CS522 Advanced Database Systems

Data Cube Computation

Chengyu Sun
California State University, Los Angeles

The Data

sales

item | month | city
Fact (Measure)
Sales Jan LA
'- a) 2 | Feb | LA
Dimensions 1] an | Wy
= Month: 1, 2, 3, 4 1 Mar NY
= City: LA, Ny, LV, MI 1| Mar | Lv
w Item: 1, 2, 3 3| Apr | M

100
50
30

200
100
150

The Multidimensional Model

A Cuboid

_ &2 . .)
item | month | city | sales 'tL";/ <>3 D CUbOId {Iteml monthl C|tY}
1| Jan | LA | 100 12 Y et tem
2| Fb | LA | 50 e /
1] 3an | NY | 30 :Z 12%
€l
1 Mar | NY 200 ::> month Mar 0] 100 Jan| [100] 30
1| Mar | Lv 100 A month Feb
r
3 Apr MI 150 P W Mar 200 | 100
city Apr
LA NY LV MI
city
Data Cube More Cuboids
#A lattice of cubiods I
O 0-D (apex) cuboid

{item} {month} 1-D cuboid

{city}

{item, month} {item, city} {month, city;: 2-D cuboid

{item, month, city} 3-D (base) cuboid

{item, month} item > D\:H:H:I
O]

‘ Jan Feb Mar Apr
{month} ”

& 7

About the Data Cube

of cuboids??
#t of cells in each cuboid??

#How do a few records turn into so much
data??

Observations and Solutions

Observations
= Curse of Dimensionality
» Sparsity
» Closed coverage

Solutions

» Partial computation of data cube
+ Iceberg Cube
+ Shell Cube

= Cube compression
+ Closed Cube

Cell

A cell in a n-dimensional cube:
(a;,a,,..,a,, measure)

#a . is either a value or *

A cell is a m-dimensional cell if exactly m
valuesin {a,, a,,..,a,} are not *

#Base cell: m=n

Aggregate cell: m<n

Cell Examples

#C1: (*,*,LA,150)
#®C2: (2,%,LA,50)
#(C3: (1,Jan,LA,100)
#C4: (1,%,NY,230)
#C5: (*,*,NY,230)

Ancestor and Descendent
Cells

#An i-D cell a=(a,, a,,.., a,, measure,) is
an ancestor of a 5-D cell
b=(b,,b,,..,b,, measure,) iff
= i<j, and
= For 1<m<n, a,=b, whenever a #*
3 is a parent of b (and b a child of a)
= a is an ancestor of b, and
w =i+l

Ancestor and Descendent
Examples

#C1: (*,*,LA,150)
#C2: (2,%,*,LA,50)
#(C3: (1,Jan,LA,100)
#C4: (1,%,NY,230)
#C5: (*,*,NY,230)

Closed Cell

#A cell c is a closed cell if there is no
descendent of ¢ that has the same
measure as ¢

Closed Cell Examples

@ Which of the following are closed
cells??
= C1: (*,*,LA,150)
 C2: (2,%,*,LA,50)
= C3: (1,Jan,LA,100)
= C4: (1,%,NY,230)
= C5: (*,*,NY,230)

Closed Cube

A closed cube is a data cube consisting
of only closed cells

What's the closed cube of the following data??

item | month | city | sales
1 100
2 50

Jan LA

Feb LA

Query a Closed Cube

#(1,Jan,LA,??)
#(1,%,LA,??)
#(1,%,NY,??)
&(2,%*?77)
@(*’*,*’??)

Full Cube Computation
Example — Dimensions

item (a) month (b) city (c)
al 1 b1l Jan cl LA
a2 2 b2 Feb c2 NY
a3 3 b3 Mar c3 Lv
b4 Apr c4 MI

Cell examples:

(allbllcllloo) (a21*1c3l??) (*IbZI*I??)

Full Cube Computation
Example — Data Cube

all (1)
o

item (3) Ar’m city (4)

@] (&) o

>

o

o o
item, month (12) Qw, city month, city (16)
o

item, month, city (48)

Full Cube Computation

Approach 1: one cuboid (i.e. group-by)
at a time
= 2" scans

Approach 2: single scan??

