Relational Algebra

Operators
Expression Trees

What is an “Algebra”

Mathematical system consisting of:
* Operands --- variables or values from
which new values can be constructed.
* Operators --- symbols denoting procedures
that construct new values from given
values.

What is Relational Algebra?

€ An algebra whose operands are
relations or variables that represent
relations.

@ Operators are designed to do the most
common things that we need to do with
relations in a database.

+ The result is an algebra that can be used
as a qguery language for relations.

Roadmap

@ There is a core relational algebra that
has traditionally been thought of as the
relational algebra.

@ But there are several other operators
we shall add to the core in order to
model better the language SQL --- the
principal language used in relational
database systems.

Core Relational Algebra

@ Union, intersection, and difference.

+ Usual set operations, but require both
operands have the same relation schema.

@ Selection: picking certain rows.
@ Projection: picking certain columns.

@ Products and joins: compositions of
relations.

@ Renaming of relations and attributes.

Selection

@R1 := SELECT(R2)

+ C is a condition (as in “if” statements) that
refers to attributes of R2.

+ R1 is all those tuples of R2 that satisfy C.

Example
Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe's Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

JoeMenu := SELECT 5 —viees(SellS):

Projection

@R1 := PROJ, (R2)

+ [is a list of attributes from the schema of
R2.

+ R1 is constructed by looking at each tuple
of R2, extracting the attributes on list £, in
the order specified, and creating from
those components a tuple for R1.

+ Eliminate duplicate tuples, if any.

bar beer price
Joe’s Bud 2.50
Joe's Miller 2.75
7
Example
Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe's Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

Prices := PROJpeer price (SelS):

beer price
Bud 2.50
Miller 2.75
Miller 3.00

Product

®R3:=R1*R2
+ Pair each tuple t1 of R1 with each tuple t2 of
R2.
+ Concatenation t1t2 is a tuple of R3.

+ Schema of R3 is the attributes of R1 and R2,
in order.

+ But beware attribute A of the same name in
R1 and R2: use R1.4 and R2.A.

Example: R3 := R1 * R2

R1([A, | B) R3(| A, | R1.B]R2B] C |)
1 2 1 2 |5 |6
3| 4 1 2 |7 |8

1 2 |9 10

R2([B, [C) 3 14 |5 |6
5 6 3 14 |7 |8
7 | 8 3 14 |9 10
9 10

11

Theta-Join

®R3 := R1 JOIN.R2
+ Take the product R1 * R2.
+ Then apply SELECT - to the result.

@ As for SELECT, C can be any boolean-
valued condition.

« Historic versions of this operator allowed
only A theta B, where theta was =, <, etc.;
hence the name “theta-join.”

Sells(

Example
bar, | beer, |price |) Bars(| name, addr)
Joe's | Bud |2.50 Joe's | Maple St.
Joe's | Miller | 2.75 Sue’s | River Rd.
Sue’s| Bud |2.50
Sue’s| Coors|3.00

BarInfo := Sells JOIN geyis par = Bars.name Bars

BarInfo(

bar, | bel

er, | price,| name,|addr)

Joe's | Bu

Sue’s| Bu
Sue’s| Co

Joe's | Miller| 2.75 | Joe's |Maple St.

d | 2.50 | Joe's |Maple St.

d | 2.50 | Sue’s |River Rd.
ors| 3.00 | Sue’s |River Rd.

13

Natural Join

@ A frequent type of join connects two
relations by:
+ Equating attributes of the same name, and
+ Projecting out one copy of each pair of
equated attributes.
@ Called natural join.

#Denoted R3 := R1 JOIN R2.

Example
Sells(| bar, | beer, |price |) Bars(| bar, | addr)
Joe's | Bud |2.50 Joe's | Maple St
Joe's | Miller |2.75 Sue’s| River Rd.
Sue’s| Bud |2.50
Sue’s| Coors|3.00

BarInfo := Sells JOIN Bars
Note Bars.name has become Bars.bar to make the natural

Renaming

© The RENAME operator gives a new
schema to a relation.

®R1 := RENAMEg;s;, a»(R2) makes R1
be a relation with attributes Al,...,An
and the same tuples as R2.

@ Simplified notation: R1(A1,...,An) := R2.

join “work.”
BarInfo(|bar, | beer, |price, |addr)
Joe's | Bud |2.50 |Maple St.
Joe's | Milller|2.75 |Maple St.
Sue’s| Bud |2.50 |[River Rd.
Sue’s| Coors|3.00 |River Rd. 1
Example
Bars(|name,| addr)
Joe’s |Maple St.
Sue’s |River Rd.
R(bar, addr) := Bars
R(|bar, |addr)
Joe's | Maple St.
Sue’s | River Rd.

