
CS522 Advanced Database Systems
Mining Frequent Patterns

Chengyu Sun

California State University, Los Angeles

Sales Transactions

TID Transactions

1 Beef, Chicken, Milk

2 Beef, Cheese

3 Cheese, Boots

4 Beef, Chicken, Cheese

5 Beef, Chicken, Clothes, Cheese, Milk

6 Chicken, Clothes, Milk

7 Chicken, Clothes, Milk

8 Beef, Milk

Support Count

The support count, or frequency, of a
itemset is the number of the
transactions that contain the itemset

� Item, Itemset, and Transaction

Examples:
� support_count({beef})=5

� support_count({beef,chicken,milk

})=??

Frequent Itemset

An itemset is frequent if its support
count is greater than or equals to a
minimum support count threshold

� support_count(X)≥min_sup

The Need for Closed Frequent
Itemsets

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

of frequent itemsets??

Closed Frequent Itemset

An itemset X is closed if there exists no
proper superset of X that has the same
support count

A closed frequent itemset is an itemset
that is both closed and frequent

Closed Frequent Itemset
Example

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

Closed frequent itemset(s)??

Maximal Frequent Itemset

An itemset X is a maximal frequent
itemset if X is frequent and there exists
no proper superset of X that is also
frequent

Example: if {a,b,c} is a maximal

frequent itemset, which one of these
cannot be a MFI
� {a,b,c,d}, {a,c}, {b,d}

Maximal Frequent Itemset
Example

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

Maximal frequent itemset(s)??

Maximal frequent itemset vs. closed
frequent itemset??

From Frequent Itemsets to
Association Rules

{chicken,cheese} is a frequent set

{chicken}⇒{cheese}??

Or is it {cheese}⇒{chicken}??

Association Rules

A⇒B

� A and B are itemsets

� A∩B=∅

Support

The support of A⇒B is the percentage
of the transactions that contain A∪B

||

)(untsupport_co
)()(support

D

BA
BAPBA

∪
=∪=⇒

P(A∪B) is the probability that a transaction contains A∪B

D is the set of the transactions

Confidence

The confidence of A⇒B is the
percentage of the transactions
containing A that also contains B

)(untsupport_co

)(untsupport_co
)|()(confidence

A

BA
ABPBA

∪
==⇒

Support and Confidence
Example

{chicken}⇒{cheese}??

{cheese}⇒{chicken}??

Strong Association Rule

An association rule is strong if it
satisfies both a minimum support
threshold (min_sup) and a minimum
confidence threshold (min_conf)

Why do we need both support and
confidence??

Association Rule Mining

Find strong association rules

� Find all frequent itemsets

� Generate strong association rules from the
frequent itemsets

The Apriori Property

All nonempty subsets of a frequent
itemset must also be frequent

Or, if an itemset is not frequent, its
supersets cannot be frequent either

Finding Frequent Itemsets –
The Apriori Algorithm

Given min_sup

Find the frequent 1-itemsets L1
Find the the frequent k-itemsets Lk by
joining the itemsets in Lk-1

Stop when Lk is empty

Apriori Algorithm Example

Support 25%

TID Transactions

1 1, 2, 3

2 1, 4

3 4, 5

4 1, 2, 4

5 1, 2, 6, 4, 3

6 2, 6, 3

7 2, 6, 3

8 1, 3

beef 1

chicken 2

milk 3

cheese 4

boots 5

clothes 6

L1

Scan the data once
to get the count of
each item

Remove the items
that do not meet
min_sup

{1} 5 {1}

{2} 5 {2}

{3} 5 {3}

{4} 4 {4}

{5} 1

{6} 3 {6}

C1 support_count L1

L2

C2=L1×L1

Scan the dataset
again for the
support_count of C2,
then remove non-
frequent itemsets
from C2, i.e. C2�L2

{1,2} 3 {1,2}

{1,3} 3 {1,3}
{1,4} 3 {1,4}

{1,6} 1
{2,3} 4 {2,3}

{2,4} 2 {2,4}

{2,6} 3 {2,6}
{3,4} 1

{3,6} 3 {3,6}
{4,6} 1

C2 support_count L2

L3

??

From Lk-1 to Ck

Let li be an itemset in Lk-1, and li[j]

be the jth item in li

Items in an itemset are sorted, i.e.
li[1]<li[2]<…<li[k-1]

l1 and l2 are joinable if

� Their first k-2 items are the same, and

� l1[k-1]<l2[k-1]

From Ck to Lk

Reduce the size of Ck using the Apriori

property

� any (k-1)-subset of an candidate must be
frequent, i.e. in Lk-1

Scan the dataset to get the support
counts

Generate Association Rules
from Frequent Itemsets

For each frequent itemset l, generate
all nonempty subset of l

For every nonempty subset of s of l,
output rule s⇒(l-s) if conf(s
⇒(l-s))≥min_conf

Confidence-based Pruning …

conf({a,b}⇒{c,d})<min_conf

� conf({a}⇒{c,d})??

