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Sales Transactions

TID Transactions

1 Beef, Chicken, Milk

2 Beef, Cheese

3 Cheese, Boots

4 Beef, Chicken, Cheese

5 Beef, Chicken, Clothes, Cheese, Milk

6 Chicken, Clothes, Milk

7 Chicken, Clothes, Milk

8 Beef, Milk

Support Count

The support count, or frequency, of a
itemset is the number of the 
transactions that contain the itemset

� Item, Itemset, and Transaction

Examples:
� support_count({beef})=5

� support_count({beef,chicken,milk

})=??

Frequent Itemset

An itemset is frequent if its support 
count is greater than or equals to a 
minimum support count threshold

� support_count(X)≥min_sup

The Need for Closed Frequent
Itemsets

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

# of frequent itemsets??

Closed Frequent Itemset

An itemset X is closed if there exists no 
proper superset of X that has the same 
support count

A closed frequent itemset is an itemset
that is both closed and frequent



Closed Frequent Itemset
Example

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

Closed frequent itemset(s)??

Maximal Frequent Itemset

An itemset X is a maximal frequent
itemset if X is frequent and there exists 
no proper superset of X that is also 
frequent

Example: if {a,b,c} is a maximal 

frequent itemset, which one of these 
cannot be a MFI
� {a,b,c,d}, {a,c}, {b,d}

Maximal Frequent Itemset
Example

Two transactions

� <a1,a2,…,a100> and <a1,a2,…,a50>

min_sup=1

Maximal frequent itemset(s)??

Maximal frequent itemset vs. closed 
frequent itemset??

From Frequent Itemsets to 
Association Rules

{chicken,cheese} is a frequent set

{chicken}⇒{cheese}??

Or is it {cheese}⇒{chicken}??

Association Rules

A⇒B

� A and B are itemsets

� A∩B=∅

Support

The support of A⇒B is the percentage 
of the transactions that contain A∪B
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P(A∪B) is the probability that a transaction contains A∪B

D is the set of the transactions



Confidence

The confidence of A⇒B is the 
percentage of the transactions 
containing A that also contains B
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Support and Confidence 
Example

{chicken}⇒{cheese}??

{cheese}⇒{chicken}??

Strong Association Rule

An association rule is strong if it 
satisfies both a minimum support 
threshold (min_sup) and a minimum 
confidence threshold (min_conf)

Why do we need both support and 
confidence??

Association Rule Mining

Find strong association rules

� Find all frequent itemsets

� Generate strong association rules from the 
frequent itemsets

The Apriori Property

All nonempty subsets of a frequent
itemset must also be frequent

Or, if an itemset is not frequent, its 
supersets cannot be frequent either

Finding Frequent Itemsets –
The Apriori Algorithm

Given min_sup

Find the frequent 1-itemsets L1
Find the the frequent k-itemsets Lk by 
joining the itemsets in Lk-1

Stop when Lk is empty



Apriori Algorithm Example

Support 25%

TID Transactions

1 1, 2, 3

2 1, 4

3 4, 5

4 1, 2, 4

5 1, 2, 6, 4, 3

6 2, 6, 3

7 2, 6, 3

8 1, 3

beef 1

chicken 2

milk 3

cheese 4

boots 5

clothes 6

L1

Scan the data once 
to get the count of 
each item

Remove the items 
that do not meet 
min_sup

{1} 5 {1}

{2} 5 {2}

{3} 5 {3}

{4} 4 {4}

{5} 1

{6} 3 {6}

C1 support_count L1

L2

C2=L1×L1

Scan the dataset 
again for the 
support_count of C2, 
then remove non-
frequent itemsets
from C2, i.e. C2�L2

{1,2} 3 {1,2}

{1,3} 3 {1,3}
{1,4} 3 {1,4}

{1,6} 1
{2,3} 4 {2,3}

{2,4} 2 {2,4}

{2,6} 3 {2,6}
{3,4} 1

{3,6} 3 {3,6}
{4,6} 1

C2 support_count L2

L3

??

From Lk-1 to Ck

Let li be an itemset in Lk-1, and li[j]

be the jth item in li

Items in an itemset are sorted, i.e.
li[1]<li[2]<…<li[k-1]

l1 and l2 are joinable if

� Their first k-2 items are the same, and

� l1[k-1]<l2[k-1]

From Ck to Lk

Reduce the size of Ck using the Apriori

property

� any (k-1)-subset of an candidate must be 
frequent, i.e. in Lk-1

Scan the dataset to get the support 
counts



Generate Association Rules 
from Frequent Itemsets

For each frequent itemset l, generate 
all nonempty subset of l

For every nonempty subset of s of l, 
output rule s⇒(l-s) if conf(s 
⇒(l-s))≥min_conf

Confidence-based Pruning …

conf({a,b}⇒{c,d})<min_conf

� conf({a}⇒{c,d})??