17

Building Complex Expressions

@ Algebras allow us to express
sequences of operations in a natural
way.

+ Example: in arithmetic --- (x + 4)*(y - 3).
€ Relational algebra allows the same.

€ Three notations, just as in arithmetic:

1. Sequences of assignment statements.

2. Expressions with several operators.
3. Expression trees.

Sequences of Assignments

& Create temporary relation names.
@ Renaming can be implied by giving
relations a list of attributes.
@®Example: R3 := R1 JOINR2 can be
written:
R4 := R1 *R2
R3 := SELECT ~(R4)

19

Expressions in a Single Assignment

4 Example: the theta-join R3 := R1 JOIN,R2
can be written: R3 := SELECT - (R1 * R2)

@ Precedence of relational operators:
1. Unary operators --- select, project, rename --- have
highest precedence, bind first.
2. Then come products and joins.
3. Then intersection.
4. Finally, union and set difference bind last.

+ But you can always insert parentheses to
force the order you desire.

20

Expression Trees

@ Leaves are operands --- either variables
standing for relations or particular,
constant relations.

@ Interior nodes are operators, applied to
their child or children.

21

Example

@ Using the relations Bars(name, addr)
and Sells(bar, beer, price), find the
names of all the bars that are either on
Maple St. or sell Bud for less than $3.

22

As a Tree:
UNION\
RENAM‘ER(name)
PROJECT 3me PROJECT,,
SELECT ad‘dr = "Maple St.” SELECT price<3 AND beer="Bud”

Bars Sells

23

Example

@ Using Sells(bar, beer, price), find the
bars that sell two different beers at the
same price.

@ Strategy: by renaming, define a copy of
Sells, called S(bar, beerl, price). The
natural join of Sells and S consists of
quadruples (bar, beer, beerl, price) such
that the bar sells both beers at this price.

24

The Tree

PROJECT,,,,
SELECT peer 1= beert

JOIN

/

RENAMEq 1ar, beert, price)

Sells Sells

25

Schemas for Interior Nodes

@ An expression tree defines a schema
for the relation associated with each
interior node.

@ Similarly, a sequence of assignments
defines a schema for each relation on
the left of the := sign.

26

Schema-Defining Rules 1

@ For union, intersection, and difference,
the schemas of the two operands must
be the same, so use that schema for
the result.

@ Selection: schema of the result is the
same as the schema of the operand.

@ Projection: list of attributes tells us the
schema.

27

Schema-Defining Rules 2

@ Product: the schema is the attributes of
both relations.

+ Use R.A4, etc., to distinguish two attributes
named A.

@ Theta-join: same as product.

& Natural join: use attributes of both
relations.
+ Shared attribute names are merged.

@ Renaming: the operator tells the schema.

28

Relational Algebra on Bags

@A bagis like a set, but an element may
appear more than once.
* Multiset is another name for “bag.”
®Example: {1,2,1,3} isa bag. {1,2,3}is
also a bag that happens to be a set.
€ Bags also resemble lists, but order in a
bag is unimportant.
+ Example: {1,2,1} = {1,1,2} as bags, but
[1,2,1]!=[1,1,2] as lists.

29

Why Bags?

€ SQL, the most important query
language for relational databases is
actually a bag language.
+ SQL will eliminate duplicates, but usually
only if you ask it to do so explicitly.
€ Some operations, like projection, are
much more efficient on bags than sets.

30

Operations on Bags

@ Selection applies to each tuple, so its
effect on bags is like its effect on sets.

@ Projection also applies to each tuple,
but as a bag operator, we do not
eliminate duplicates.

@ Products and joins are done on each
pair of tuples, so duplicates in bags
have no effect on how we operate.

31

Example: Bag Selection

R() S()

/1

B C
3 4
7 8

= U= >

N ON |

SELECT 4, 55 (R) = | A

32

Example: Bag Projection

R() S()

B, C
3 4
7 8

= U= >
NON@

PROJECT, (R) =

o

33

Example: Bag Product

Example: Bag Theta-Join

R() S()

B, C
3 4
7 8

= U= >

N O N

RJOIN gpesp S =

[l N b
NWNN WO
0 hOOOOAND

35

R([A [B] S(|B, | CD
1 2 3 4
5 6 7 8
1 2
R*S = A RB| SB| C
1 2 3 4
1 2 7 8
5 6 3 4
5 6 7 8
1 2 3 4
1 2 7 8 34
Bag Union

@ Union, intersection, and difference
need new definitions for bags.