Naive Single Scan ...

Create all cube cells in memory and
initialize them to 0

#Read in each record and update
corresponding cells

... Naive Single Scan

For example, after reading
(a1,b1,c1,100), the following cells will
be updated:
= (a1,b1,*), (al,*,cl), (*,bl,cl)

L) (all*l*)l (*lbll*)l (*I*IC]')
- (*/*/*)

Problem with naive single scan??

Reduce Memory Requirement
- Order Matters

Cells need to be kept in memory
= Read unsorted: 52
= Read sorted: ??

a b c sales

al bl 100
al bl 2 30
al b3 2 200
al b3 a3 100
a2 b2 a 50
a3 b4 4 150

Multiway Array Aggregation

Use a multidimensional array store the base
cuboid

Partition the array into chunks such that each
chunk can fit into the memory

Read in each chunk in certain order to
compute the aggregates

base cuboid — @ A chunk

MAA Example — Data

Three dimensions
» A: cardinality=40, partitions=4
» B: cardinality=400, partitions=4
» C: cardinality=4000, partitions=4

c
¢’
Co

b;

b,

b,

by

% a & &

MAA Example — 3D to 2D

#To compute all the 2D cells, which of
the ordering of the chunks is the best?
mSortbya, b, c
mSortbyb, a, c
mSortbyc, b, a

Iceberg Cubes

Data cubes that contain only cells with
aggregates greater than a minimum
threshold (minimum threshold support,
or minimum support)

The Apriori Property

#If a cell does not satisfy minimum
support, then no descendant of the cell
can satisfy the minimum support

Antimonotonic aggregation functions
» E.g. count, sum

Non-antimonotonic aggregation
functions
s E.g. avg

BUC

Bottom-Up Construction

An algorithm to compute iceberg cubes
with antimonotonic measures

It's actually top-down in our view of the
lattice of cuboids

BUC Example

A B C Sum

a, b [5
a, by [10
a; b, [3
a, b [6
a, b, (o) 4
4

a, b G

Compute an iceberg cube with sum > 5

BUC Outline ...

Aggregate all the input records

A B C Sum

a; by [5
a, by [10
aa b o 3 — (*,*,%,32)
a, by [6
a, b (oY 4
4

a b G

... BUC Outline ...

Partition the input records on the

distinct values of the next dimension

A B C Sum
a, b [5
a, by [10
a; by c 3
a, b [6
a; by [4
a, b, [4

a, by < 5
a; b, [4
a; b, c 3
a, by < 6
a, by [10
a, b, [4

... BUC Outline ...

If a partition satisfy the iceberg
condition, recursively call BUC using this
partition as input

a, by [5
a b] 4| == (all*l*llz)
a, b, [3

... BUC Outline

#If a partition satisfy the iceberg
condition, recursively call BUC using this
partition as input

a
a

a

by
b,
b,

< 5 a, by [5

[4 | = | a b o 4

c 3 a; by c 3

BUC (Bottom-Up Construction)

BUC(input, dim)
aggregate(input) // place result in outputRec
if(input.count() == 1) the
WriteAncestors(input[0],dim); return;
endif
write outputRec
for(d=dim ; d < numDims ; ++d)
C = cardinality[d]
Partition(input,d,C,dataCount[d])
for(i=0;i<C; ++i)
¢ = dataCount[d][i]
if ¢ >= min_sup
outputRec.dim[d] = input[k].dim[d]
BUC(input[k...k+c],d+1)
endif
k+=c
endfor
outputRec.dim[d] = all
endfor

BUC Example

A B C Sum # Aggregates
ay by Ct 5 w (**%,32)

