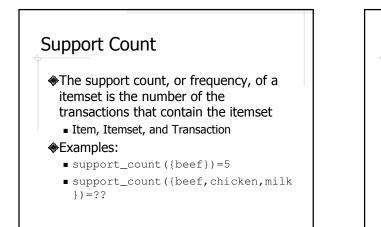


Transactions
Beef, Chicken, Milk
Beef, Cheese
Cheese, Boots
Beef, Chicken, Cheese
Beef, Chicken, Clothes, Cheese, Milk
Chicken, Clothes, Milk
Chicken, Clothes, Milk
Beef, Milk

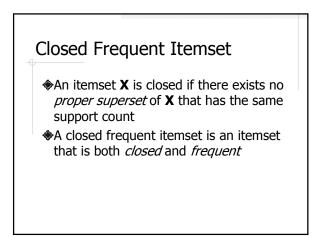


Frequent Itemset

- An itemset is frequent if its support count is greater than or equals to a minimum support count threshold
 - support_count(X)≥min_sup

The Need for Closed Frequent Itemsets

- Two transactions
- <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀>
- �min_sup=1
- # of frequent itemsets??



Closed Frequent Itemset Example

Two transactions

■ <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀> ♦min_sup=1

Closed frequent itemset(s)??

Maximal Frequent Itemset

- ♦An itemset X is a maximal frequent itemset if \boldsymbol{X} is frequent and there exists no *proper superset* of **X** that is also frequent
- **Example:** if {a,b,c} is a maximal frequent itemset, which one of these *cannot* be a MFI
 - {a,b,c,d}, {a,c}, {b,d}

Maximal Frequent Itemset Example

- Two transactions
- <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀> ♦min_sup=1
- Maximal frequent itemset(s)??
- Maximal frequent itemset vs. closed frequent itemset??

From Frequent Itemsets to Association Rules

- {chicken, cheese} is a frequent set
- \$ {chicken} ⇒ {cheese}??
- �Or is it {cheese}⇒{chicken}??

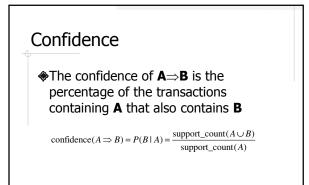
Association Rules **A**⇒B • A and B are itemsets ■ **A**∩**B**=Ø

Support

The support of $\mathbf{A} \Rightarrow \mathbf{B}$ is the percentage of the transactions that contain $\mathbf{A} \cup \mathbf{B}$

 $support(A \Rightarrow B) = P(A \cup B) = \frac{support_count(A \cup B)}{a}$ |D|

 $\mathbb P \; (\mathbb A \cup \mathbb B)$ is the probability that a transaction contains $\mathbb A \cup \mathbb B$ $\ensuremath{\,{\scriptscriptstyle D}}$ is the set of the transactions



Support and Confidence Example

- $\{$ chicken $\} \Rightarrow \{$ cheese $\}$??
- {cheese}⇒{chicken}??

Strong Association Rule

- An association rule is strong if it satisfies both a minimum support threshold (min_sup) and a minimum confidence threshold (min_conf)
- Why do we need both support and confidence??

Association Rule Mining

- Find strong association rules
 - Find all frequent itemsets
 - Generate strong association rules from the frequent itemsets

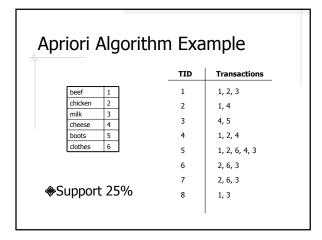
The Apriori Property

- All nonempty subsets of a frequent itemset must also be frequent
- Or, if an itemset is not frequent, its supersets cannot be frequent either

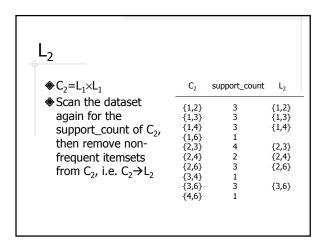
Finding Frequent Itemsets – The Apriori Algorithm

