

... Modeling a Neuron In a Biological Neural Network (BNN), learning results are saved at synapses In a Artificial Neural Network (ANN), learning results are saved in the weights

Example						
	A1	A2	A3	С		
	0	1	0	1		
	1	1	0	0		
	0	0	1	1		
	1	0	1	0		
	0	0	0	0		
	0	1	1	?		

Input, Weights, and Bias

- **♦** Input **X**=[x_1, x_2, x_3]
 - One per attribute
- Weights $\mathbf{W} = [w_1, w_2, w_3]$
 - One per input
 - Typically initialized to random values in the range [-1.0,1.0] or [-0.5,0.5]
- ♦ Bias t
 - Typically a value in the range of [-1.0,1.0]

Output

$$y = f(x_1 w_1 + x_2 w_2 + \dots + x_n w_n + t)$$

$$= f(x_1 w_1 + x_2 w_2 + \dots + x_n w_n + x_0 w_0)$$

$$= f(\mathbf{X} \bullet \mathbf{W})$$

$$= f(\mathbf{X} \mathbf{W}^T)$$

t can be written as x_0w_0 where $x_0=1$ and $w_0=t$

Common Activation Functions

Step Function

Sign Function

$$y = \begin{cases} 1 & \mathbf{X} \bullet \mathbf{W} \ge 0 \\ 0 & \mathbf{X} \bullet \mathbf{W} < 0 \end{cases} \qquad y = \begin{cases} 1 & \mathbf{X} \bullet \mathbf{W} \ge 0 \\ -1 & \mathbf{X} \bullet \mathbf{W} < 0 \end{cases}$$

$$y = \begin{cases} 1 & \mathbf{X} \bullet \mathbf{W} \ge 0 \\ -1 & \mathbf{X} \bullet \mathbf{W} < 0 \end{cases}$$

Linear Function

Sigmoid Function

$$y = \mathbf{X} \bullet \mathbf{W}$$

$$y = \frac{1}{1 + e^{-X \cdot W}}$$

Learning

- ♣Initialize w and t to random values
- ♦ For each training record (x, y')
 - Compute the predicted output y
 - Update each weight w,

$$w_i = w_i + \lambda (y' - y) x_i$$

 λ is the *learning rate*

About Learning Rate

- Between 0 and 1
- Control the speed of adjustment
- **♦** Dynamic learning rate, e.g. 1/t where t is the number of iterations so far

Learning Example						
$W=[0.3,0.3,0.3], t=-0.5, \lambda=0.5$						
у	$= \begin{cases} 1 \\ 0 \end{cases}$	$0.3x_{1}$ $0.3x_{1}$ A1	$+0.3x_2 + 0.3x_2 + 0.3x_2 - 0.3x_2 + $	$-0.3x_3 - 0.3x_3 - 0.3x_3 - 0.3x_3$	$0.5 \ge 0$ 0.5 < 0	
_	R1	0	1	0	1	
	R2	1	1	0	0	
	R3	0	0	1	1	
	R4	1	0	1	0	
	R5	0	0	0	0	

Learning Example				
After	[W , t]			
	[0.3, 0.3, 0.3, -0.5]			
R1	[0.3, 0.8, 0.3, 0]			
R2	[-0.2, 0.3, 0.3, -0.5]			
R3	R3 [-0.2, 0.3, 0.8, 0]			
R4	[-0.7, 0.3, 0.3, -0.5]			
R5	[-0.7, 0.3, 0.3, -0.5]			

Multilayer ANN x_i input hidden output layer layer

Learning

- Each node in a hidden or output layer is a perceptron
- The output of a node is used as the input for the nodes in the next layer
- Can we use the same perceptron learning process for multilayer ANN learning??

Adjust Weights

◆To minimize sum of squared error

$$E(\mathbf{W}) = \sum_{i=1}^{n} (y_i' - y_i)^2$$
$$= \sum_{i=1}^{n} (y_i' - f(\mathbf{X} \bullet \mathbf{W}))^2$$

Delta Rule – Nonlinear Activation Function ...

For output nodes:

$$\Delta w_{ij} = \lambda y_i f_j'(\mathbf{X} \bullet \mathbf{W})(y_j' - y_j)$$

$$Err_j = f_j'(\mathbf{X} \bullet \mathbf{W})(y_j' - y_j)$$

See Delta Rule at http://www.learnartificialneuralnetworks.com/backpropagation.html

... Delta Rule – Nonlinear Activation Function

For hidden nodes:

$$\Delta w_{ij} = \lambda y_i f_j'(\mathbf{X} \bullet \mathbf{W}) \sum_{k=1}^n w_{jk} Err_k$$

$$Err_j = f'_j(\mathbf{X} \bullet \mathbf{W}) \sum_{k=1}^n w_{jk} Err_k$$

See Delta Rule at http://www.learnartificialneuralnetworks.com/backpropagation.html

Sigmoid Activation Function

$$f(x) = \frac{1}{1 + e^{-x}}$$
$$f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = (1 - f(x))f(x)$$

$$f'(\mathbf{X} \bullet \mathbf{W}) = (1 - f(\mathbf{X} \bullet \mathbf{W})) f(\mathbf{X} \bullet \mathbf{W}) = (1 - y) y$$

Multilayer ANN Example

Initial Values

Initial Values

Forward Computation

Activation function: $f(x) = \frac{1}{1 + e^{-x}}$

Node	X•W	f(X•W)
4	-0.7	0.332
5	0.1	0.525
6	-0.105	0.474

Backward Propagation ...

Assume y'=1

Node	f'(X•W)	Err
6	0.249	0.131
5	0.249	-0.0065
4	0.222	-0.0087

... Backward Propagation

 W_{46} W_{56} t_6 0.218 -0.261 -0.138 W_{35} t_5 W_{15} W_{25} -0.306 0.1 0.194 0.194 W_{14} W_{34} t_4 0.192 0.4 -0.508 -0.408

Input and Output of ANN

- ♦ Input
 - One input node for each binary or numeric attribute
 - What about categorical attributes??
- Output
 - One output node for a 2-class problem
 - K output nodes for a k-class problem

About ANN

- Multilayer feed-forward networks can approximate any function
- Determining the network topology is a empirical process
- Good at handling redundant features, but sensitive to noise
- Weight adjustment may converge to local minimum
- Training can be time consuming

Readings

◆Textbook Chapter 9.2