� conf({a,b,e}⇒{c,d})??

� conf({a}⇒{b,c,d})??

… Confidence-based Pruning

If conf(s⇒(l-s))<min_conf, then 
conf(s’⇒(l-s’))<min_conf 

where s’⊆s.

Example:
conf({a,b}⇒{c,d})<min_conf

� ??

Limitations of the Apriori
Algorithm

Multiple scans of the datasets

� How many??

Need to generate a large number of 
candidate sets

FP-Growth Algorithm

Frequent-pattern Growth

Mine frequent itemsets without 
candidate generation

FP-Growth Example

TID Transactions

1 I1, I2, I5

2 I2, I4

3 I2, I3, I6

4 I1, I2, I4

5 I1, I3

6 I2, I3

7 I1, I3

8 I1, I2, I3, I5

9 I1, I2, I3

min_sup=2



L

Scan the dataset 
and find the 
frequent 1-itemsets

Sort the 1-itemsets
by support count in 
descending order

L

I2: 7

I1: 6

I3: 6

I4: 2

I5: 2

FP-tree

Each transaction is processed in L order 

(why??) and becomes a branch in the 
FP tree

Each node is linked from L

FP-tree Construction …

T1: {I2,I1,I5}

I2 7

I1 6

I3 6

I4 2

I5 2

I2:1

I1:1

I5:1

… FP-tree Construction …

T2: {I2,I4}

I2 7

I1 6

I3 6

I4 2

I5 2

I2:2

I1:1

I5:1

I4:1

… FP-tree Construction

??

Mining the FP-tree

For each item i in L (in ascending order), 

find the branch(s) in the FP tree that ends in 
i – Prefix Paths

� If there is only one path, generate all the frequent 
patterns ended in i

� Else create the Conditional FP-tree for i and 

recursively run the mining algorithm on the 
conditional FP-tree



Prefix Paths of I5

I2:7

I1:4

I5:1

I3:2

I5:1

I5 is frequent � {I5:2}

From Prefix Paths to 
Conditional FP-tree

Adjust the support counts

I2:7

I1:4

I5:1

I3:2

I5:1

I2:2

I1:2

I5:1

I3:1

I5:1

From Prefix Paths to 
Conditional FP-tree

Remove the suffix

I2:2

I1:2

I5:1

I3:1

I5:1

I2:2

I1:2

I3:1

From Prefix Paths to 
Conditional FP-tree

Remove the infrequent items

I2:2

I1:2

I2:2

I1:2

I3:1

Conditional FP-tree for I5

A FP-tree with suffix pattern {I5}

I2:2

I1:2

I2 2

I1 2

Prefix Paths of {I1,I5}

{I1,I5} is frequent and there is a single path 
� {I1,I5:2}, {I2,I1,I5:2}

I2:2

I1:2



Prefix Paths of {I2,I5}

{I2,I5} is frequent and there is a single path 
� {I2,I5:2}

I2:2

All Frequent Itemsets with 
Suffix I5

{I5:2}

{I1,I5:2}, {I2,I1,I5:2}

{I2,I5:2}

Mining The FP-tree – I3 …

I2:7

I1:4

I3:2

I3:2 I3:2

I1:2

{I3:6}

Prefix Paths of I3

… Mining The FP-tree – I3 …

I2:4

I1:2

I1:2
I2 4

I1 4

Conditional FP-tree with suffix pattern {I3}

… Mining The FP-tree – I3 …

I2:4

I1:2

I1:2

{I1,I3:4}

Prefix Paths of {I1,I3}

… Mining The FP-tree – I3 …

I2:2
I2 2

Conditional FP-tree for {I2,I1,I3}



… Mining The FP-tree – I3 …

I2:2
{I2,I1,I3:2}

Prefix Paths of {I2,I1,I3}

… Mining The FP-tree – I3

I2:4
{I2,I3:4}

Prefix Paths of {I2,I3}

All Frequent Itemsets with 
Suffix I3

{I3:6}

{I1,I3:4}

{I2,I1,I3:2}

{I2,I3:4}

About FP-tree Mining

A divide-and-conquer approach

I5, I4, I3, I1, I2Patterns with suffix:

I4,I5 I3,I5 I1,I5 I2,I5

I3,I4,I5 I1,I4,I5 I2,I4,I5

Data Partitioning

Divide dataset into n non-overlapping partitions such 
that each partition fits into main memory

Find local frequent itemsets in each partition (1 scan)
� Local min_sup??