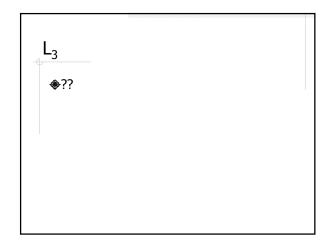
Given min_sup

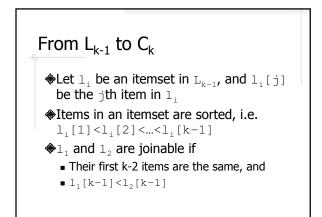
- $Find the frequent 1-itemsets L_1$
- $\$ Find the the frequent k-itemsets ${\tt L}_{\tt k}$ by joining the itemsets in ${\tt L}_{\tt k-1}$
- Stop when L_k is empty

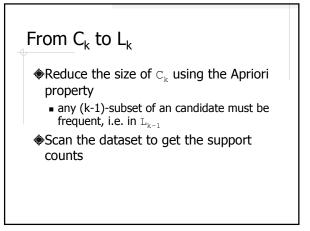


L ₁			
Scan the data once to get the count of	C_1	support_count	L ₁
to get the count of each item	{1}	5	{1}
Remove the items	{2}	5	{2}
that do not meet min_sup	{3}	5	{3}
	{4}	4	{4}
	{5}	1	
	{6}	3	{6}









Generate Association Rules from Frequent Itemsets

- For each frequent itemset 1, generate all nonempty subset of 1
- For every nonempty subset of s of 1,
 output rule s⇒(1-s) if conf(s
 ⇒(1-s))≥min_conf

Confidence-based Pruning ...

- \$conf({a,b}⇒{c,d})<min_conf
 conf({a}⇒{c,d})??</pre>
 - conf({a,b,e}⇒{c,d})??
 - conf({a} \Rightarrow {b,c,d})??

... Confidence-based Pruning

Example:

 $conf({a,b} \Rightarrow {c,d}) < min_conf$

■ ??

Limitations of the Apriori Algorithm

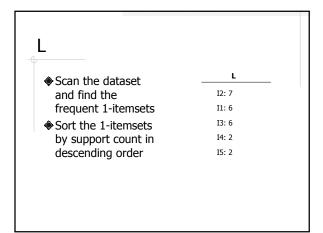
- Multiple scans of the datasetsHow many??
- Need to generate a large number of candidate sets

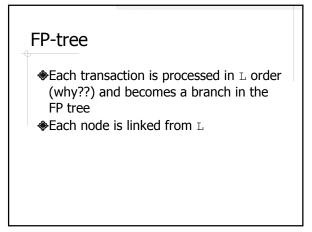
FP-Growth Algorithm

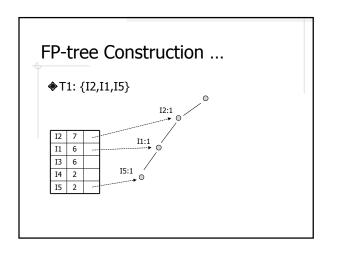
Frequent-pattern Growth
 Mine frequent itemsets without candidate generation

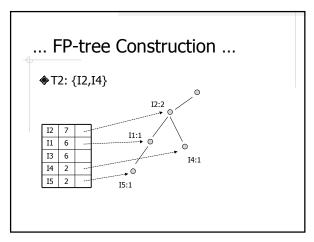
FP-Growth Example

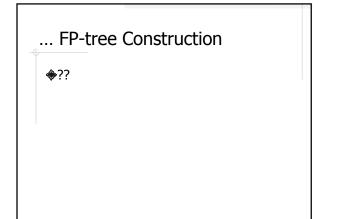
TID	Transactions	-
1	I1, I2, I5	
2	I2, I4	
3	12, 13, 16	
4	I1, I2, I4	min_sup=2
5	I1, I3	oop =
6	I2, I3	
7	I1, I3	
8	I1, I2, I3, I5	
9	I1, I2, I3	
	I	

