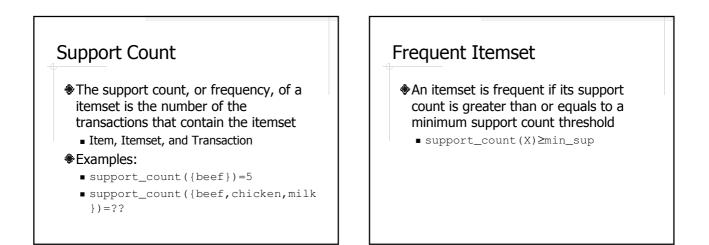


ales Tra	nsactions
TID	Transactions
1	Beef, Chicken, Milk
2	Beef, Cheese
3	Cheese, Boots
4	Beef, Chicken, Cheese
5	Beef, Chicken, Clothes, Cheese, Milk
6	Chicken, Clothes, Milk
7	Chicken, Clothes, Milk
8	Beef, Milk



The Need for Closed Frequent Itemsets

- Two transactions
 - <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀>
- €min_sup=1
- # of frequent itemsets??

Closed Frequent Itemset

- An itemset X is closed if there exists no proper superset of X that has the same support count
- A closed frequent itemset is an itemset that is both *closed* and *frequent*

Closed Frequent Itemset Example

- Two transactions
- <a1, a2, ..., a100> and <a1, a2, ..., a50>
 %min_sup=1
- Closed frequent itemset(s)??

Maximal Frequent Itemset

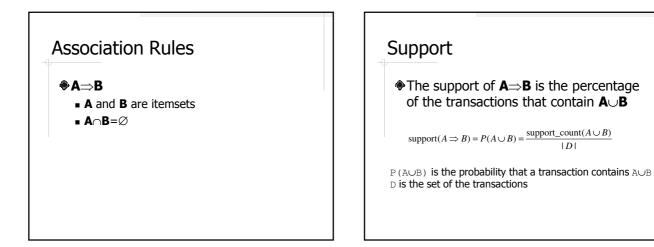
- An itemset X is a maximal frequent itemset if X is frequent and there exists no *proper superset* of X that is also frequent
- Example: if {a,b,c} is a maximal frequent itemset, which one of these cannot be a MFI
 - {a,b,c,d}, {a,c}, {b,d}

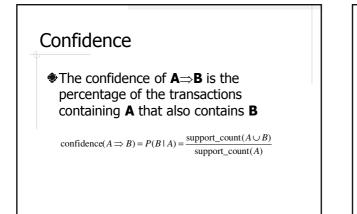
Maximal Frequent Itemset Example

- Two transactions
 - < <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀>
- *min_sup=1
- Maximal frequent itemset(s)??
- Maximal frequent itemset vs. closed frequent itemset??

From Frequent Itemsets to Association Rules

- {chicken, cheese} is a frequent set
- {chicken}⇒{cheese}??
- $Or is it {cheese} \Rightarrow {chicken}??$





Support and Confidence Example

- {chicken}⇒{cheese}??
- {cheese}⇒{chicken}??

Strong Association Rule

- An association rule is strong if it satisfies both a minimum support threshold (min_sup) and a minimum confidence threshold (min_conf)
- Why do we need both support and confidence??

Association Rule Mining

- Find strong association rules
 Find all frequent itemsets
 - Generate strong association rules from the frequent itemsets

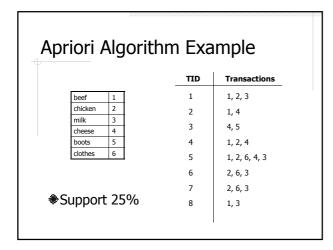
The Apriori Property

- All nonempty subsets of a frequent itemset must also be frequent
- Or, if an itemset is not frequent, its supersets cannot be frequent either

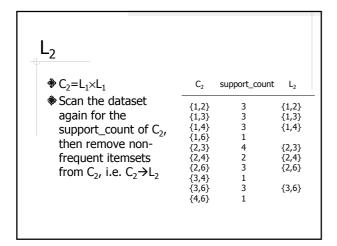
Finding Frequent Itemsets – The Apriori Algorithm