All local frequent itemsets form a candidate set
� Will it include all the global frequent itemsets??

Find global frequent itemsets from candidates (1 
scan)

Vertical Data Format

And how does it help??

Item TID_set

I1 T1,T4,T5,T7,T8,T9

I2 T1,T2,T3,T4,T6,T8,T9

I3 T3,T5,T6,T7,T8,T9

I4 T2,T4

I5 T1,T8



Strong Association Rules 
Could Be Misleading …

Example:

� 10,000 transactions

� 6,000 transactions included games

� 7,500 transactions included videos

� 4,000 transactions included both

{game} ⇒{video}

� Support?? Confidence??

… Strong Association Rules 
Could Be Misleading

Does buying game really imply buying 
video as well??

Correlation Multiplication Rule

If two events A and B are independent 
of each other

)()()( BPAPABP =

From Multiplication Rule to Lift

lift({game},{video})=??
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Problem of Lift

datasets mc m’c mc’ m’c’ lift

A1 100 100 100 100 ??

A2 100 100 100 1,000 ??

A3 100 100 100 10,000 ??

A4 100 100 100 100,000 ??

mc: # of transactions that contain both milk and coffee

mc’: # of transactions that contain milk but not coffee

m’c: # of transactions that contain coffee but not milk
m’c’: # of transactions that contain neither milk nor coffee

total

400

1,300

10,300

100,300



Null-invariant

A null-transaction is a transaction that 
does not contain any of the itemsets 
being examined

A correlation measure is null-invariant if 
its value is not affected by the number 
of null-transactions.

Some Null-invariant Measures

Cosine Measure
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cosine( {milk}, {coffee} ) = ??

Ranges of Correlation 
Measures

Cosine

All_conf

Max_conf

Perfectly

positively correlated

Perfectly

negatively correlated

Kulc

Choosing Correlation 
Measures …

datasets mc m’c mc’ m’c’ cosine
all

conf

max
conf Kulc

D1 10,000 1000 1000 100,000 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 0.09 0.09 0.09 0.91

D4 1,000 1000 1000 100,000 0.5 0.5 0.5 0.5

1,000 10 100,000 100,000 0.10 0.01 0.99 0.5

D5 1,000 100 10,000 100,000 0.29 0.09 0.91 0.5

D6

… Choosing Correlation 
Measures

Recommended:

� Kulczynski + Imbalance Ratio (IR)
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Mining Sequential Patterns

<{computer},{printer},{printer 
cartridge}>

<{bread,milk},{bread,milk},{bread,milk
}…>

<{home.jsp},{search.jsp},{product.jsp}
,{product.jsp},{search.jsp}…>

Terminology and Notations

Item, itemset

Event = itemset

A sequence is an ordered list of events
� <e1e2e3…el>

� E.g. <(a)(abc)(bc)(d)(ac)(f)>

The length of a sequence is the number 
of items in the sequence, i.e. not the 
number of events

Sequences vs. Itemsets

{a,b,c}

� # of 3-itemset(s)??

� # of 3-sequence(s)??