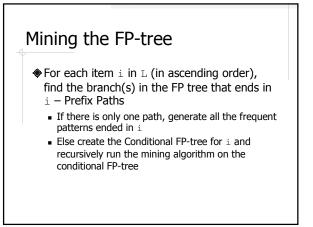


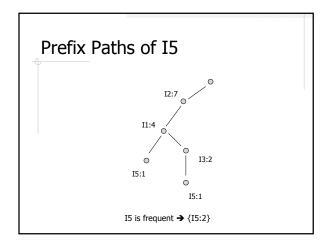


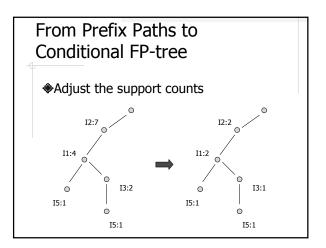


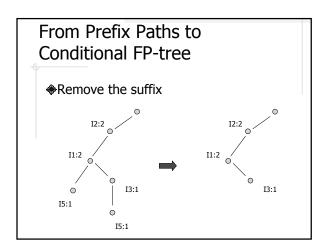


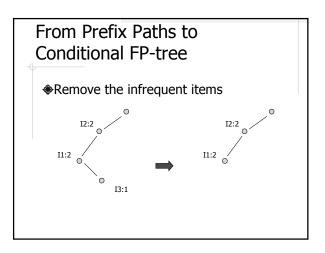


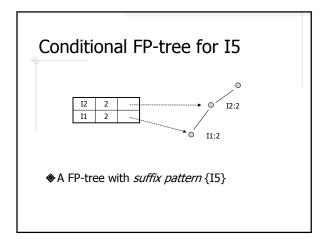


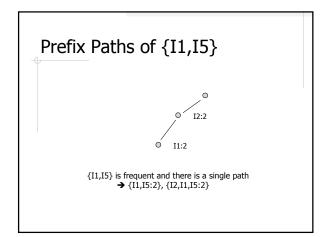


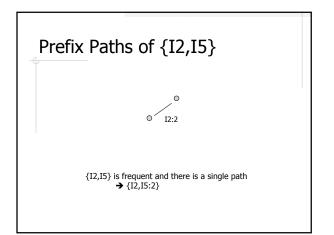


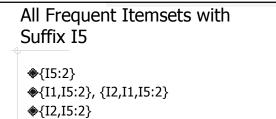




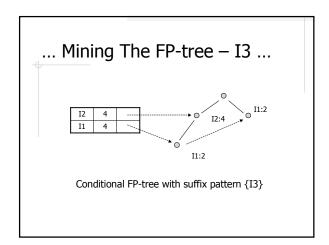


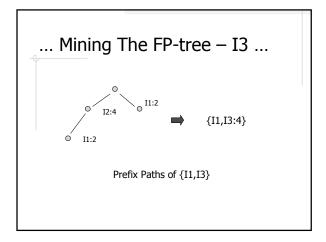


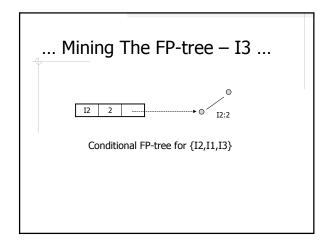


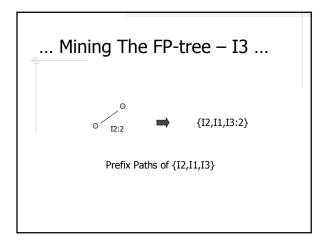


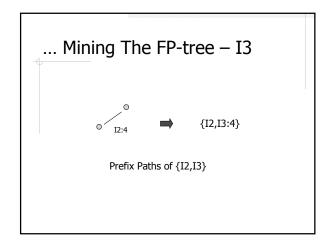
Mining The FP-tree – I3 ... $12:7 \qquad 0 \qquad 11:2 \qquad 11$