� conf({a,b,e}⇒{c,d})??

� conf({a}⇒{b,c,d})??

… Confidence-based Pruning

If conf(s⇒(l-s))<min_conf, then
conf(s’⇒(l-s’))<min_conf

where s’⊆s.

Example:
conf({a,b}⇒{c,d})<min_conf

� ??

Limitations of the Apriori
Algorithm

Multiple scans of the datasets

� How many??

Need to generate a large number of
candidate sets

FP-Growth Algorithm

Frequent-pattern Growth

Mine frequent itemsets without
candidate generation

FP-Growth Example

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3, I6

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2, I3, I5

9 I1, I2, I3

min_sup=2

L

Scan the dataset
and find the
frequent 1-itemsets

Sort the 1-itemsets
by support count in
descending order

L

I2: 7

I1: 6

I3: 6

I4: 2

I5: 2

FP-tree

Each transaction is processed in L order

(why??) and becomes a branch in the
FP tree

Each node is linked from L

FP-tree Construction …

T1: {I2,I1,I5}

I2 7

I1 6

I3 6

I4 2

I5 2

I2:1

I1:1

I5:1

… FP-tree Construction …

T2: {I2,I4}

I2 7

I1 6

I3 6

I4 2

I5 2

I2:2

I1:1

I5:1

I4:1

… FP-tree Construction

??

Mining the FP-tree

For each item i in L (in ascending order),

find the branch(s) in the FP tree that ends in
i – Prefix Paths

� If there is only one path, generate all the frequent
patterns ended in i

� Else create the Conditional FP-tree for i and

recursively run the mining algorithm on the
conditional FP-tree

Prefix Paths of I5

I2:7

I1:4

I5:1

I3:2

I5:1

I5 is frequent � {I5:2}

From Prefix Paths to
Conditional FP-tree

Adjust the support counts

I2:7

I1:4

I5:1

I3:2

I5:1

I2:2

I1:2

I5:1

I3:1

I5:1

From Prefix Paths to
Conditional FP-tree

Remove the suffix

I2:2

I1:2

I5:1

I3:1

I5:1

I2:2

I1:2

I3:1

From Prefix Paths to
Conditional FP-tree

Remove the infrequent items

I2:2

I1:2

I2:2

I1:2

I3:1

Conditional FP-tree for I5

A FP-tree with suffix pattern {I5}

I2:2

I1:2

I2 2

I1 2

Prefix Paths of {I1,I5}

{I1,I5} is frequent and there is a single path
� {I1,I5:2}, {I2,I1,I5:2}

I2:2

I1:2

Prefix Paths of {I2,I5}

{I2,I5} is frequent and there is a single path
� {I2,I5:2}

I2:2

All Frequent Itemsets with
Suffix I5

{I5:2}

{I1,I5:2}, {I2,I1,I5:2}

{I2,I5:2}

Mining The FP-tree – I3 …

I2:7

I1:4

I3:2

I3:2 I3:2

I1:2

{I3:6}

Prefix Paths of I3

… Mining The FP-tree – I3 …

I2:4

I1:2

I1:2
I2 4

I1 4

Conditional FP-tree with suffix pattern {I3}

… Mining The FP-tree – I3 …

I2:4

I1:2

I1:2

{I1,I3:4}

Prefix Paths of {I1,I3}

… Mining The FP-tree – I3 …

I2:2
I2 2

Conditional FP-tree for {I2,I1,I3}

… Mining The FP-tree – I3 …

I2:2
{I2,I1,I3:2}

Prefix Paths of {I2,I1,I3}

… Mining The FP-tree – I3

I2:4
{I2,I3:4}

Prefix Paths of {I2,I3}

All Frequent Itemsets with
Suffix I3

{I3:6}

{I1,I3:4}

{I2,I1,I3:2}

{I2,I3:4}

About FP-tree Mining

A divide-and-conquer approach

I5, I4, I3, I1, I2Patterns with suffix:

I4,I5 I3,I5 I1,I5 I2,I5

I3,I4,I5 I1,I4,I5 I2,I4,I5

Data Partitioning

Divide dataset into n non-overlapping partitions such
that each partition fits into main memory

Find local frequent itemsets in each partition (1 scan)
� Local min_sup??

All local frequent itemsets form a candidate set
� Will it include all the global frequent itemsets??

Find global frequent itemsets from candidates (1
scan)

Vertical Data Format

And how does it help??

