

- Handles day-to-day operations of an organization
- A.K.A. Online Transaction Processing (OLTP) systems
- Characterized by
- Content detailed and current
- Users clients, developers, DBA
 Access pattern short, atomic, r/w transactions
- Access pattern short, atomic, m
 Design ER, normalized
- Design ER, normalized

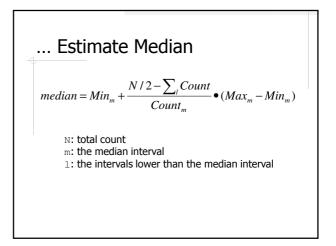
... The Need for Data Warehouse

- These applications are dominated by queries involving aggregations and group-bys
- And such queries often can't be expressed or executed efficiently by OLTP databases

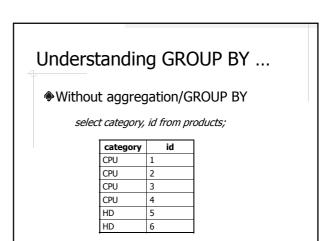
Standard SQL Aggregation Functions

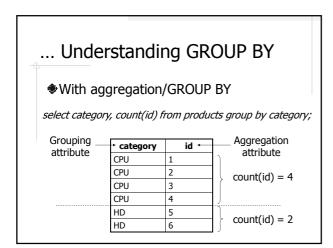
- Operate on multiple rows and return a single result
 - ∎ sum
 - ∎ avg
 - count
 - max and min

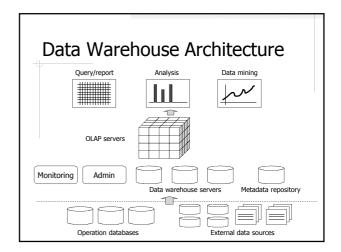
More About Aggregation Functions


Distributive

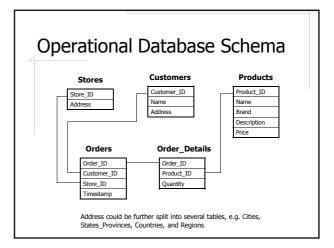
- sum, count, min, max
- Algebraic
 - avg = sum / count
- Holistic
 - ∎ median


Distributive A	ggreg	gatio	n		
	Count	Sum	Min	Max	
[5,6,2,8,1,9]	6				
[11,12,14,16,18]	5				
[23,20]	2				
All	??				


Holistic Aggrega	ation
	Median
[5,6,2,8,1,9]	??
[11,12,14,16,18]	14
[23,20]	??
All	??

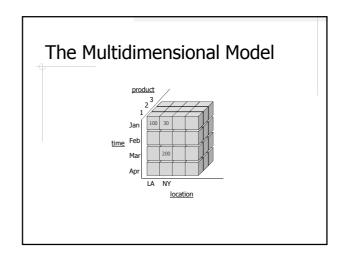

Estimate Mec	lian			
	Count	Min	Max	
[5,6,2,8,1,9]	6	1	9	
[11,12,14,16,18]	5	11	18	
[23,20]	2	20	23	
All	13	1	23	

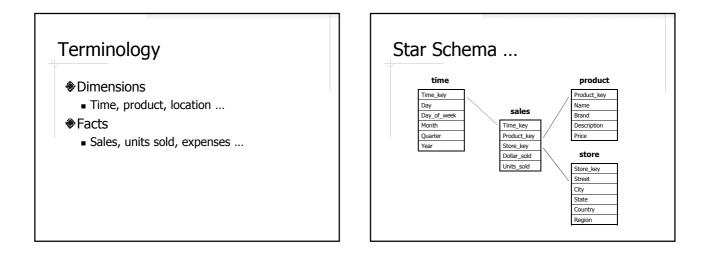
GRO	OUP	BY			
	se	from p	egory, count products by category		
	produ	<u>cts</u>			
	id	category	description	price	
	id 1	category CPU	description Intel Core 2 Duo	price \$200.00	
	-		-		
	1	CPU	Intel Core 2 Duo	\$200.00	
	1 2	CPU CPU	Intel Core 2 Duo Intel Pentium D	\$200.00 \$98.99	
	1 2 3	CPU CPU CPU CPU	Intel Core 2 Duo Intel Pentium D AMD Athlon 64	\$200.00 \$98.99 \$74.49	

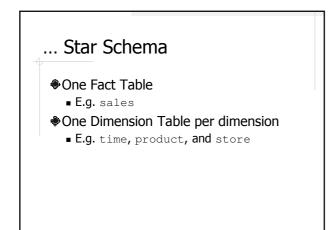

Data Warehouse "A data warehouse is a *subject-oriented, integrated, time-variant,* and *nonvolatile* collection of data in support of management's *decision making* process" – W. H. Inmon An Online Analytical Processing (OLAP) system

Data Warehouse vs. Operational Database

	Operational Database	Data Warehouse
Content	Detailed and current	??
Users	Clients, developers, DBA	??
Access Patterns	short, atomic, r/w transactions	??
Design	ER, normalized	??

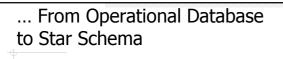

Data


Customer John Doe, whose address is 123 Main St., LA, CA, bought an Intel CPU for \$279 and two Seagate hard drives for \$300 at the Best Buy store on Foothill Blvd on 1/9/2012 at 11:01am.