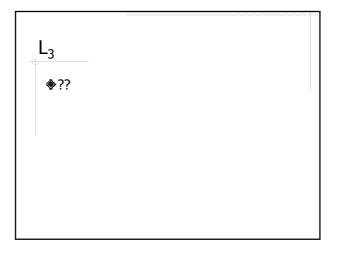
Given min_sup

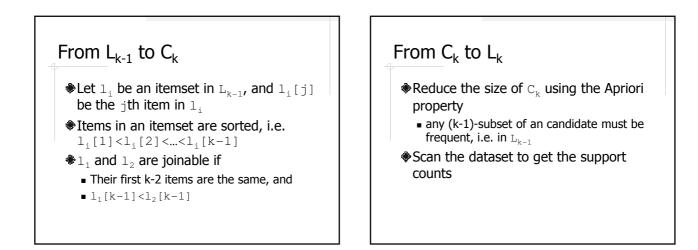
- $\ensuremath{\circledast}$ Find the frequent 1-itemsets ${\tt L}_1$
- $\mbox{\ensuremath{\bullet}}$ Find the the frequent k-itemsets ${\tt L}_{\tt k}$ by joining the itemsets in ${\tt L}_{\tt k-1}$
- \clubsuit Stop when $\mathtt{L}_{\mathtt{k}}$ is empty



L <u>1</u>			
Scan the data once to get the count of	C ₁	support_count	L ₁
each item	{1}	5	{1}
Remove the items	{2}	5	{2}
that do not meet min_sup	{3}	5	{3}
	{4}	4	{4}
	{5}	1	
	{6}	3	{6}





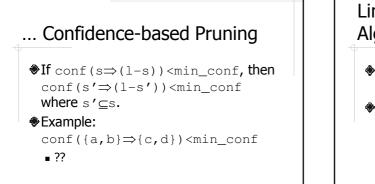


Generate Association Rules from Frequent Itemsets

- For each frequent itemset 1, generate all nonempty subset of 1
- For every nonempty subset of s of 1,
 output rule s⇒(1-s) if conf(s
 ⇒(1-s))≥min conf

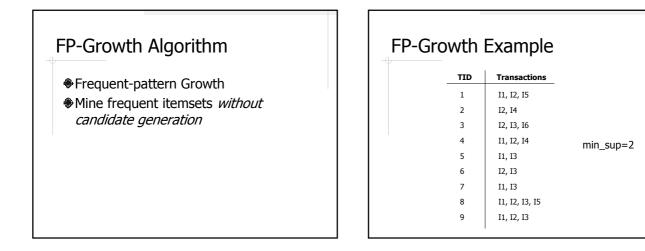
Confidence-based Pruning ...

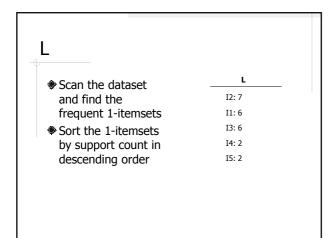
- $conf({a,b} \Rightarrow {c,d}) < min_conf$
 - conf({a}⇒{c,d})??
 conf({a,b,e}⇒{c,d})??
 - conf({a}⇒{b,c,d})?



Limitations of the Apriori Algorithm

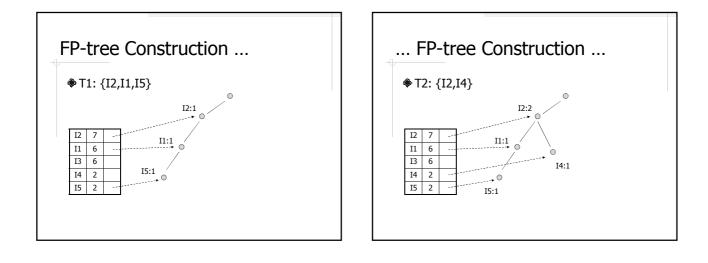
- Multiple scans of the datasets
 How many??
- Need to generate a large number of candidate sets