Item TID_set

I1 T1,T4,T5,T7,T8,T9

I2 T1,T2,T3,T4,T6,T8,T9

I3 T3,T5,T6,T7,T8,T9

I4 T2,T4

I5 T1,T8

Strong Association Rules
Could Be Misleading …

Example:

� 10,000 transactions

� 6,000 transactions included games

� 7,500 transactions included videos

� 4,000 transactions included both

{game} ⇒{video}

� Support?? Confidence??

… Strong Association Rules
Could Be Misleading

Does buying game really imply buying
video as well??

Correlation Multiplication Rule

If two events A and B are independent
of each other

)()()(BPAPABP =

From Multiplication Rule to Lift

lift({game},{video})=??

)()(

)(
),(

BPAP

ABP
BAlift =

Problem of Lift

datasets mc m’c mc’ m’c’ lift

A1 100 100 100 100 ??

A2 100 100 100 1,000 ??

A3 100 100 100 10,000 ??

A4 100 100 100 100,000 ??

mc: # of transactions that contain both milk and coffee

mc’: # of transactions that contain milk but not coffee

m’c: # of transactions that contain coffee but not milk
m’c’: # of transactions that contain neither milk nor coffee

total

400

1,300

10,300

100,300

Null-invariant

A null-transaction is a transaction that
does not contain any of the itemsets
being examined

A correlation measure is null-invariant if
its value is not affected by the number
of null-transactions.

Some Null-invariant Measures

Cosine Measure
)()(

)(

BPAP

ABP

×

All_confidence)}|(),|(min{ ABPBAP

Max_confidence)}|(),|(max{ ABPBAP

Kulczynski Measure))|()|((
2

1
ABPBAP +

Cosine vs. Lift

)sup()sup(

)sup(

)sup()sup(

)sup(

)()(

)(
),(cosine

2

BA

BA

N

BA

N

BA

BPAP

ABP
BA

∪
=

∪

=
×

=

)sup()sup(

)sup(

)sup()sup(

)sup(

)()(

)(
),(

BA

BAN

N

B

N

A
N

BA

BPAP

ABP
BAlift

∪
=

∪

==

cosine({milk}, {coffee}) = ??

Ranges of Correlation
Measures

Cosine

All_conf

Max_conf

Perfectly

positively correlated

Perfectly

negatively correlated

Kulc

Choosing Correlation
Measures …

datasets mc m’c mc’ m’c’ cosine
all

conf

max
conf Kulc

D1 10,000 1000 1000 100,000 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 0.09 0.09 0.09 0.91

D4 1,000 1000 1000 100,000 0.5 0.5 0.5 0.5

1,000 10 100,000 100,000 0.10 0.01 0.99 0.5

D5 1,000 100 10,000 100,000 0.29 0.09 0.91 0.5

D6

… Choosing Correlation
Measures

Recommended:

� Kulczynski + Imbalance Ratio (IR)

)sup()sup()sup(

)sup()sup(
),(

BABA

BA
BAIR

∪−+

−
=

Mining Sequential Patterns

<{computer},{printer},{printer
cartridge}>

<{bread,milk},{bread,milk},{bread,milk
}…>

<{home.jsp},{search.jsp},{product.jsp}
,{product.jsp},{search.jsp}…>

Terminology and Notations

Item, itemset

Event = itemset

A sequence is an ordered list of events
� <e1e2e3…el>

� E.g. <(a)(abc)(bc)(d)(ac)(f)>

The length of a sequence is the number
of items in the sequence, i.e. not the
number of events

Sequences vs. Itemsets

{a,b,c}

� # of 3-itemset(s)??

� # of 3-sequence(s)??