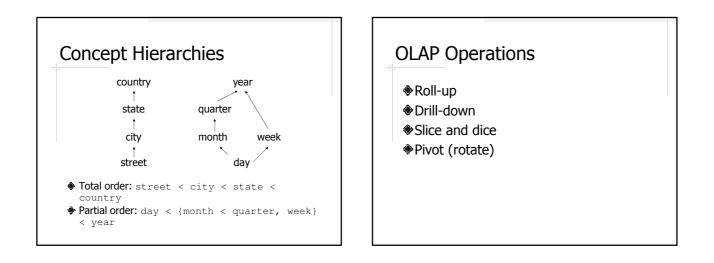
Why Not Use Operational Database for OLAP

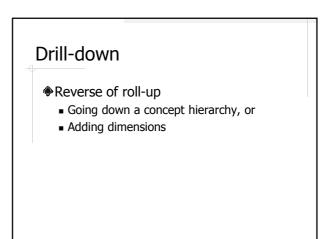
- Detailed, normalized data is not suitable for efficient OLAP operations
- ER/relational model is good for data storage and access but not for data analysis

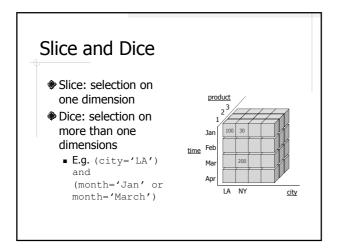


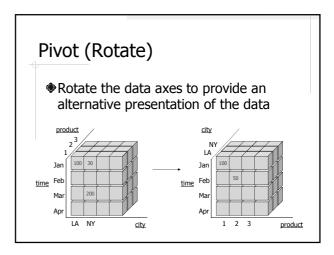
From Operational Database to Star Schema ...

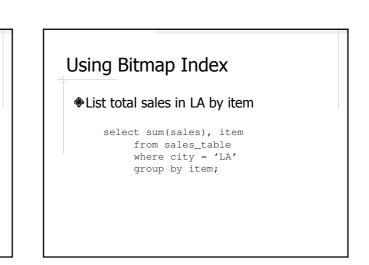
Fact table

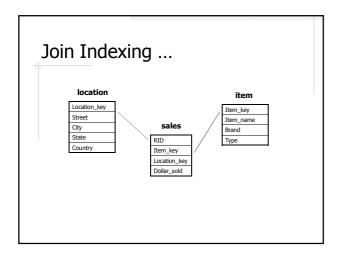

- Data selection
- Data granularity (i.e. base facts)
- Derived data
- Pre-aggregated data (i.e. *summary facts*)


- Dimension tables
 - Dimension selection
 - Time dimension
 - De-normalization
 - Surrogate key and natural key


Other Schemas for Multidimensional Databases


- Snowflake schema
 - Some dimensions are normalized
- Fact Constellation schema
 - Dimension tables are shared by more than one fact tables


Perform OLAP Operations Efficiently


Indexing

- Pre-computation
 - Summary fact tables
 - Data cubes

Bit	map	In	dexi	ing	
rid	item	city	month	sales	
1001	ΤV	LA	Jan	100	I.
1002	PC	LA	Jan	200	Item: { TV, PC, Phone }
1003	PC	NY	Jan	150	City: { LA, NY }
1004	PC	NY	Feb	100	
1005	Phone	NY	Jan	175	
1006	τv	NY	Feb	200	
1007	Phone	LA	Jan	300	
1008	Phone	LA	Feb	120	

Bitr	nap	o Index	ing
Bitmap	Inde	x on Item:	Bitmap Index on City ??
1	0	0	
0	1	0	
0	1	0	
0	1	0	
0	0	1	
1	0	0	
0	0	1	
0	0	1	
TV	PC	Phone	

location						S	ales	
Location_key	Street	City	State	Country	RID	Item_key	Loc_key	Amo
1	123 Main St.	LA	CA	USA	1001	1	1	100
2	456 Wall St.	NY	NY	USA	1002	3	3	120
3	789 State St.	LA	CA	USA	1003	3	2	150
item					1004	4	2	110
Item_key	Item_name	Brand	Ту	pe	1005	5	2	130
		-	_		1006	2	2	170
1	Bravia 42in	Sony		V	1007	5	1	200
2	Bravia 46in	Sony	Т	V	1008	5	3	100
3	Pavilion A100	HP	P	C				
4	Pavilion A200	HP	P	C				
5	iPhone	Apple	P	hone				

Joir	Indexin	g				
Sales	& Item type	Sales 8	& It	tem typ	oe &	City
rid	item_type	r	id	item	city	
1001	ΤV	10	01	ΤV	LA	
1006	τv	10	02	PC	LA	
1002	PC	10	07	Phone	LA	
1003	PC	10	08	Phone	LA	
1004	PC	10	06	TV	NY	
1005	Phone	10	03	PC	NY	
1007	Phone	10	04	PC	NY	
1008	Phone	10	05	Phone	NY	

Using Join Index

- ♦ Find the total sales of TV
- $\ensuremath{\circledast}$ Find the total sales of TV in LA

Readings

Textbook Chapter 4