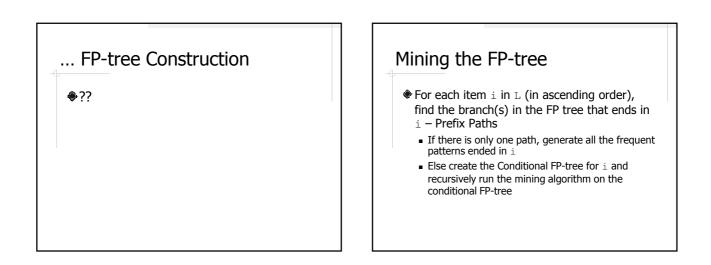


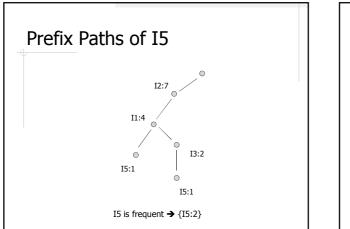


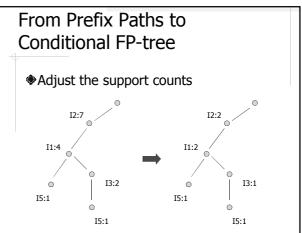
FP-tree

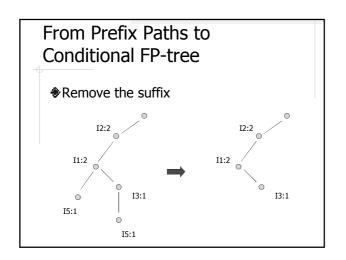
- Each transaction is processed in L order (why??) and becomes a branch in the FP tree
- $\clubsuit \mbox{Each}$ node is linked from \mbox{L}

