More SQL

Relations as Bags
Grouping and Aggregation
Database Modification

Union, Intersection, and Difference

@ Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

+ (subquery) UNION (subquery)
+ (subquery) INTERSECT (subquery)
+ (' subquery) EXCEPT (subquery)

Example

€ From relations Likes(drinker, beer),
Sells(bar, beer, price) and
Frequents(drinker, bar), find the
drinkers and beers such that:
1. The drinker likes the beer, and

2. The drinker frequents at least one bar that
sells the beer.

Solution
The drinker frequents
r th lis th
(SELECT * FROM Likes) b

INTERSECT
(SELECTdrinker—beer
FROM Sells, Frequents
WHERE Frequents.bar = Sells.bar

5

Bag Semantics

@ Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics.

+ That is, duplicates are eliminated as the
operation is applied.

Motivation: Efficiency

@ When doing projection in relational
algebra, it is easier to avoid eliminating
duplicates.

+ Just work tuple-at-a-time.

@ When doing intersection or difference,
it is most efficient to sort the relations
first.

+ At that point you may as well eliminate the
duplicates anyway.

Controlling Duplicate Elimination

@ Force the result to be a set by
SELECT DISTINCT . ..
@ Force the result to be a bag (i.e., don't

eliminate duplicates) by ALL, as in
... UNIONALL...

Example: DISTINCT

@ From Sells(bar, beer, price), find all the
different prices charged for beers:
SELECT DI STI NCT price
FROM Sel | s;
@ Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price.

Example: ALL

@ Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
(SELECT dri nker FROM Frequents)
EXCEPT ALL
(SELECT dri nker FROM Likes);
@ Lists drinkers who frequent more bars than

they like beers, and does so as many times
as the difference of those counts.

Join Expressions

@ SQL provides a number of expression
forms that act like varieties of join in
relational algebra.

+ But using bag semantics, not set
semantics.

@ These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

Products and Natural Joins

@ Natural join is obtained by:
R NATURAL JOIN S;
@ Product is obtained by:
R CROSS JOIN S;
@®Example:
Li kes NATURAL JO N Serves;

@ Relations can be parenthesized subexpressions,
as well.

11

Theta Join

4R JOIN S ON <condition> is a theta-join, using
<condition> for selection.

@®Example: using Drinkers(name, addr) and
Frequents(drinker, bar):
Drinkers JON Frequents ON
nane = drinker;

gives us all (g, a, d, b) quadruples such that
drinker d lives at address a and frequents bar 4.

12

*

Outerjoins

R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:
1. Optional NATURAL in front of OUTER.
2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before
OUTER.
@ LEFT = pad dangling tuples of R only.
@ RIGHT = pad dangling tuples of S only.
@ FULL = pad both; this choice is the default.

13

Aggregations

@ SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column.

@ Also, COUNT(*) counts the number of
tuples.

Example: Aggregation

@ From Sells(bar, beer, price), find the
average price of Bud:
SELECT AVGE pri ce)
FROM Sel | s
VWHERE beer = ‘Bud’;

15

Eliminating Duplicates in an
Aggregation
@ DISTINCT inside an aggregation causes
duplicates to be eliminated before the
aggregation.
@®Example: find the number of different prices
charged for Bud:
SELECT COUNT(DI STI NCT price)
FROM Sel | s
WHERE beer = ‘Bud’;

NULL's Ignored in Aggregation

@ NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.

@ But if there are no non-NULL values in
a column, then the result of the
aggregation is NULL.

17

Example: Effect of NULL's

SELECT-count(®)
FROM-Sells
WHERE-beer=-Bud"

The number of bars

/ that sell Bud.

The number of bars

SELECT count(price) that sell Bud at
/ knaov:: pricl:'le.al ?

FROMSells
WHERE beer="Bud?’

Grouping

¢ We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.

@ The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.

19

Example: Grouping

@ From Sells(bar, beer, price), find the
average price for each beer:
SELECT beer, AV price)
FROM Sel | s
GROUP BY beer;

20

Example: Grouping

@ From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:

i) Compute
SELECT drinker, AVG(price) drinker-bar-
FROM Freguents, Sells / hpihoy
WHERE beer ="Bud”“AND then group

by drinker.