* (ay,*,*,12)
a b o 10 v x

(@b, *,7)

a; b, [3 "
zobhoa 6 C@rn20)
a; b, [4 L

* (*,by,*21)
a, b, [4

Construct an Iceberg

.
* (%%cy14)

cube with sum>5

A Few Optimizations in BUC

Apriori pruning
Dimension ordering
Single record partition

Problems of Iceberg Cubes

May still be too large
Minimum support is hard to determine

Incremental updates require re-
computation of the whole cube

Cube Shells

Observation: most OLAP operations are
performed on a small number of
dimensions at a time

#® A cube shell of a data cube consists of
the cuboids up to a certain dimension

= E.g. all cuboids with 3 dimensions or less in
a 60-dimension data cube

Problems with Cube Shells

#They may still be too large
= E.g. how many cuboids in a 3-D shell of a
60-D data cube??
#They can't be used to answer queries
like
(location, product_type, suppli
er,2004,7?)

Shell Fragments

Compute only parts of a cube shell -
shell fragments

Answer queries using pre-computed or
dynamically computed data

Shell Fragment Example

1 a, by c d; e;
2 a; b, c dy e;
3 a, b, c d; e,
4 a, by c d; e,
5

a, b ST €3

Shell Fragments Construction

(1)

Partition the dimension into non-
overlapping groups — fragments

(a,b,c,d,e) = (a,b,c) and (d,e)

Shell Fragments Construction

(2)

4 Scan the base cuboid and construct an
inverted index for each attribute

Attribute value TID list List size
a, {1,2,3} 3
a, {4,5} 2
b, {1,4,5} 3
b, {2,3} 2
[{1,2,3,4,5} 5
d, {1,3,4,5} 4
d, {2} 1
e {1,2} 2
e, {34} 2
€ {5} 1

Shell Fragments Construction

3) ...

@ Compute the full /oca/ data cube
(except the local apex cuboid) for each
fragment
= Vs. Cube shell??

#Record an inverted index for each cell in
the cuboids

(a,b,c) 2 a, b, ¢, ab, ac, bc, abc
(d,e) > d, e de

... Shell Fragment
Construction (3) ...

ab cuboid
Cell | Intersection | TIDList | ListSize
(aub) | {1,23rn{145 | {1} 1
(auby) | {1,23rn{2,3} 2,3} 2
(axby) | {45} {1,4,5) {4,5} 2
(azb7) {45} n{2,3} ¢ 0

Inverted indexes are built as the cell
aggregates are computed

Apriori property can be used to prune some
computation

... Shell Fragment
Construction (3)

#Using an ID_measure array instead of
the original database table

TID ‘ Item_count ‘ sum
70
10
20
40

g AW N R
N U1 o W !,

30

Query Cube Fragments — Point
Query

Point query: all dimensions are
instantiated with either a value or *
#Examples:
u (alrbZIclleIell??)
» (34,b,,¢q,d,,*,?7?)
u (*rbZIclleI*l??)

Answering Point Queries

(@1 by ¢y, dy, &) (*/ by ¢y, dy ¥)
| | ?
{2,3y n {2}
l
{2}

Query Cube Fragments —
Subcube Query

Subcube query: at least one of the
dimensions is /nqguired (i.e. a group-by

Answering Subcube Queries

(al bZI Cyy *r €, ??)

Lo |

attribute) 31 %?}3} {23} n 2 g’f@
#Example: e;: {5}
2-D data cube ona and e Base cuboid of ae 1
(a by ¢y ¥ €27 . al (@ye) (3,€) (ayes) (82€) (82€) (aes)
a O/\O:O e Full cube computation \
ae Data cube on a and e
OLAP Storage Types A ROLAP Data Store

Relational OLAP (ROLAP)
Multidimensional OLAP (MOLAP)
Hybrid OLAP (HOLAP)

Summary fact tables

RID 1Item ocoo Day Month Quarter Year Sales

1001 TV 15 10 Q4 2003 250
1002 TV 23 10 Q4 2003 175
5001 TV all 10 Q4 2003 45,786
Summary Readings
Data cube # Iceberg cube # Textbook Chapter 4.1 except 4.1.4
= Cuboid = BUC
Closed cube # Cube shell
Full cube fragments
computation = Construction
= Multiway Array = Query

Aggregation # OLAP storage types