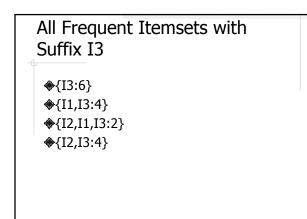


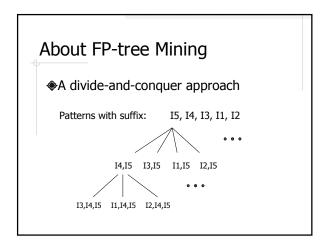


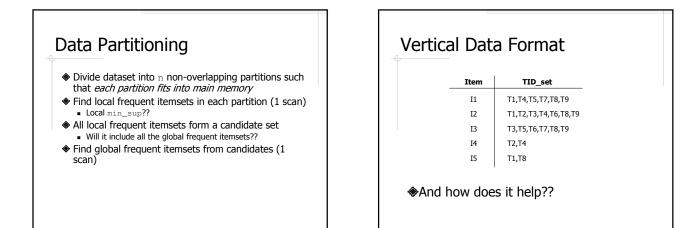


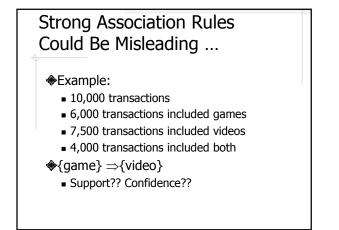






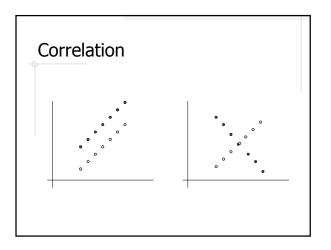


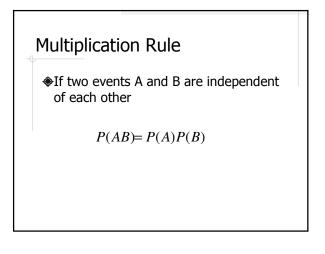




... Strong Association Rules Could Be Misleading

Does buying game really imply buying video as well??



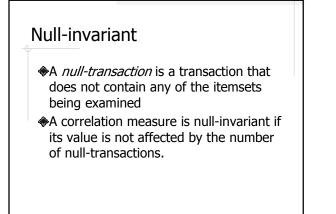


From Multiplication Rule to Lift

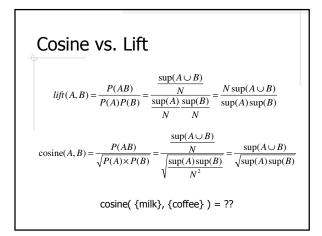
$$lift(A, B) = \frac{P(AB)}{P(A)P(B)}$$

\$
lift({game}, {video}) =??

datasets	mc	m′c	mc'	m'c'	total	lift
A_1	100	100	100	100	400	??
A ₂	100	100	100	1,000	1,300	??
A_3	100	100	100	10,000	10,300	??
A_4	100	100	100	100,000	100,300	??

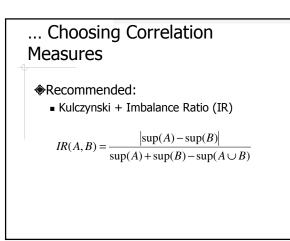


Some Null-invariant MeasuresCosine MeasureP(AB) $\sqrt{P(A) \times P(B)}$ All_confidencemin{P(A|B), P(B|A)}Max_confidencemax{P(A|B), P(B|A)}Kulczynski Measure $\frac{1}{2}(P(A|B) + P(B|A))$



langes leasure	of Correlat es	ion	
	Perfectly positively correlated	Perfectly negatively correlated	
Cosine			
All_conf			
Max_conf			
Kulc			

Choo Meas	-				011			
datasets	mc	m′c	mc'	m′c′	cosine	all conf	max conf	Kulc
D_1	10,000	1000	1000	100,000	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	0.09	0.09	0.09	0.91
D_4	1,000	1000	1000	100,000	0.5	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.29	0.09	0.91	0.5
D_6	1,000	10	100,000	100,000	0.10	0.01	0.99	0.5

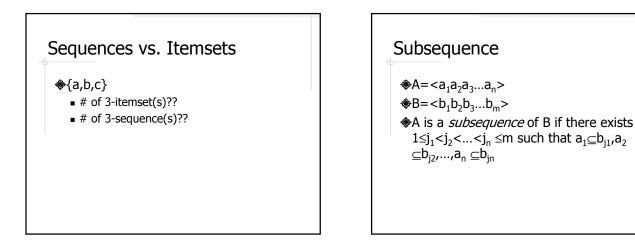


Mining Sequential Patterns

- <{computer},{printer},{printer
 cartridge}>
- <{bread,milk},{bread,milk},{bread,milk},..>
- { home.jsp}, {search.jsp}, {product.jsp}
 , {product.jsp}, {search.jsp}...>

