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Cluster Evaluation

#®A.K.A. Cluster Validation
# Unsupervised

= Using no external information other than
the data itself

# Supervised

= With external information such as given
class labels

Reasons Not To Evaluate

# Clustering is often used as part of
exploratory data analysis

# Clustering is often used as part of other
algorithms

# Clustering algorithms, in some sense,
define their own types of clusters

Reasons To Evaluate ...
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() Original points. (1) Three elusters found by DESCAN.
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... Reasons To Evaluate
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(e} Theoe clusters found by K-means. (d) Thee clusters found by complete
Tink,
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Questions To Be Answered

# Do clusters actually exist?
# How many clusters are there?
# How good is a cluster/clustering?




Clustering Tendency

# Whether clusters exist in the first place

# Determine clustering tendency
= Cluster first, then evaluate the quality of
the clustering

+ Need to try several different types of clustering
algorithms

= Statistical tests for spatial randomness

Hopkins Statistic

# Generate p random points in the data space

= u,: distance of a randomly generated point to its nearest
neighbor in the original dataset

# Select p random points from the original dataset

= w,: distance of a randomly selected point to it nearest
neighbor in the original dataset

® Interpretation of Hopkins Statistic??
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Determine The Correct
Number of Clusters ...
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... Determine The Correct
Number of Clusters
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Silhouette Coefficient
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Quality (Validity) of Clusters

# Cohesion
= Compactness of a cluster
# Separation

Validity of Prototype-based
Clusters

cohesion(C,) = Zdist(x,ci)

xeC;

separation(C;,C ) = dist(c,,c;)

separation(C;) = dist(c,,c)




Validity of Graph-based
Clusters

cohesion(C,) = Zdist(x, y)

xeC;
yeC;

separation(C;,C;) = z dist(X,y)

Validity of A Clustering

k
validity(C) = w,xvalidity(C,)

i=1

xeC;
yeC;
Cluster Weights Silhouette Coefficient
Validity Measures Weights #For the ith object in a cluster
= a,: average distance to all other objects in
Zdisf(x’y) the cluster
C 11| = b,: minimum of the average distance to
e the objects in a cluster that does not
Zdist(x,ci) ) contain this object
xeC;
s, =(b,—a;)/ max(a,,b,)
dist(c;,c) |Gl

About Silhouette Coefficient

® Range of s, 7?
# What s a "good” value of s, ??
# Quality of an object: s,

# Quality of a cluster/clustering:
average s;

Silhouette Coefficient Example
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Figure 8.29. Silhouette coefficients for points in ten clusters.
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Similarity Matrix

# Sort the objects by cluster label
# Similarity Matrix M
= M(i,j) = similarity(x;,x;), 0<M(i,j)<1

Visualizing Clustering Results
Using Similarity Matrix

lg
0 Simiay

(a) Well-separated clusters. {b) Similarity matrix sorted by K-means
cluster labels.

Supervised Measures of
Cluster Validity

# Classification-oriented measures
= Evaluate the extent to which a cluster
contains the objects of a single class
# Similarity-oriented measures

= Evaluate the extent to which two objects of
the same class (or cluster) belong to the
same cluster (or class)

Classification-Oriented
Measures

# Entropy
# Purity
# Precision, recall, F-measure

Similarity-Oriented Measures —
Contingency Table

‘ Same cluster Different cluster

Same class fi1 fio

Different class fo1 foo

f — the number of pairs of objects

Example

# Classes: {p;,p,}, {P3/P4,Ps}
#® Clusters: {py,p,,Ps}, {P4,Ps}




Similarity Measures

Joo + S

Rand Statistic: R=—"""—"""
f00+f0]+‘f‘10+f;]

J= fll
f01+‘f10+-f11

Jaccard Coefficient:




