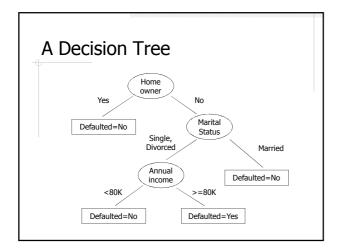
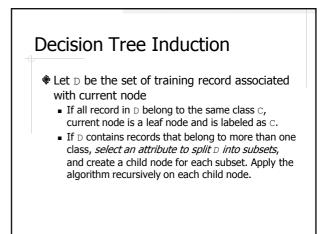
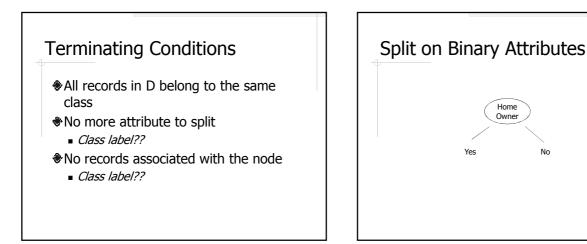


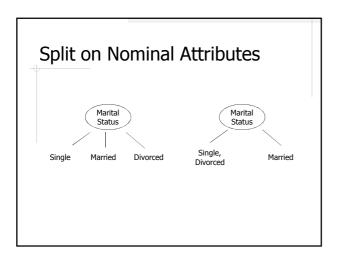
Class	ificat	ion v	/s. R	legre	ession	n			
attri Reg	sificati bute v ressior ierical	alues n pred	icts <i>c</i> a	ontinu					
SID	HW1	HW2	HW3	Final	Pass/Fail				
1	40	60	70	95	Passed				
2	10	15	11	65	Failed				
3	30	45	40	75	Passed				
4	35	50	35	?	?				

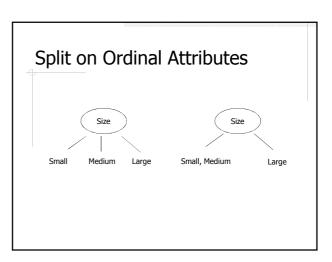
TID	Home Owner	Marital Status	Annual Income	Defaulted Borrower					
1	Yes	Single	125K	No					
2	No	Married	100K	No					
3	No	Single	70K	No					
4	Yes	Married	120K	No					
5	No	Divorced	95K	Yes					
6	No	Married	60K	No					
7	Yes	Divorced	220K	No					
8	No	Single	85K	Yes					
9	No	Married	75K	No					
10	No	Single	90K	Yes					



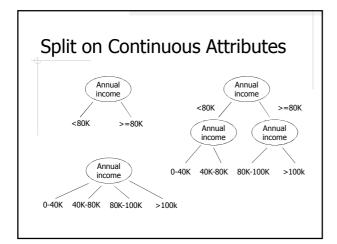


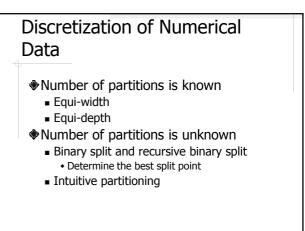


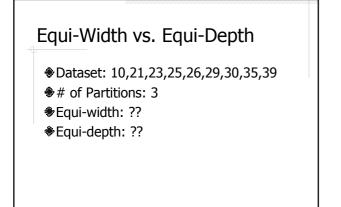


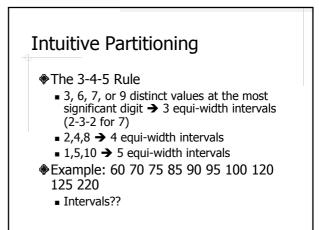


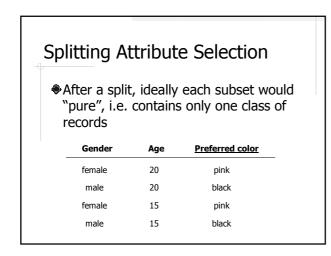
No

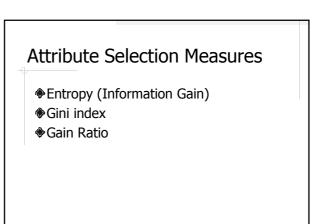










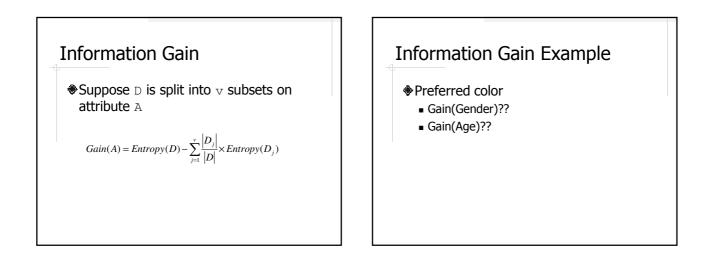


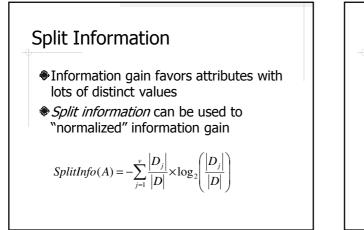
Entropy

$$Entropy(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
P_i is the fraction of records in D that belongs to class C_i
m is the number of classes in D

Entropy Example

- Preferred color
 - 2 black and 2 pink??
 - 3 black and 1 pink??
 - 4 black??