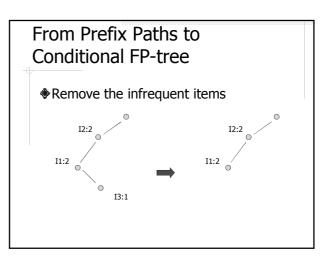


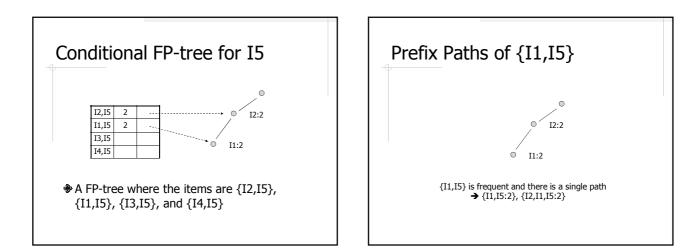


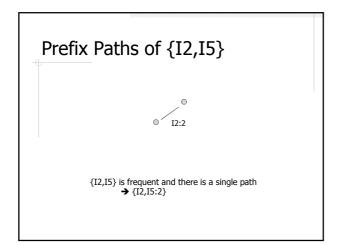


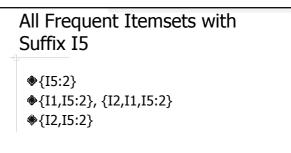


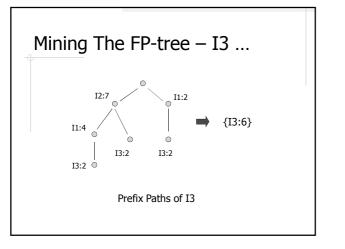


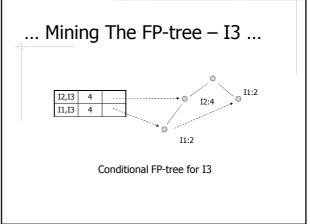


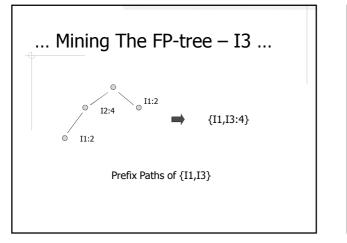


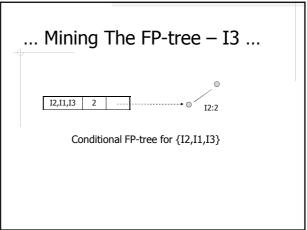


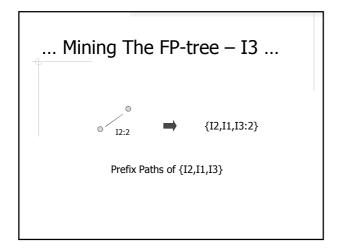


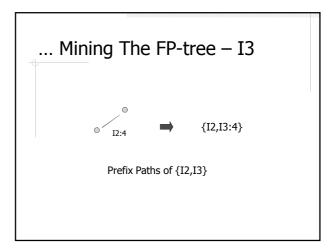


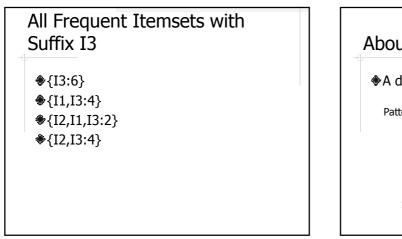


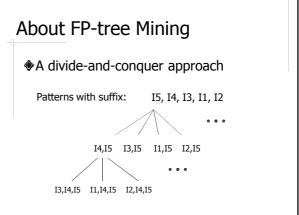


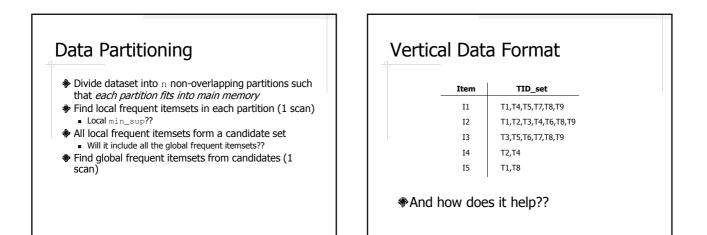












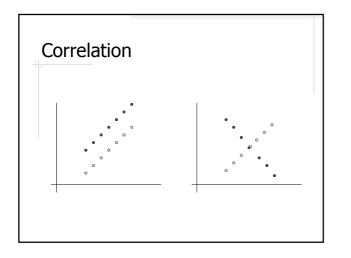
Strong Association Rules Could Be Misleading ...

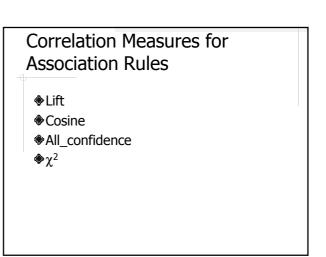
Example:

- 10,000 transactions
- 6,000 transactions included games
- 7,500 transactions included videos
- 4,000 transactions included both
- $\textcircled{game} \Rightarrow \{\texttt{yame}\} \Rightarrow \{\texttt{video}\}$
 - Support?? Confidence??

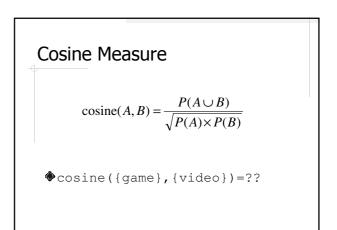
... Strong Association Rules Could Be Misleading

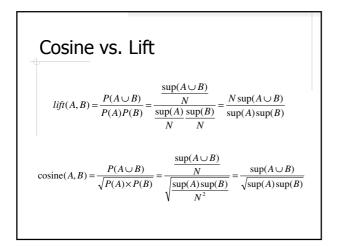
Does buying game really imply buying video as well??

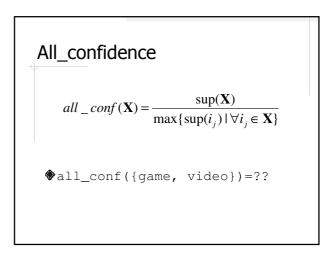




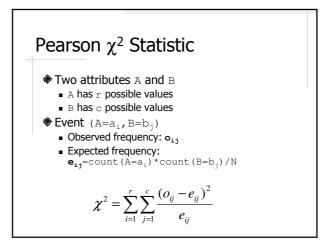
Lift $lift(A,B) = \frac{P(A \cup B)}{P(A)P(B)}$ % lift({game}, {video}) =??