@ An element appears in the union of two
bags the sum of the number of times it
appears in each bag.

¢ Example: {1,2,1} UNION {1,1,2,3,1} =
{111111111121213}

36

Bag Intersection

@ An element appears in the intersection
of two bags the minimum of the
number of times it appears in either.

@®Example: {1,2,1} INTER {1,2,3} =
{1,2}.

37

Bag Difference

@ An element appears in the difference
A — B of bags as many times as it
appears in A, minus the number of
times it appears in 5.

+ But never less than 0 times.

®Example: {1,2,1} - {1,2,3} = {1}.

38

Beware: Bag Laws != Set Laws

@ Not all algebraic laws that hold for sets
also hold for bags.

@ For one example, the commutative law
for union (R UNION S= S UNION R)
does hold for bags.

+ Since addition is commutative, adding the
number of times x appears in Rand S
doesn’t depend on the order of Rand S.

39

An Example of Inequivalence

@ Set union is idempotent, meaning that
S UNION S= S.

@ However, for bags, if x appears n
times in S, then it appears 2.7 times in
S UNION &S.

€ Thus S UNION S!= S in general.

40

The Extended Algebra

1. DELTA = eliminate duplicates from bags.

2. TAU = sort tuples.

3. Extended projection : arithmetic,
duplication of columns.

4. GAMMA = grouping and aggregation.

5. OUTERIJOIN: avoids “dangling tuples” =
tuples that do not join with anything.

41

Duplicate Elimination
®R1 := DELTA(R2).

@ R1 consists of one copy of each tuple
that appears in R2 one or more times.

42

Example: Duplicate Elimination

Sorting

®R1 := TAU, (R2).
+ [is a list of some of the attributes of R2.
@ R1 is the list of tuples of R2 sorted first
on the value of the first attribute on L,
then on the second attribute of £, and
So on.

+ Break ties arbitrarily.
@ TAU is the only operator whose result is
neither a set nor a bag.

44

R= |A B

1 2

3 4

1 2
DELTAR) = [A | B
1 2
3| 4

Example: Sorting
R =

uUTw >
N A N m

TAUs(R) = [(5,2), (1,2), (3,4)]

45

Extended Projection

€ Using the same PROJ, operator, we
allow the list L to contain arbitrary
expressions involving attributes, for
example:
1. Arithmetic on attributes, e.g., A+B.
2. Duplicate occurrences of the same attribute.

46

Example: Extended Projection

R= |A B
1 2
3 4

PROJ g4 (R)= [A+B[AL | A2

a7

Aggregation Operators

@ Aggregation operators are not
operators of relational algebra.

@ Rather, they apply to entire columns of
a table and produce a single result.

@ The most important examples: SUM,
AVG, COUNT, MIN, and MAX.

48

Example: Aggregation

R =

wwH >
N D Wm

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

49

Grouping Operator

@ R1:= GAMMA, (R2). L is a list of
elements that are either:
1. Individual (grouping) attributes.

2. AGG(A), where AGG is one of the
aggregation operators and A is an
attribute.

50

Applying GAMMA,(R)

@ Group R according to all the grouping attributes
on list L.

+ That is, form one group for each distinct list of values
for those attributes in R.

@ Within each group, compute AGG(A) for each
aggregation on list L.

@ Result has grouping attributes and aggregations
as attributes. One tuple for each list of values
for the grouping attributes and their group’s
aggregations.

51

Example: Grouping/Aggregation

R= |A B C

1 2 3 Then, average Cwithin

4 5 6 groups:

1 2 5

A B | AVGO)

GAMMAA,B,AVG(C) (R)=7? 1 2 4
First, group R : 4 5 6

A B C

1 2 3

1 2 5

4 5 6 5

Outerjoin

@ Suppose we join RJOIN, S.

@A tuple of R that has no tuple of S with
which it joins is said to be dangling.
+ Similarly for a tuple of S.

@ Outerjoin preserves dangling tuples by
padding them with a special NULL symbol
in the result.

53

Example: Outerjoin

R= |A S= C

B
2 3
6 7

—-

B
2
4 5

(1,2) joins with (2,3), but the other two tuples
are dangling.

ROUTERICINS = |A B C
1 2 3
4 5 NULL
NULL| 6 7

54

