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CS522 Advanced Database Systems
Classification: Introduction to Support Vector Machine

Chengyu Sun

California State University, Los Angeles

Support Vector Machine (SVM)

Find a hyperplane (decision boundary) that 
will separate the data.

Which Boundary Is Better?

B1 B2

Maximum Margin Hyperplane

Maximum margin hyperplane (MMH) 
minimizes the worst-case generalization error.

Margin of the classifier

Linear SVM Classification

Binary classification

Record: {x1,x2,...,xn,y}
� Attribute values: X=(x1,x2,...,xn)

� Class label: y ∈ {1, -1}

Decision boundary: W•X+b=0

Classification
� y=1 if W•X+b > 0

� y=-1 if W•X+b < 0

Training SVM

X1 X2 X3 Y

0 1 0 1

1 1 0 -1

0 0 1 1

1 0 1 -1

0 0 0 -1

R1

R2

R3

R4

R5

w2+b ≥ 1

w1+w2 +b ≤ -1

w3+b ≥ 1

b ≤ -1

w1+w3 +b ≤ -1R1:

R2:

R3:

R4:

R5:
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Objective Function –
Maximum Margin 

W•X+b=0

W•X+b=1W•X+b=-1
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Solving Linear SVM

Find W that satisfies the inequalities 
and maximize the margin 2/||W||

� Constrained (convex) quadratic 

optimization problem

� Solvable by numerical methods such as 
quadratic programming

See Chapter 5.5 of Introduction to Data Mining by Tan, Steinbach, and Kumar

Issues To Be Addressed

Complexity when the training set is 
large

Linear Non-separable case

Non-linear decision boundary

Support Vectors

Support Vectors

Decision Boundary of Linear 
SVM

(Xi,yi) are training records that satisfy 
yi(W•Xi+b)=1, i.e. support vectors
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Linear SVM – Non-separable 
Case
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Introduce a Slack Variable ξ

W•Xi + b ≥ 1

W•Xi + b ≤ -1

if yi=1

if yi=-1

W•Xi + b ≥ 1-ξi

W•Xi + b ≤ -1+ξi

if yi=1

if yi=-1

Revise the Objective Function
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C and k are user specified parameters

Non-linear Decision Boundary

Transform the data to another coordinate 
space so a linear boundary can be found

Transformation Example

Non-linear Decision Boundary in 2D space:
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x’1=x1
x’2=x2
x’3=x1
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x’4=x2
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Linear Decision Boundary in 4D space:

0122 2413 =+′+′+′−′ xxxx

Problems of Transformation

We don’t know the non-linear decision 
boundary (so we don’t know how to do 
the transformation)

Computation becomes more costly with 
more dimensions

Kernel Function to the Rescue

Training records only appear in the 
optimization process in the form of dot 
product φ(Xi)•φ(Xj)
� φ is the transformation function

Kernel function K(Xi,Xj)= φ(Xi)•φ(Xj)

So we can do the computation in the 
original space without even knowing 
what the transformation function is
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Kernel Functions
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Polynomial kernel of
degree h:

Gaussian radial basis
function kernel:

Sigmoid kernel:

Kernel Functions and SVM 
Classifiers

Use of different kernel functions result 
in different classifiers

There’s no golden rule to determine 
which kernel function is better

The accuracy difference by using 
different kernel functions is usually not 
significant in practice

LIBSVM

LIBSVM: a Library for Support Vector 
Machines by Chih-Chung Chang and 
Chih-Jen Lin

� http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Multiclass Classification with 
Binary Classifier 

Train a number of binary classifiers, 
each solving a binary classification 
problem

Combine the results to solve the 
multiclass classification problem

The One-Against-Rest (1-r) 
Approach

For k classes {c1,c2,...,ck}, train k binary 
classifiers Mi, each classifies {ci,not-ci}

� A positive classification by Mi gives one 

vote to ci
� A negative classification by Mi gives one 
vote to every class other than ci

1-r Example

Three classes c1, c2, and c3

Three classifiers M1, M2, and M3

Classify record r??

M1 M2 M3

c1 not c2 c3

M1 M2 M3

c1 not c2 not c3

Case 1: Case 2:
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The One-Against-One (1-1) 
Approach

For k classes {c1,c2,...,ck}, train k(k-1)/2 
binary classifiers, each classifies {ci,cj}

1-1 Example

Three classes c1, c2, and c3

Three classifiers M1, M2, and M3

Classify record r??

M1

{c1,c2}

c1 c1 c3

Case 1: Case 2:

M2

{c1,c3}
M2

{c2,c3}
M1

{c1,c2}

c1 c3 c2

M2

{c1,c3}
M2

{c2,c3}

Error-Correcting Output 
Coding (ECOC)

Encode each class label with a n-bit 
code word

Train n binary classifiers, one for each 
bit

The predicted class is the one whose 
codeword is the closest in Hamming 
distance to the classifiers’ output

Error-Correcting Output 
Coding (ECOC) Example

Suppose the classifiers’ output: 0 1 1 1 1 1 1, 
what’s the predicated class??

Class Codeword

c1 1 1 1 1 1 1 1

c2 0 0 0 0 1 1 1

c3 0 0 1 1 0 0 1

c4 0 1 0 1 0 1 0

About ECOC

If d is the minimum distance between 
any pair of code words, ECOC can 
correct up to (d-1)/2 errors

There are many algorithms in coding 
theory to generate n-bit code words 
with given Hamming distance

For multiclass classification, column-
wise separation is also important

Readings

Textbook Chapter 9.3