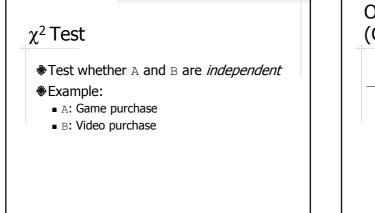






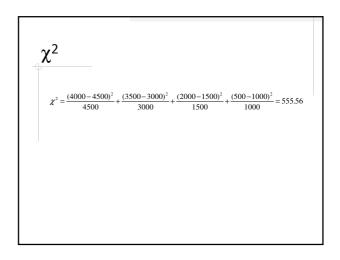
langes leasure	of Corre	elation		
	Positively correlated	Independent	Negatively correlated	
Lift				
Cosine				
All_conf				
<u>.</u>		•		

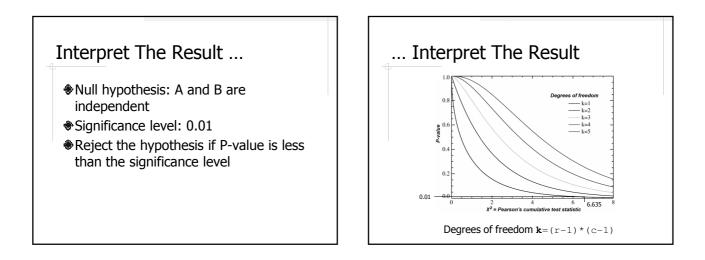




	ble)	
game	!game	total
4000	??	7500
??	??	??
6000	??	10000
	4000 ??	4000 ?? ?? ??

Expected	d Freque	encies	
	game	!game	total
video	??	??	7500
!video	??	??	2500
total	6000	4000	10000





-	Choo Meas	-	-		elati	on			
	datasets	mc	m'c	mc'	m′c′	all_conf	cosine	lift	χ²
	A ₁	1,000	100	100	100,000	0.91	0.91	83.64	83,452.6
	A ₂	1,000	100	100	10,000	0.91	0.91	9.26	9,055.7
	A_3	1,000	100	100	1,000	0.91	0.91	1.82	1,472.7
	A ₄	1,000	100	100	0	0.91	0.91	0.99	9.9
	В	1,000	1,000	1,000	1,000	0.50	0.50	1.00	0.0
						n both mil in neither			e

... Choosing Correlation Measures

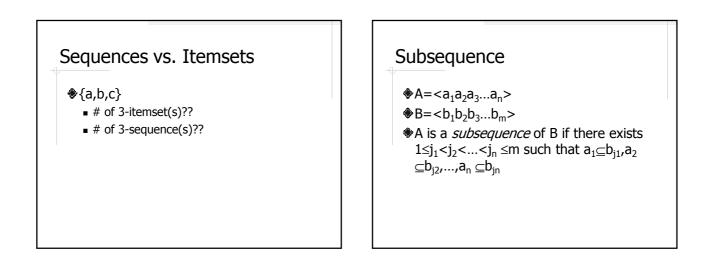
- $all_confidence and cosine are null-invariant, while lift and <math display="inline">\chi^2$ are not
- @all_confidence has the Apriori
 property
- *all_confidence and cosine should be augmented with other measures when the result is not conclusive

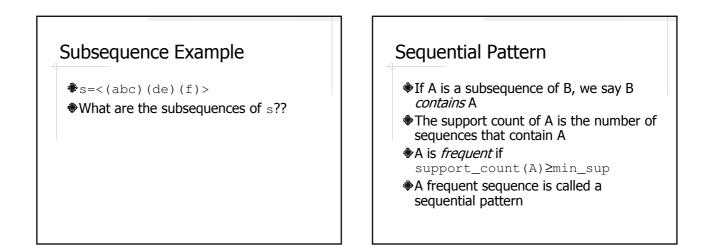
Mining Sequential Patterns

- \$ <{computer},{printer},{printer
 cartridge}>
- <{bread,milk},{bread,milk},{bread,milk
 }...>
- { home.jsp}, {search.jsp}, {product.jsp}
 , {product.jsp}, {search.jsp}...>