Terminology and Notations

- Item, itemset
- Event = itemset
- A sequence is an ordered list of events
 <eq:e_1e_2e_3...e_i>
 - E.g. <(a)(abc)(bc)(d)(ac)(f)>
- The length of a sequence is the number of items in the sequence, i.e. not the number of events



Subsequence Example \$\$s=<(abc)(de)(f)> \$Which of these are subsequences of s?? \$\$s1=<(ab)(d)> \$\$s2=<(ab)(f)> \$\$s3=<(ac)(f)> \$\$s3=<(ac)(f)> \$\$s4=<(abcde)> \$\$s5=<(a)(de)> \$\$s6=<(de)(a)(f)> \$\$\$s6=<(de)(a)(f)> \$\$\$

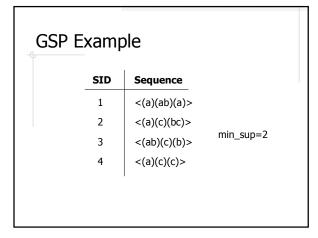
Sequential Pattern ◆If A is a subsequence of B, we say B contains A ◆The support count of A is the number of sequences that contain A ◆A is frequent if support_count (A) ≥min_sup ◆A frequent sequence is called a sequential pattern

Apriori Property Again

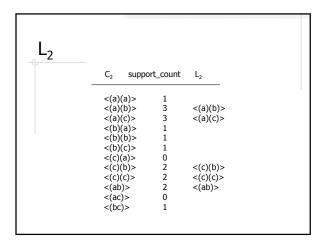
Every nonempty subsequence of a frequent sequence is frequent

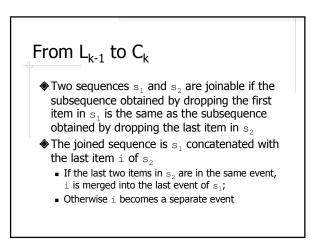
GSP Algorithm

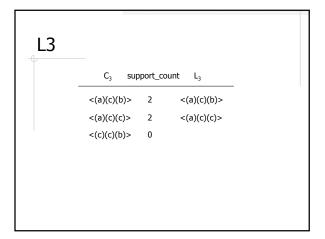
- Generalized Sequential Patterns
- An extension of the Apriori algorithm for mining sequential patterns

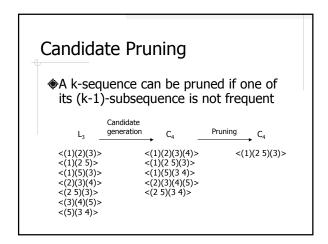


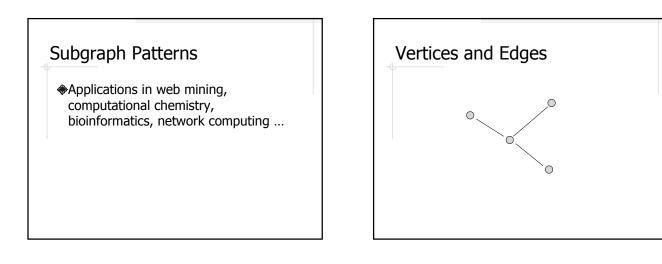
C ₁	support_count	L_1
<(a)>	4	<(a)>
<(b)>	3	<(b)> <(c)>
<(c)>	3	<(c)>

