained by:
R CROSS JOIN S;
@®Example:
Li kes NATURAL JO N Serves;

@ Relations can be parenthesized subexpressions,
as well.
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Theta Join

4R JOIN S ON <condition> is a theta-join, using
<condition> for selection.

@®Example: using Drinkers(name, addr) and
Frequents(drinker, bar):
Drinkers JON Frequents ON
nane = drinker;

gives us all (g, a, d, b) quadruples such that
drinker d lives at address a and frequents bar 4.
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*

Outerjoins

R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:
1. Optional NATURAL in front of OUTER.
2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before
OUTER.
@ LEFT = pad dangling tuples of R only.
@ RIGHT = pad dangling tuples of S only.
@ FULL = pad both; this choice is the default.
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Aggregations

@ SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column.

@ Also, COUNT(*) counts the number of
tuples.

Example: Aggregation

@ From Sells(bar, beer, price), find the
average price of Bud:
SELECT AVGE pri ce)
FROM Sel | s
VWHERE beer = ‘Bud’;
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Eliminating Duplicates in an
Aggregation
@ DISTINCT inside an aggregation causes
duplicates to be eliminated before the
aggregation.
@®Example: find the number of different prices
charged for Bud:
SELECT COUNT( DI STI NCT price)
FROM Sel | s
WHERE beer = ‘Bud’;

NULL's Ignored in Aggregation

@ NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.

@ But if there are no non-NULL values in
a column, then the result of the
aggregation is NULL.
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Example: Effect of NULL's

SELECT-count(®)
FROM-Sells
WHERE-beer=-Bud"

The number of bars

/ that sell Bud.

The number of bars

SELECT count(price) that sell Bud at
/ knaov:: pricl:'le.al ?

FROMSells
WHERE beer="Bud?’




Grouping

¢ We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.

@ The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.
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Example: Grouping

@ From Sells(bar, beer, price), find the
average price for each beer:
SELECT beer, AV price)
FROM Sel | s
GROUP BY beer;

20

Example: Grouping

@ From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:

i ) Compute
SELECT drinker, AVG(price) drinker-bar-
FROM Freguents, Sells / hpihoy
WHERE beer ="Bud”“AND then group

by drinker.

Frequents.bar = Sells.bar
GROUP BY drinker;

21

Restriction on SELECT Lists
With Aggregation
& If any aggregation is used, then each
element of the SELECT list must be
either:

1. Aggregated, or
2. An attribute on the GROUP BY list.
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Illegal Query Example

@ You might think you could find the bar
that sells Bud the cheapest by:
SELECT bar, MIN(price)
FROM Sells
WHERE beer = ‘Bud’;
@ But this query is illegal in SQL.

+ Why? Note bar is neither aggregated nor
on the GROUP BY list.
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HAVING Clauses

@ HAVING <condition> may follow a
GROUP BY clause.

@ If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated.
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Requirements on HAVING
Conditions

€ These conditions may refer to any
relation or tuple-variable in the FROM
clause.

€ They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:
1. A grouping attribute, or
2. Aggregated.
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Example: HAVING

& From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Pete’s.
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Solution

Beer groups with at least

SELECT beer, AVG(price) 3 non-NULL bars and also

beer groups where the

FROM Sells manufacturer is Pete’s.

GROUP BY beer

Beers manu-
factured by
Pete’s.
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Database Modifications

€ A modification command does not
return a result as a query does, but it
changes the database in some way.
€ There are three kinds of modifications:
1. Insert atuple or tuples.
2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple
or tuples.
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Insertion

@ To insert a single tuple:
INSERT INTO <relation>
VALUES ( <list of values> );

¢ Example: add to Likes(drinker, beer)
the fact that Sally likes Bud.

I NSERT | NTO Li kes
VALUES(* Sally’, ‘Bud’);
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Specifying Attributes in INSERT

€ We may add to the relation name a list of
attributes.
€ There are two reasons to do so:

1. We forget the standard order of attributes for
the relation.

2. We don't have values for all attributes, and
we want the system to fill in missing
components with NULL or a default value.
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Example: Specifying Attributes

@ Another way to add the fact that Sally
likes Bud to Likes(drinker, beer):

I NSERT | NTO Li kes(beer, drinker)
VALUES(' Bud', ‘Sally’);
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Inserting Many Tuples

€ We may insert the entire result of a
query into a relation, using the form:

INSERT INTO <relation>
( <subquery> );
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Example: Insert a Subquery

@ Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e.,
those drinkers who frequent at least
one bar that Sally also frequents.
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The other Pairs of Drinker

drinker SOI utlon tuples where the
first is for Sally,
the second is for
. |
INSERT, INTO PotBuddies and the bare are

the same.

d"

FROM-Frequents-di—Frequents-d2

WHERE di.drinker ="Sally"AND
d2.drinker <> 'Sally’ AND
di.bar=dZ.bar

)
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Deletion

@ To delete tuples satisfying a condition
from some relation:

DELETE FROM <relation>
WHERE <condition>;
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Example: Deletion

@ Delete from Likes(drinker, beer) the
fact that Sally likes Bud:
DELETE FROM Li kes
VWHERE drinker = ‘Sally AND
beer = * Bud’;
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Example: Delete all Tuples

@ Make the relation Likes empty:

DELETE FROM Li kes;

#Note no WHERE clause needed.
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Example: Delete Many Tuples

@ Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b / manufacturer and

Beers with the same

WHERE EXISTS ( From the name of

SELECT name FROM Beers | prmont

WHERE manf = b.manf AND
name<>bname);
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Semantics of Deletion -- 1

@ Suppose Anheuser-Busch makes only
Bud and Bud Lite.

@ Suppose we come to the tuple 6 for
Bud first.

@ The subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.

4 Now, When b is the tuple for Bud Lite,
do we delete that tuple too?
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Semantics of Deletion -- 2

€ The answer is that we do delete Bud
Lite as well.

€ The reason is that deletion proceeds
in two stages:

1. Mark all tuples for which the WHERE
condition is satisfied in the original
relation.

2. Delete the marked tuples.
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Updates

@ To change certain attributes in certain
tuples of a relation:

UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;
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Example: Update

4 Change drinker Fred’s phone number to
555-1212:
UPDATE Dri nkers
SET phone = ‘555-1212’
VWHERE nane = ‘Fred’;
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Example: Update Several Tuples

& Make $4 the maximum price for beer:
UPDATE Sel | s
SET price = 4.00
VWHERE price > 4.00;
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