Terminology and Notations

- Item, itemset
- Event = itemset
- A sequence is an ordered list of events
 <e_1e_2e_3...e_1>
 - E.g. <(a)(abc)(bc)(d)(ac)(f)>
- The length of a sequence is the number of items in the sequence, i.e. not the number of events





Apriori Property Again

Г

Every nonempty subsequence of a frequent sequence is frequent

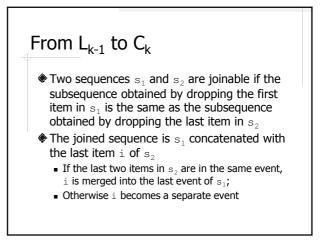
GSP Algorithm

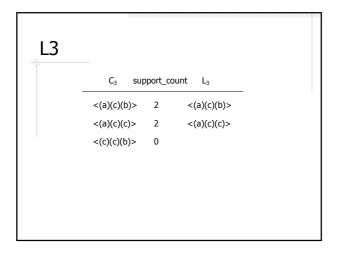
- Generalized Sequential Patterns
- An extension of the Apriori algorithm for mining sequential patterns

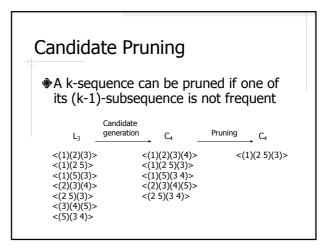
SID	Sequence	
1	<(a)(ab)(a)>	
2	<(a)(c)(bc)>	
3	<(ab)(c)(b)>	min_sup=2
4	<(a)(c)(c)>	

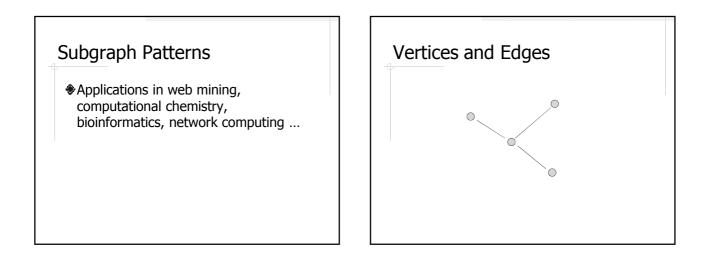
L ₁				
	C_1	support_count	L ₁	
	а	4	<(a)>	
	b	3	<(b)> <(c)>	
	с	3	<(c)>	

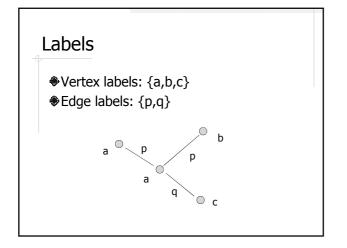
L ₂				
	C ₂ supp	ort_count	L ₂	
	<(a)(a)>	1		
	<(a)(b)>	3	<(a)(b)>	
	<(a)(b)> <(a)(c)>	3	<(a)(c)>	
	<(b)(a)>	1		
	<(b)(b)>	1		
	<(b)(c)>	1		
	<(c)(a)>	0		
	<(c)(b)> <(c)(c)>	2	<(c)(b)>	
		2	<(c)(c)>	
	<(ab)>	2	<(ab)>	
	<(ac)>	0		
	<(bc)>	1		

