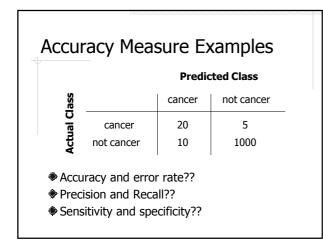
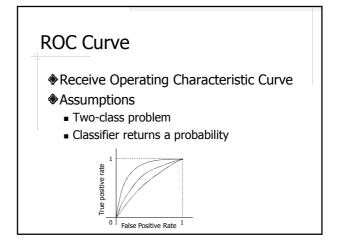

Difficulties in Classifier Evaluation and Comparison

- Training error is not a good indicator of testing error
- Data with known class labels are often in short supply
- Costs of errors need to be taken into account
- Evaluation results must be evaluated themselves

Confusion Matrix								
		Predicted Class						
SS		cancer	not cancer					
Actual Class	cancer	20	5					
Actu	not cancer	10	1000					
Act	not cancer	10	1000					


Precision and Recall


$$precision = \frac{t - pos}{t - pos + f - pos}$$

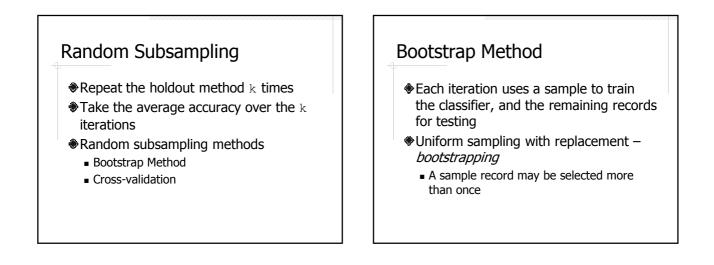
$$recall = \frac{t - pos}{t - pos + f - neg}$$

Sensitivity and Specificity

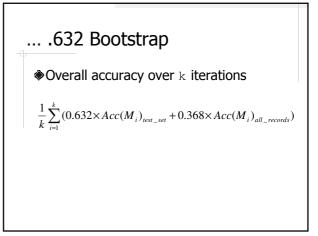
- Sensitivity = Recall
- \$Specificity = t_neg/(t_neg+f_pos)

ROC	Ex	am	lar	es						
		an								
	1	2	3	4	5	6	7	8	9	10
Prob.	0.9	0.8	0.7	0.6	0.55	0.54	0.53	0.51	0.5	0.4
M_1	Ρ	Ρ	Ν	Ρ	Ρ	Ν	Ν	Ν	Ρ	Ν
M ₂	Ρ	Ρ	Ρ	Ρ	Ρ	Ν	Ν	Ν	Ν	Ν
M_3	Ρ	Ν	Ρ	Ν	Ρ	Ν	Ρ	Ν	Ρ	Ν

Utilizing Records with Known Class Labels


- For both training and testing
 - More training records \rightarrow better classifier
 - More testing records \rightarrow better accuracy estimate

The Holdout Method


- Randomly partition the given records into two non-overlapping subsets: a training set and a testing set
 - Typically 2/3 for training and 1/3 for testing

Problems of the Holdout Method

- More records for training means less for testing, and vice versa
- Distribution of the data in the training/testing set may be different from the original dataset
- Some classifiers are sensitive to random fluctuations in the training data

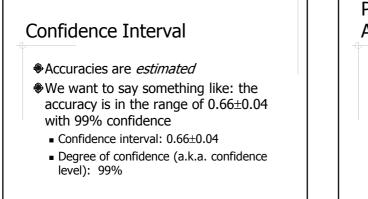
.632 Bootstrap ... Select d samples out of a dataset of size d and use them as the training set, and the rest are used for testing On average, 63.2% of the records will be selected into the training set The probability of not being selected: (1-1/d)^d → e⁻¹ = 2.718⁻¹ = 0.368

