

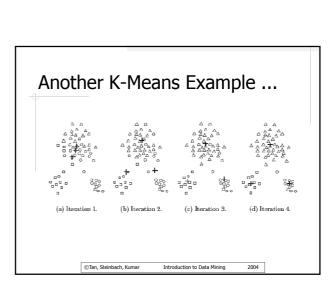
Objective Function

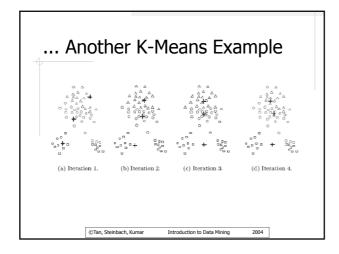
Sum of squared L₂ distance

Sum of Bregman divergence

Sum of cosine distance

Sum of L₁ distance





Distances, Centroids, and

Centroid

Median

Mean

Mean

Mean

Objective Functions

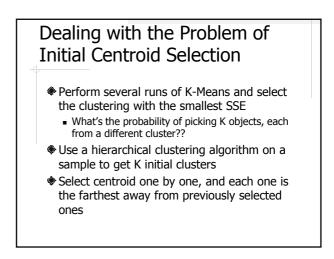
Distance Function

Squared Euclidean (L₂)

Bregman Divergence

Manhattan (L₁)

Cosine



Postprocessing

Escape local SSE minimum by performing alternate clustering *splitting* and *merging*

Postprocessing – Splitting

- Splitting the cluster with the largest SSE on the attribute with the largest variance
- Introduce another centroid
 - The point that is farthest from current centroids
 - Randomly chosen

Postprocessing – Merging

- Disperse a cluster and reassign its objects
- Merge two clusters that are closest to each other

Bisecting K-Means

- 1. Initialize a list of clusters with one cluster containing all the objects
- 2. Choose one cluster from the list
- 3. Split the cluster into two using basic K-Means, and add them back to the list
- 4. Repeat Step 2 until k clusters are reached
- 5. Perform one more basic K-Means using the centroids of the ${\bf k}$ clusters as initial centriods

About Bisecting K-Means

- Step 2
 - Choose the largest cluster
 - Choose the cluster with the largest SSE
- Step 3
 - Perform basic K-Means several times and choose the clustering with the smallest SSE
- Less susceptible to initialization problems
 - Why??

Handling Empty Clusters

- Choose a replacement centroid
 - The point that's farthest away from any current centroid
 - A point from the cluster with the highest SSE

K-Medoids

- Instead of using mean/centroid, use medoid, i.e. representative object
- Objective function: sum of the distances of the objects to their medoid
- Differs from K-Means in how the medoids are updated

PAM (Partition Around Medoids)

- 1. Randomly choose ${\bf k}$ objects as initial medoids
- 2. Assign each object to its closest mediod
- 3. For each non-medoid object ${\bf x}$ For each medoid ${\bf c}_{_{\rm d}}$ calculate the reduction of the total distance if ${\bf c}$ is replaced by ${\bf x}$
- 4. Replace the $\mathtt{c}_\mathtt{i}$ with \mathtt{x} that results in maximum total distance reduction
- 5. Repeat Step 2 until the total distance cannot be reduced

