

Linear SVM Classification

- Binary classification
- Record: {x₁,x₂,...,xn,y}
 - Attribute values: $\mathbf{X} = (x_1, x_2, ..., x_n)$
 - Class label: y ∈ {1, -1}
- Decision boundary: W•X+b=0
- Classification
 - y=1 if **W•X**+b > 0
 - y=-1 if $W \cdot X + b < 0$

Training SVM

	X1	X2	Х3	Υ
R1	0	1	0	1
R2	1	1	0	-1
R3	0	0	1	1
R4	1	0	1	-1
R5	0	0	0	-1

R1: $w_2 + b \ge 1$

R4: $W_1 + W_3 + b \le -1$

R2: $W_1+W_2+b \le -1$

R5: $b \le -1$

R3: $w_3 + b \ge 1$

Issues To Be Addressed

- Complexity when the training set is large
- ♣Linear Non-separable case
- Non-linear decision boundary

Decision Boundary of Linear SVM

$$(\sum_{i=1}^{N} \lambda_i y_i \mathbf{X_i} \bullet \mathbf{X}) + b = 0$$

♦(\mathbf{X}_{i} , \mathbf{y}_{i}) are training records that satisfy \mathbf{y}_{i} ($\mathbf{W} \bullet \mathbf{X}_{i}$ +b)=1, i.e. *support vectors*

Introduce a Slack Variable ξ

$$\mathbf{W} \bullet \mathbf{X_i} + b \ge 1$$
 if $y_i = 1$
 $\mathbf{W} \bullet \mathbf{X_i} + b \le -1$ if $y_i = -1$

1

$$\begin{aligned} & \textbf{W} \bullet \textbf{X}_i \, + \, b \geq 1 \text{-} \xi_i & \text{if } y_i \text{=} 1 \\ & \textbf{W} \bullet \textbf{X}_i \, + \, b \leq \text{-} 1 \text{+} \xi_i & \text{if } y_i \text{=} \text{-} 1 \end{aligned}$$

Revise the Objective Function

$$f(\mathbf{W}) = \frac{\|\mathbf{W}\|^2}{2} + C(\sum_{i=1}^{N} \xi_i)^k$$

 ${\tt C}$ and ${\tt k}$ are user specified parameters

Non-linear Decision Boundary

Transform the data to another coordinate space so a linear boundary can be found

Transformation Example

Non-linear Decision Boundary in 2D space:

$$(x_1 - 1)^2 + (x_2 - 1)^2 - 1 = 0$$

$$x'_1=x_1$$

 $x'_2=x_2$
 $x'_3=x_1^2$
 $x'_4=x_2^2$

Linear Decision Boundary in 4D space:

$$x_3' - 2x_1' + x_4' + 2x_2' + 1 = 0$$

Problems of Transformation

- We don't know the non-linear decision boundary (so we don't know how to do the transformation)
- Computation becomes more costly with more dimensions

Kernel Function to the Rescue

- Training records only appear in the optimization process in the form of dot product φ(X_i)•φ(X_i)
- \clubsuit Kernel function $K(\mathbf{X_i}, \mathbf{X_i}) = \phi(\mathbf{X_i}) \cdot \phi(\mathbf{X_i})$
- So we can do the computation in the original space without even knowing what the transformation function is

Kernel Functions

Polynomial kernel of degree h:

$$K(\mathbf{X}_i, \mathbf{X}_j) = (\mathbf{X}_i \bullet \mathbf{X}_j + 1)^h$$

Gaussian radial basis function kernel:

$$K(\mathbf{X_i}, \mathbf{X_j}) = e^{-\|\mathbf{X_i} - \mathbf{X_j}\|^2 / 2\sigma^2}$$

Sigmoid kernel: $K(\mathbf{X}_i, \mathbf{X}_j) = \tanh(\kappa \mathbf{X}_i \cdot \mathbf{X}_j - \delta)$

Kernel Functions and SVM Classifiers

- Use of different kernel functions result in different classifiers
- There's no golden rule to determine which kernel function is better
- The accuracy difference by using different kernel functions is usually not significant in practice

LIBSVM

- LIBSVM: a Library for Support Vector Machines by Chih-Chung Chang and Chih-Jen Lin
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Multiclass Classification with Binary Classifier

- Train a number of binary classifiers, each solving a binary classification problem
- Combine the results to solve the multiclass classification problem

The One-Against-Rest (1-r) Approach

- ♦ For k classes {c₁,c₂,...,c_k}, train k binary classifiers M_i, each classifies {c_i,not-c_i}
 - A positive classification by M_i gives one vote to c_i
 - A negative classification by M_i gives one vote to every class other than c_i

1-r Example

- ◆Three classes c1, c2, and c3
- ◆Three classifiers M1, M2, and M3
- Classify record r??

$$\frac{\mathsf{M}_1}{\mathsf{c}_1} \quad \frac{\mathsf{M}_2}{\mathsf{not} \, \mathsf{c}_2} \quad \frac{\mathsf{M}_3}{\mathsf{not} \, \mathsf{c}_3}$$

$$\frac{M_1 \quad M_2 \quad M_3}{c_1 \quad \text{not } c_2 \quad c_3}$$

The One-Against-One (1-1) Approach

For k classes {c₁,c₂,...,ck}, train k(k-1)/2 binary classifiers, each classifies {c₁,c₁}

1-1 Example

- ♦Three classes c1, c2, and c3
- Three classifiers M1, M2, and M3
- Classify record r??

Case 1:

Case 2:

$$\frac{\mathsf{M}_1 \quad \mathsf{M}_2 \quad \mathsf{M}_2}{\{\mathsf{c}_1,\mathsf{c}_2\} \ \{\mathsf{c}_1,\mathsf{c}_3\} \ \{\mathsf{c}_2,\mathsf{c}_3\}}$$

 $\begin{array}{cccc} \mathsf{M}_1 & \mathsf{M}_2 & \mathsf{M}_2 \\ \{\mathsf{c}_1,\mathsf{c}_2\} & \{\mathsf{c}_1,\mathsf{c}_3\} & \{\mathsf{c}_2,\mathsf{c}_3\} \end{array}$

Error-Correcting Output Coding (ECOC)

- Encode each class label with a n-bit code word
- Train n binary classifiers, one for each hit
- The predicted class is the one whose codeword is the closest in Hamming distance to the classifiers' output

Error-Correcting Output Coding (ECOC) Example

Class	Codeword	
C ₁	1111111	
c_{2}	0000111	
c_3	0011001	
C ₄	0101010	

Suppose the classifiers' output: 0 1 1 1 1 1 1, what's the predicated class??

About ECOC

- ♦ If d is the minimum distance between any pair of code words, ECOC can correct up to \[(d-1)/2 \] errors
- There are many algorithms in coding theory to generate n-bit code words with given Hamming distance
- ♦ For multiclass classification, columnwise separation is also important

Readings

◆Textbook Chapter 9.3