Frequents.bar = Sells.bar
GROUP BY drinker;

21

Restriction on SELECT Lists
With Aggregation
& If any aggregation is used, then each
element of the SELECT list must be
either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

22

Illegal Query Example

@ You might think you could find the bar
that sells Bud the cheapest by:
SELECT bar, MIN(price)
FROM Sells
WHERE beer = ‘Bud’;
@ But this query is illegal in SQL.

+ Why? Note bar is neither aggregated nor
on the GROUP BY list.

23

HAVING Clauses

@ HAVING <condition> may follow a
GROUP BY clause.

@ If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated.

24

Requirements on HAVING
Conditions

€ These conditions may refer to any
relation or tuple-variable in the FROM
clause.

€ They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:
1. A grouping attribute, or
2. Aggregated.

25

Example: HAVING

& From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Pete’s.

26

Solution

Beer groups with at least

SELECT beer, AVG(price) 3 non-NULL bars and also

beer groups where the

FROM Sells manufacturer is Pete’s.

GROUP BY beer

Beers manu-
factured by
Pete’s.

27

Database Modifications

€ A modification command does not
return a result as a query does, but it
changes the database in some way.
€ There are three kinds of modifications:
1. Insert atuple or tuples.
2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple
or tuples.

28

Insertion

@ To insert a single tuple:
INSERT INTO <relation>
VALUES (<list of values>);

¢ Example: add to Likes(drinker, beer)
the fact that Sally likes Bud.

I NSERT | NTO Li kes
VALUES(* Sally’, ‘Bud’);

29

Specifying Attributes in INSERT

€ We may add to the relation name a list of
attributes.
€ There are two reasons to do so:

1. We forget the standard order of attributes for
the relation.

2. We don't have values for all attributes, and
we want the system to fill in missing
components with NULL or a default value.

30

Example: Specifying Attributes

@ Another way to add the fact that Sally
likes Bud to Likes(drinker, beer):

I NSERT | NTO Li kes(beer, drinker)
VALUES(' Bud', ‘Sally’);

31

Inserting Many Tuples

€ We may insert the entire result of a
query into a relation, using the form:

INSERT INTO <relation>
(<subquery>);

32

Example: Insert a Subquery

@ Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e.,
those drinkers who frequent at least
one bar that Sally also frequents.

33

The other Pairs of Drinker

drinker SOI utlon tuples where the
first is for Sally,
the second is for
. |
INSERT, INTO PotBuddies and the bare are

the same.

d"

FROM-Frequents-di—Frequents-d2

WHERE di.drinker ="Sally"AND
d2.drinker <> 'Sally’ AND
di.bar=dZ.bar

)

34

Deletion

@ To delete tuples satisfying a condition
from some relation:

DELETE FROM <relation>
WHERE <condition>;

35

Example: Deletion

@ Delete from Likes(drinker, beer) the
fact that Sally likes Bud:
DELETE FROM Li kes
VWHERE drinker = ‘Sally AND
beer = * Bud’;

36

Example: Delete all Tuples

@ Make the relation Likes empty:

DELETE FROM Li kes;

#Note no WHERE clause needed.

37

Example: Delete Many Tuples

@ Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b / manufacturer and

Beers with the same

WHERE EXISTS (From the name of

SELECT name FROM Beers | prmont

WHERE manf = b.manf AND
name<>bname);

38

Semantics of Deletion -- 1

@ Suppose Anheuser-Busch makes only
Bud and Bud Lite.

@ Suppose we come to the tuple 6 for
Bud first.

@ The subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.

4 Now, When b is the tuple for Bud Lite,
do we delete that tuple too?

39

Semantics of Deletion -- 2

€ The answer is that we do delete Bud
Lite as well.

€ The reason is that deletion proceeds
in two stages:

1. Mark all tuples for which the WHERE
condition is satisfied in the original
relation.

2. Delete the marked tuples.

40

Updates

@ To change certain attributes in certain
tuples of a relation:

UPDATE <relation>
SET <list of attribute assignments>
WHERE <condition on tuples>;

41

Example: Update

4 Change drinker Fred’s phone number to
555-1212:
UPDATE Dri nkers
SET phone = ‘555-1212’
VWHERE nane = ‘Fred’;

42

Example: Update Several Tuples

& Make $4 the maximum price for beer:
UPDATE Sel | s
SET price = 4.00
VWHERE price > 4.00;

43

