

Hierarchical Clustering

- Agglomerative
 - Start with each object as a cluster
 - Recursively pick two clusters to merge
- Divisive
 - Start with all objects as a single cluster
 - Recursively pick one cluster to split

Agglomerative Hierarchical Clustering

- 1. Compute a distance matrix
- 2. Merge the two *closest* clusters
- 3. Update the distance matrix
- 4. Repeat Step 2 until only one cluster remains

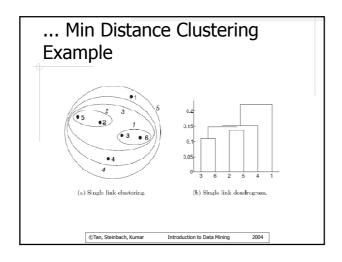
Distance Between Clusters ...

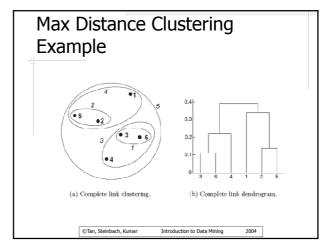
- Min distance
 - Distance between two closest objects
 - Min < threshold: Single-link Clustering
- Max distance
 - Distance between two farthest objects
 - Max < threshold: Complete-link Clustering
- Average distance
 - Average of all pairs of objects from the two clusters

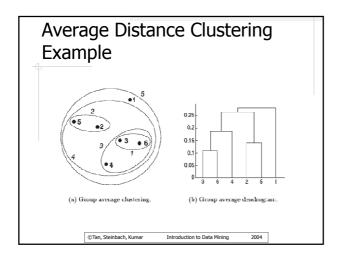
... Distance Between Clusters

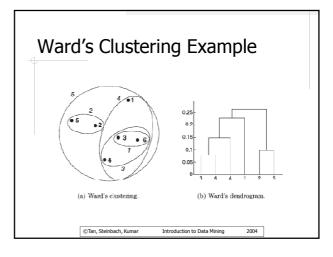
- Centroid distance
- Increased SSE (Ward's Method)

Min Distance Clustering Example ...









About Hierarchical Clustering

- Produces a hierarchy of clusters
- ♦ Lack of a global objective function
- Merging decisions are final
- Expensive
- Often used with other clustering algorithms

BIRCH

- Balanced Iterative Reducing and Clustering using Hierarchies
 - Designed for clustering large amount of numerical data

Clustering Feature (CF)

A cluster can be represented by a clustering feature CF=<N, LS, SS>

N: number of objects

LS (Linear Sum): $\mathbf{LS} = \sum_{i=1}^{N} \mathbf{x}_{i}$ SS (Square Sum): $SS = \sum_{i=1}^{N} \mathbf{x}_{i}^{2} = \sum_{i=1}^{N} \mathbf{x}_{i} \cdot \mathbf{x}_{i}$

CF Example

- A cluster with two points (1,2) and
 - N: 2
 - **LS**: (1+3,2+4) = (4,6)
 - $SS: 1^2+2^2+3^2+4^2 = 30$

Incremental Update of CF

- **♦** Cluster {(1,2), (3,4)}
 - Add a point (5,6)
 - Merge with cluster {(2,3),(4,5)}

Using CF

- Centroid??
- Centroid distance??

Cluster-to-Cluster Distances

- Cluster-to-cluster distances that can be calculated using CF
 - D₀: centroid Euclidean distance
 - D₁: centroid Manhattan distance
 - D₂: average inter-cluster distance
 - D₃: average intra-cluster distance
 - D₄: variance increase distance

Cluster Diameter

$$D = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (\mathbf{x}_{i} - \mathbf{x}_{j})^{2}}{N(N-1)}} = \sqrt{\frac{2N \times SS - 2\mathbf{LS}^{2}}{N(N-1)}}$$

About Clustering Feature

- Space efficiency
- Computation efficiency

CF Tree ♦ Hierarchical clustering through tree construction (as oppose to agglomeration/division) CF₁ CF₂ ... CF_k CF₁₁ CF₁₂ ... CF_{1k}

CF Tree Input

- Dataset
- Threshold Condition
 - Diameter D of a leaf node cluster < d

CF Tree Insertion

- Insert an object into its closest cluster in a leaf node
 - The object is added to the cluster if the resulting cluster does not violate the threshold condition
 - Otherwise the object is added as a new cluster by itself
- When a node is full, split it and rebalance the tree (similar to B+ Tree Insertion)

CF Tree Howto's

- Find closest cluster
 - Object-to-cluster distance
- ◆ Insert object into a cluster
 - Update CF
 - Check threshold condition
 - Calculate diameter
- Split node and rebalance tree
 - Merge clusters that are close to one anther
 - Cluster-to-cluster distance; calculate CF of the merged cluster

About BIRCH

- Single scan of data
 - CF tree is kept in memory
 - Size of the CF tree can be adjusted using the threshold value
- Cluster the leaf node clusters
 - More natural clusters
 - Sparse clusters detected as outliers
- Require the notion of centroid

Readings

♦Textbook 10.3.1, 10.3.2, and 10.3.3