Subsequence

A=<a1a2a3…an>

B=<b1b2b3…bm>

A is a subsequence of B if there exists
1≤j1<j2<…<jn ≤m such that a1⊆bj1,a2

⊆bj2,…,an ⊆bjn

Subsequence Example

s=<(abc)(de)(f)>

Which of these are subsequences of s??
� s1=<(ab)(d)>

� s2=<(ab)(f)>

� s3=<(ac)(f)>

� s4=<(abcde)>

� s5=<(a)(de)>

� s6=<(de)(a)(f)>

Sequential Pattern

If A is a subsequence of B, we say B
contains A

The support count of A is the number of
sequences that contain A

A is frequent if
support_count(A)≥min_sup

A frequent sequence is called a
sequential pattern

Apriori Property Again

Every nonempty subsequence of a
frequent sequence is frequent

GSP Algorithm

Generalized Sequential Patterns

An extension of the Apriori algorithm for
mining sequential patterns

GSP Example

SID Sequence

1 <(a)(ab)(a)>

2 <(a)(c)(bc)>

3 <(ab)(c)(b)>

4 <(a)(c)(c)>

min_sup=2

L1

<(a)> 4 <(a)>

<(b)> 3 <(b)>

<(c)> 3 <(c)>

C1 support_count L1

L2

<(a)(a)> 1
<(a)(b)> 3 <(a)(b)>

<(a)(c)> 3 <(a)(c)>

<(b)(a)> 1
<(b)(b)> 1

<(b)(c)> 1
<(c)(a)> 0

<(c)(b)> 2 <(c)(b)>

<(c)(c)> 2 <(c)(c)>
<(ab)> 2 <(ab)>

<(ac)> 0

<(bc)> 1

C2 support_count L2

From Lk-1 to Ck

Two sequences s1 and s2 are joinable if the

subsequence obtained by dropping the first
item in s1 is the same as the subsequence
obtained by dropping the last item in s2
The joined sequence is s1 concatenated with
the last item i of s2
� If the last two items in s2 are in the same event,
i is merged into the last event of s1;

� Otherwise i becomes a separate event

L3

<(a)(c)(b)> 2 <(a)(c)(b)>

C3 support_count L3

<(a)(c)(c)> 2 <(a)(c)(c)>

<(c)(c)(b)> 0

Candidate Pruning

A k-sequence can be pruned if one of
its (k-1)-subsequence is not frequent

<(1)(2)(3)>
<(1)(2 5)>

<(1)(5)(3)>
<(2)(3)(4)>

<(2 5)(3)>

<(3)(4)(5)>
<(5)(3 4)>

L3 C4

<(1)(2)(3)(4)>
<(1)(2 5)(3)>

<(1)(5)(3 4)>
<(2)(3)(4)(5)>

<(2 5)(3 4)>

C4

<(1)(2 5)(3)>

Candidate

generation Pruning

Subgraph Patterns

Applications in web mining,
computational chemistry,
bioinformatics, network computing …

Vertices and Edges

Labels

Vertex labels: {a,b,c}

Edge labels: {p,q}

a

a

b

c

p
p

q

Why Labels?

S C C N

O

Subgraph

A graph G’=(V’,E’) is a subgraph of
another graph G=(V,E) if its vertex
set V’ is a subset of V and its edge set
E’ is a subset of E

Support

Dataset

S C C N

O

C C N C

O

S

C S C C

N O

S C C O

N

C C N

support count = ?? support count = ??

Subgraph Patterns

Frequent Subgraph Mining

Given a set of graphs and min_sup,
find all subgraphs g with support(g)
≥ min_sup

� Typically we only consider graphs that
undirected and connected

Transform Graph to Itemset

Each combination of an edge label with
its corresponding vertex labels is
mapped to an “item”

S C C N

O

{ (1,S,C), (1,C,C), (1,C,N), (2,C,O)}

Problem??

Apriori-based Approach

Candidate generation

Candidate pruning

Support counting

Candidate elimination

Candidate Generation

Merge two frequent (k-1)-subgraphs to
form a candidate k-subgraph

� What is k??

The two (k-1)-subgraphs must share a
common (k-2)-subgraph, referred to as
their core

Vertex Growing

A

B

A

D A

B

A C

+ = ??

Edge Growing …

A

B

A

D A

B

A C

+ = ??

… Edge Growing

A

B

A

D A

B

A D

+ = ??

Candidate Pruning

Remove an edge from a candidate k-
subgraph and check if the resulting (k-
1)-subgraph is connected and frequent

Graph Isomorphism Problem

Determine whether two graphs are
topologically equivalent, i.e. isomorphic

A A

B B

B B

A A

B

B A

A

A

B A

B

Adjacency Matrix …

A

B

C

D
1

1

2

3

0 1 1 3

1 0 2 0

1 2 0 0

3 0 0 0

… Adjacency Matrix

A

B

C

D
1

1

2

3

0 2 0 1

2 0 0 1

0 0 0 3

1 1 3 0

How many adjacency matrices can a graph with k vertices have??

String Representation of an
Adjacency Matrix

0 1 1 3

1 0 2 0

1 2 0 0

3 0 0 0

0 2 0 1

2 0 0 1

0 0 0 3

1 1 3 0

112300 200113

Graph Code

A.K.A. Canonical label

The string representation of the
adjacency matrix that has the lowest
(or highest) lexicographic value

Support Counting

Isomorphism test a candidate k-
subgraph against the k-subgraphs of
each graph

Summary

Frequent itemsets, association rules,
sequential patterns, subgraph patterns

� Measures: support, confidence, correlation

� Algorithms: Apriori, FP-Growth, association
rule generation, GPS

� Optimizations: partitioning, vertical data
format, various pruning techniques

Readings

Textbook Chapter 6

