

Probabilistic Relationship between Attributes and Class

Ten middle-aged, divorced, male borrowers have defaulted on their loans, but would the 11th one default as well?

TID	Home	Marital	Annual	Defaulted
110	Owner	Status	Income	Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
11	No	Sinale	120K	??

Naive Bayesian Classification
***X**=(x₁,x₂,...,x_n)
*****Assume the attribute values are
conditionally independent of one
another (the *naive* assumption)

$$P(\mathbf{X} | C_i) = \prod_{i=1}^{n} P(x_i | C_i)$$

$$= P(x_1 | C_i) \times P(x_2 | C_i) \times \dots \times P(x_n | C_i)$$

Attribute
$$A_k$$
 is Categorical
P (x_k | C_i) is the fraction of number of records in C_i with value x_k for attribute A_k

... Attribute
$$A_k$$
 is Continuous-
valued
$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$P(x_k | C_i) = g(x_k,\mu_{c_i},\sigma_{c_i})$$

Naive Bayesian Classification Example ...

♦P(Default=N|HO=N,MS=S,AI=120K)♦P(Default=Y|HO=N,MS=S,AI=120K)

Avoid Zero $P(x_k|C_i)$

- A zero P $(x_k | C_i)$ would make the whole P $(x | C_i)$ zero
- To avoid this problem, add 1 to each count – assuming the training set is sufficiently large, the effect of adding one is negligible
- Example:
 - P(Default=Y|HO=N,MS=M,AI=120K)??

About Naive Bayesian Classification

- The most accurate classification if the conditional independence assumption holds
- In practice, some attributes may be correlated
 - E.g. education level and annual income

Bayesian Belief Network (BBN) A *directed acyclic graph* (dag) encoding the dependencies among a set of variables

A conditional probability table (CPT) for each node given its immediate parent nodes

Create the structure of the network From domain knowledge From training data Calculate the CPT for each node X P(X) if X does not have any parent P(X|Y) if X has one parent Y P(X|Y1,Y2,...,Yk) if X has multiple parents {Y1,Y2,...,Yk}

Conditional Independence in BBN

A node in a Bayesian network is conditionally independent of its nondescendants if its parents are known

 $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(A_i))$

Bayesian Classification Examples Output node – Heart Disease

- Testing data
 - ()
 - (BP=high)
 - (BP=high,D=Healthy,E=Yes)

Bayesian Classification Examples – 1 $P(HD = Yes) = \sum_{i=1}^{n} \sum_{j=1}^{m} P(HD = Yes | E = a_i, D = b_j) P(E = a_i, D = b_j)$ $= \sum_{i=1}^{n} \sum_{j=1}^{m} P(HD = Yes | E = a_i, D = b_j) P(E = a_i) P(D = b_j)$ = 0.49

Bayesian Classification Examples – 2

$$P(HD = Yes | BP = High)$$

=
$$\frac{P(BP = High | HD = Yes)P(HD = Yes)}{P(BP = High)}$$

=
$$\frac{P(BP = High | HD = Yes)P(HD = Yes)}{\sum_{i=1}^{n} P(BP = High | HD = a_i)P(HD = a_i)}$$

= 0.80

About **BBN**

- Does not assume attribute independence
- Provides a way to encode domain knowledge
- Robust to model overfitting
 Any node can be used an output node

Bayes Error Rate

- If the relationship between attributes and class is probabilistic, it is impossible to be 100% correct.
- Bayes Error Rate minimum achievable error rate for a given classifier