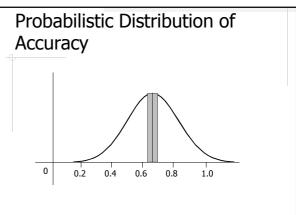
K-fold Cross Validation

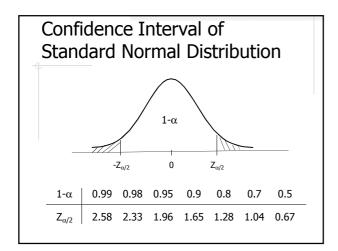
- Randomly divide the data into k nonoverlapping subsets of roughly equal size called *folds*
- Each iteration uses (k-1) subsets for training, and the remaining subset for testing

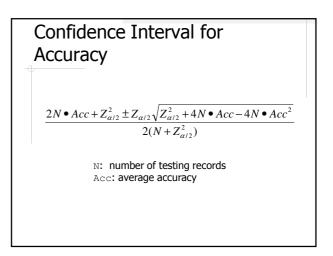
Variants of K-fold Cross Validation

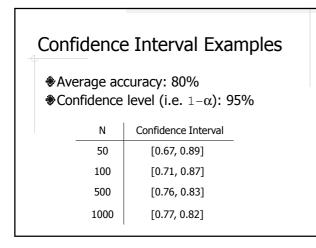
- Stratified folds: the class distribution in each fold is roughly the same as in the original dataset
- Leave-one-out
- 10-fold Cross Validation

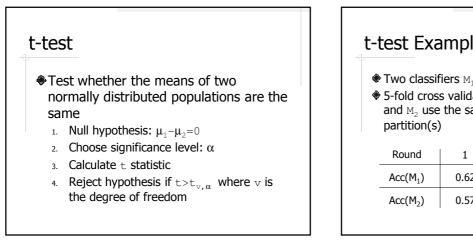

Accuracy Using K-fold Cross Validation

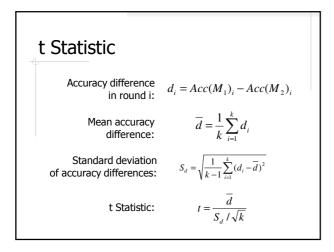

Total # of correctly classified records over k iterations

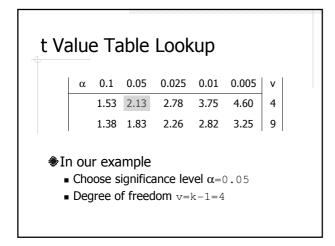

Total # of records in the original dataset

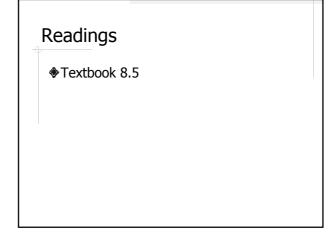

interpre		esui	IY R	lesu	its	
Round	1	2	3	4	5	Avg
$Acc(M_1)$	0.62	0.47	0.70	0.72	0.69	0.64
$Acc(M_2)$	0.57	0.57	0.63	0.53	0.72	0.604


• Is M₁ really better than M₂?






Comparing Classifiers Is a classifier with 72% accuracy better than one with 68% accuracy? Or in other words, is the 4% difference statistically significant?



t-te	st Exa	mple	9				
& 5- ar	wo classifing fold cross and M_2 use artition(s)	s validat the sar	tion, a	nd at			1
	Round	1	2	3	4	5	
ļ	$Acc(M_1)$	0.62	0.47	0.70	0.72	0.69	
ļ	Acc(M ₂)	0.57	0.57	0.63	0.53	0.72	

Statistic	: Calc	ulat	ion	Exa	mple		
Round	1	2	3	4	5		
$Acc(M_1)$	0.62	0.47	0.70	0.72	0.69		
Acc(M ₂)	0.57	0.57	0.63	0.53	0.72		
d _i	0.05	-0.10	0.07	0.19	-0.03		
d _i 0.05 -0.10 0.07 0.19 -0.03 $\overline{d} = 0.036$ $S_d = 0.109$ $t = \frac{0.036}{0.109/\sqrt{5}} = 0.74$							