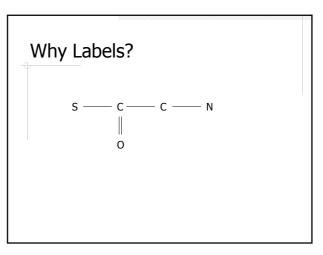






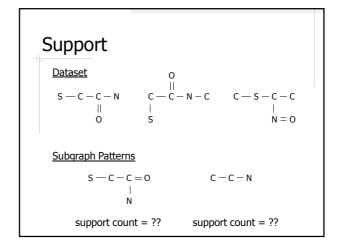


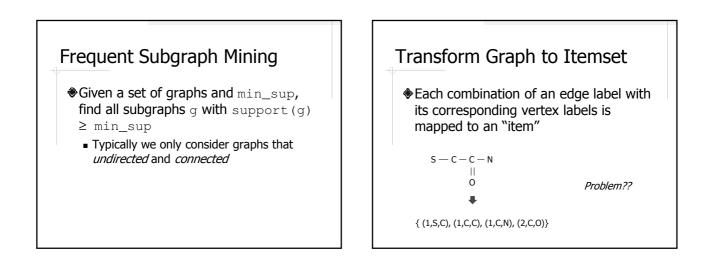




Subgraph

A graph G' = (V', E') is a subgraph of another graph G= (V, E) if its vertex set V' is a subset of V and its edge set E' is a subset of E



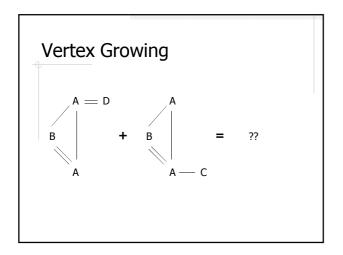


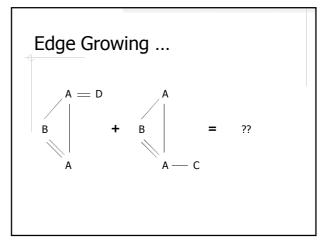
Apriori-based Approach

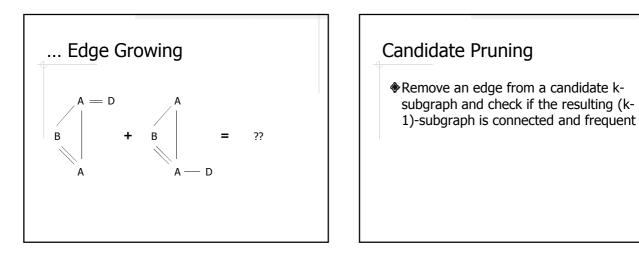
- Candidate generation
- Candidate pruning
- Support counting
- Candidate elimination

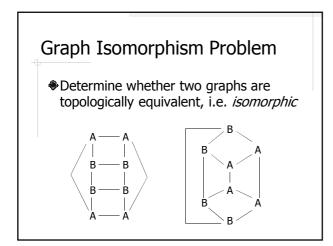
Candidate Generation

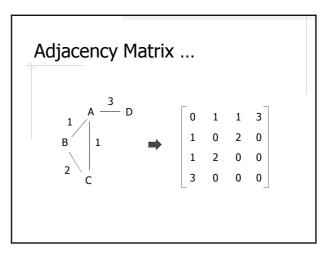
- Merge two frequent (k-1)-subgraphs to form a candidate k-subgraph
 What is k??
- The two (k-1)-subgraphs must share a common (k-2)-subgraph, referred to as their core

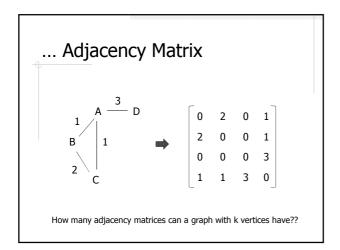


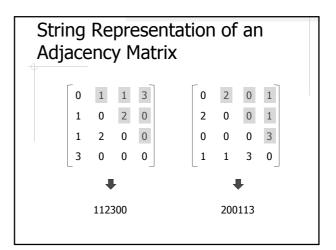












Graph Code

- ♦A.K.A. Canonical label
- The string representation of the adjacency matrix that has the lowest (or highest) lexicographic value

Support Counting

Isomorphism test a candidate ksubgraph against the k-subgraphs of each graph

Summary

- Frequent itemsets, association rules, sequential patterns, subgraph patterns
 - Measures: support, confidence, correlation
 - Algorithms: Apriori, FP-Growth, association rule generation, GPS
 - Optimizations: partitioning, vertical data format, various pruning techniques

Readings

- Textbook 5.1, 5.2, and 5.4
- Textbook 8.3.1 and GSP in 8.3.2