Subsequence

A=<a1a2a3…an>

B=<b1b2b3…bm>

A is a subsequence of B if there exists 
1≤j1<j2<…<jn ≤m such that a1⊆bj1,a2

⊆bj2,…,an ⊆bjn

Subsequence Example

s=<(abc)(de)(f)>

Which of these are subsequences of s??
� s1=<(ab)(d)>

� s2=<(ab)(f)>

� s3=<(ac)(f)>

� s4=<(abcde)>

� s5=<(a)(de)>

� s6=<(de)(a)(f)>

Sequential Pattern

If A is a subsequence of B, we say B 
contains A

The support count of A is the number of 
sequences that contain A

A is frequent if 
support_count(A)≥min_sup

A frequent sequence is called a 
sequential pattern



Apriori Property Again

Every nonempty subsequence of a 
frequent sequence is frequent

GSP Algorithm

Generalized Sequential Patterns

An extension of the Apriori algorithm for 
mining sequential patterns

GSP Example

SID Sequence

1 <(a)(ab)(a)>

2 <(a)(c)(bc)>

3 <(ab)(c)(b)>

4 <(a)(c)(c)>

min_sup=2

L1

<(a)> 4 <(a)>

<(b)> 3 <(b)>

<(c)> 3 <(c)>

C1 support_count L1

L2

<(a)(a)> 1
<(a)(b)> 3 <(a)(b)>

<(a)(c)> 3 <(a)(c)>

<(b)(a)> 1
<(b)(b)> 1

<(b)(c)> 1
<(c)(a)> 0

<(c)(b)> 2 <(c)(b)>

<(c)(c)> 2 <(c)(c)>
<(ab)> 2 <(ab)>

<(ac)> 0

<(bc)> 1

C2 support_count L2

From Lk-1 to Ck

Two sequences s1 and s2 are joinable if the 

subsequence obtained by dropping the first 
item in s1 is the same as the subsequence 
obtained by dropping the last item in s2
The joined sequence is s1 concatenated with 
the last item i of s2
� If the last two items in s2 are in the same event, 
i is merged into the last event of s1;

� Otherwise i becomes a separate event 



L3

<(a)(c)(b)> 2 <(a)(c)(b)> 

C3 support_count L3

<(a)(c)(c)> 2 <(a)(c)(c)> 

<(c)(c)(b)> 0 

Candidate Pruning

A k-sequence can be pruned if one of 
its (k-1)-subsequence is not frequent

<(1)(2)(3)>
<(1)(2 5)>

<(1)(5)(3)>
<(2)(3)(4)>

<(2 5)(3)>

<(3)(4)(5)>
<(5)(3 4)>

L3 C4

<(1)(2)(3)(4)>
<(1)(2 5)(3)>

<(1)(5)(3 4)>
<(2)(3)(4)(5)>

<(2 5)(3 4)>

C4

<(1)(2 5)(3)>

Candidate

generation Pruning

Subgraph Patterns

Applications in web mining, 
computational chemistry, 
bioinformatics, network computing …

Vertices and Edges

Labels

Vertex labels: {a,b,c}

Edge labels: {p,q}

a

a

b

c

p
p

q

Why Labels?

S C C N

O



Subgraph

A graph G’=(V’,E’) is a subgraph of 
another graph G=(V,E) if its vertex 
set V’ is a subset of V and its edge set 
E’ is a subset of E

Support

Dataset

S C C N

O

C C N C

O

S

C S C C

N O

S C C O

N

C C N

support count = ?? support count = ??

Subgraph Patterns

Frequent Subgraph Mining

Given a set of graphs and min_sup, 
find all subgraphs g with support(g) 
≥ min_sup

� Typically we only consider graphs that 
undirected and connected

Transform Graph to Itemset

Each combination of an edge label with 
its corresponding vertex labels is 
mapped to an “item”

S C C N

O

{ (1,S,C), (1,C,C), (1,C,N), (2,C,O)}

Problem??

Apriori-based Approach

Candidate generation

Candidate pruning

Support counting

Candidate elimination

Candidate Generation

Merge two frequent (k-1)-subgraphs to 
form a candidate k-subgraph

� What is k??

The two (k-1)-subgraphs must share a 
common (k-2)-subgraph, referred to as 
their core



Vertex Growing

A

B

A

D A

B

A C

+ = ??

Edge Growing …

A

B

A

D A

B

A C

+ = ??

… Edge Growing

A

B

A

D A

B

A D

+ = ??

Candidate Pruning

Remove an edge from a candidate k-
subgraph and check if the resulting (k-
1)-subgraph is connected and frequent

Graph Isomorphism Problem

Determine whether two graphs are 
topologically equivalent, i.e. isomorphic

A A

B B

B B

A A

B

B A

A

A

B A

B

Adjacency Matrix …

A

B

C

D
1

1

2

3

0 1 1 3

1 0 2 0

1 2 0 0

3 0 0 0



… Adjacency Matrix

A

B

C

D
1

1

2

3

0 2 0 1

2 0 0 1

0 0 0 3

1 1 3 0

How many adjacency matrices can a graph with k vertices have??

String Representation of an 
Adjacency Matrix

0 1 1 3

1 0 2 0

1 2 0 0

3 0 0 0

0 2 0 1

2 0 0 1

0 0 0 3

1 1 3 0

112300 200113

Graph Code

A.K.A. Canonical label

The string representation of the 
adjacency matrix that has the lowest 
(or highest) lexicographic value

Support Counting

Isomorphism test a candidate k-
subgraph against the k-subgraphs of 
each graph

Summary

Frequent itemsets, association rules, 
sequential patterns, subgraph patterns

� Measures: support, confidence, correlation

� Algorithms: Apriori, FP-Growth, association 
rule generation, GPS

� Optimizations: partitioning, vertical data 
format, various pruning techniques

Readings

Textbook Chapter 6