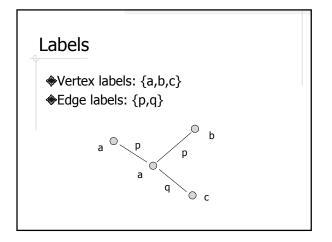


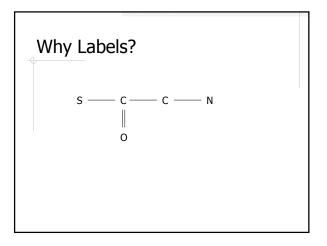






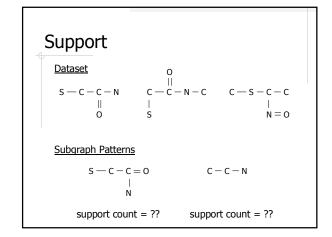


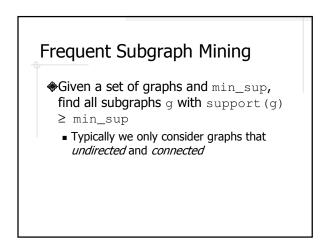


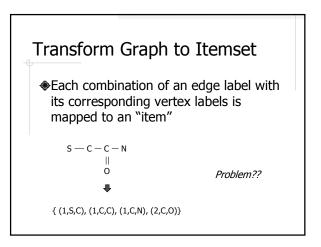


Subgraph

♣A graph G' = (V', E') is a subgraph of another graph G= (V, E) if its vertex set V' is a subset of V and its edge set E' is a subset of E

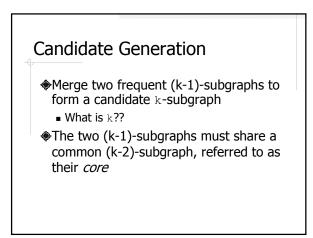


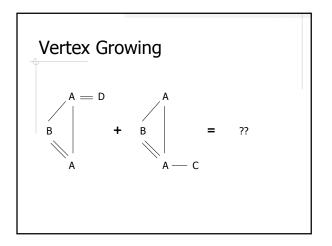


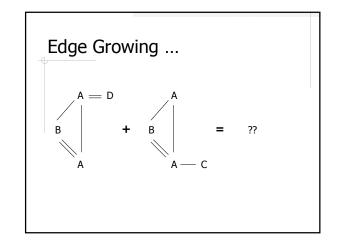


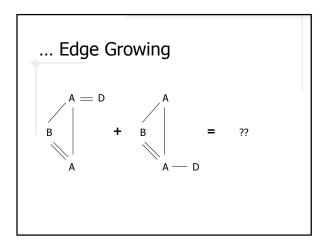
Apriori-based Approach

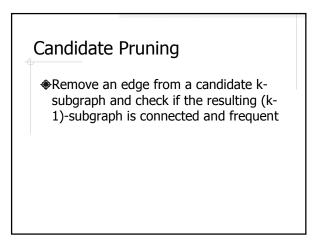
- Candidate generation
- Candidate pruning
- Support counting
- Candidate elimination

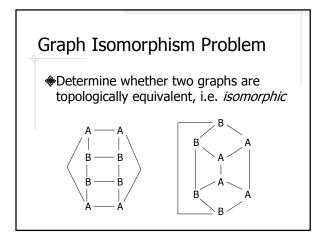


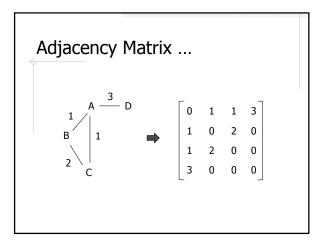


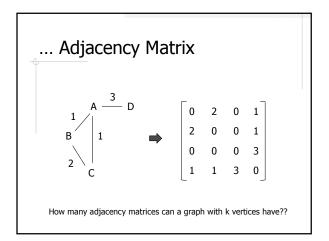


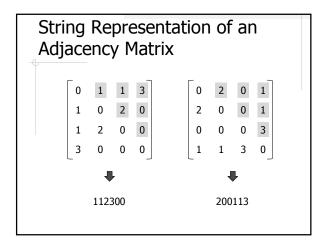












Graph Code

- A.K.A. Canonical label
- The string representation of the adjacency matrix that has the lowest (or highest) lexicographic value

Support Counting

Isomorphism test a candidate ksubgraph against the k-subgraphs of each graph

Summary

- Frequent itemsets, association rules, sequential patterns, subgraph patterns
 - Measures: support, confidence, correlation
 - Algorithms: Apriori, FP-Growth, association rule generation, GPS
 - Optimizations: partitioning, vertical data format, various pruning techniques

Readings

Textbook Chapter 6