

Rule-based Classification Example							
(The Vert	ebrate	e data	aset			
	Name	Blood Type	Give Birth	Can Flv	Live in Water	Class	
	human	warm	Ves	Can Fly	Live in water	mammals	
	python	cold	no	10	10	reptiles	
	salmon	cold	00	10	ves	fishes	
	whale	warm	ves	10	ves	mammals	
	frog	cold	no	no	sometimes	amphibians	
	komodo	cold	no	no	no	reptiles	
	bat	warm	yes	yes	no	mammals	
	pigeon	warm	no	yes	no	birds	
	cat	warm	yes	no	no	mammals	
	leopard shark	cold	yes	no	yes	fishes	
	turtle	cold	no	no	sometimes	reptiles	
	penguin	warm	no	no	sometimes	birds	
	porcupine	warm	yes	no	no	mammals	
	eel	cold	no	no	yes	fishes	
	salamander	cold	no	no	sometimes	amphibians	
	gila monster	cold	no	no	no	reptiles	
	platypus	warm	no	no	no	mammals	
	owl	warm	no	yes	no	birds	
	dolphin	warm	yes	no	yes	mammals	
	eagle	warm	no	yes	no	birds	1
	©Tan, Ste	inbach, Kumar	Intro	duction to D	ata Mining	2004	

Two Properties of a Rulebased Classifier

Exhaustive Rules

- Every combination of the attribute values is covered by at least one rule
- Mutually Exclusive Rules
 - No two rules are triggered by the same record

Make a Rule Set Exhaustive/Mutually Exclusive

- ♦ Default rule: () \rightarrow c_d
- Ordered rules
 - Quality-based ordering
 - Class-based ordering

Unordered rules

- Majority votes
 - Weighted by the rule's accuracy

Sequential Covering Algorithms

- \bullet Order the classes {c₁, c₂, ..., c_k}
- ♦For each class c_i, i<k</p>
 - \blacksquare Find the best rule <code>r</code> for <code>c_i</code>
 - \blacksquare Remove the records covered by r
 - \blacksquare Add $\tt r$ to the rule list
 - Repeat until some stop condition is met
- Add a default rule () $\rightarrow c_k$

Ordering Classes and Rules

Class ordering

- Based on frequency
- Rule ordering
 - Based on classes
 - Based on quality of the rules

Rule Growing

- $\ensuremath{\circledast}$ From general to specific
 - Start with () \rightarrow c_i
 - *Greedily* add one conjunct at a time
- From specific to general
 - Start with any positive record
 - *Greedily* remove one conjunct at a time
- Augmented by *beam search* with k best candidates

Rule Evaluation Measure (a)

Likelihood Ratio:

$$R(r) = 2\sum_{i=1}^{k} f_i \log(f_i / e_i)$$

f_i: observed # of class i records covered by r e_i: expected # of class i records covered by r

Stop Conditions

- Stop growing a rule
- $\ensuremath{\circledast}\ensuremath{\mathsf{Stop}}$ adding a rule for class $\mathtt{c}_\mathtt{i}$
 - Minimum Description Length (MDL)

Rule Pruning

- Similar to post-pruning of decision trees
- Remove a conjunct if the accuracy rate improves based on a validation set

Indirect Rule Extraction

- Using decision tree
 - Rule generation
 - Exhaustive?? Mutually Exclusive??
- Using association rule mining
 - Find association rules in the form of $\mathbf{A} \rightarrow \mathbf{c}_i$
 - Select a subset of the rules to form a classifier
 - Sort the rules based on confidence, support, and length
 - Add to a rule list one at a timeAdd a default rule

Readings

Textbook Chapter 8.4