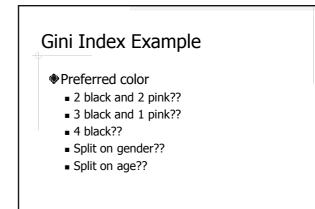
Gain Ratio

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

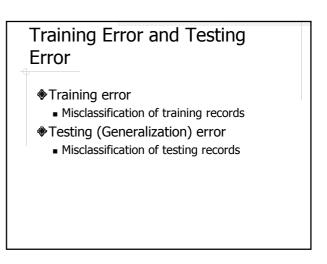
Gini Index

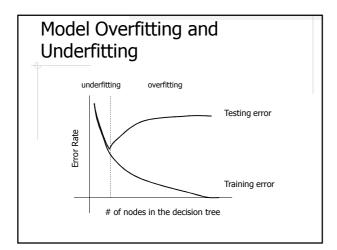
$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

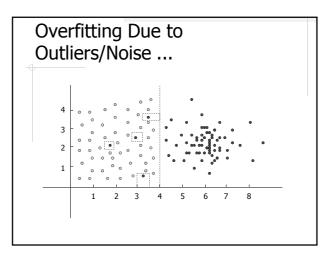
Used in the CART algorithm for *binary*
split

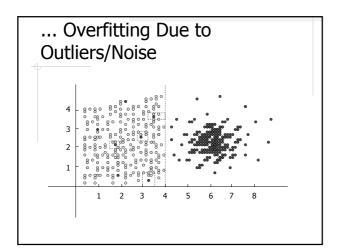


 sion nple	Tree	Indu	ction
A1	A2	A3	<u>c</u>
Y	L	20	C1
Y	S	9	C2
Ν	S	11	C2
Y	М	14	C1
Ν	L	14	C1
Y	S	15	C1
Нои	v do we m	ake the first	split??



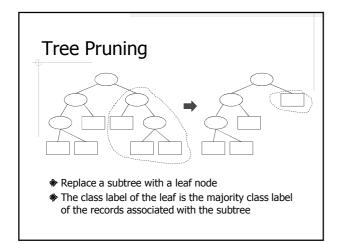






Occam's Razor

- A.K.A. Principle of Parsimony
- Given two models with the same generalization errors, the simpler model is preferred over the more complex model



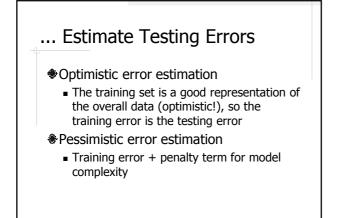
Prepruning

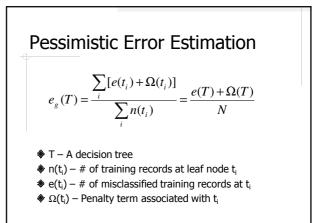
- Prune during decision tree construction
 - Number of records < threshold
 - "Purity gain" < threshold</p>

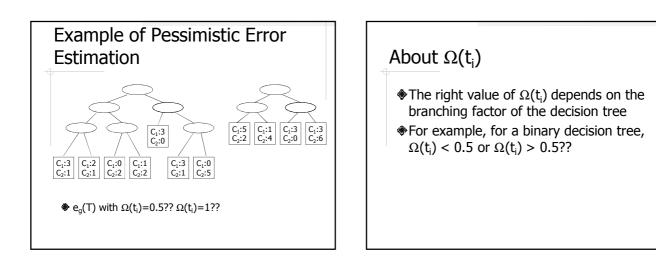
Postpruning Buttom-up pruning of a fully constructed tree Replace a subtree with a leaf node if it reduces testing error How do we know whether it reduces testing error or not?? Pruning based on Minimum Description Length (MDL)

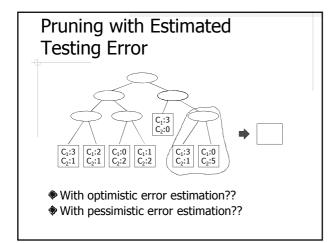
Estimate Testing Errors ...

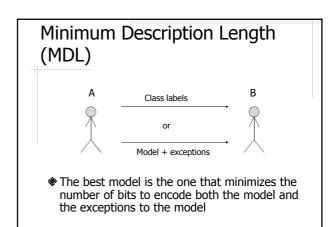
- Use a pruning/validation set
 - Usually 1/3 of the original training set
 - Less records for training

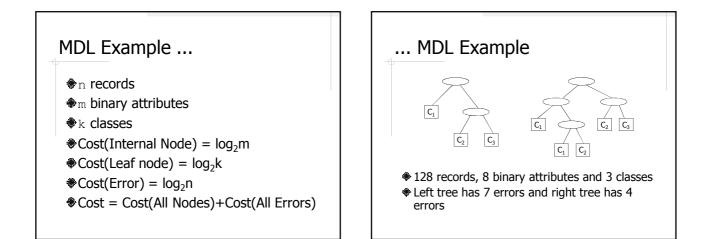


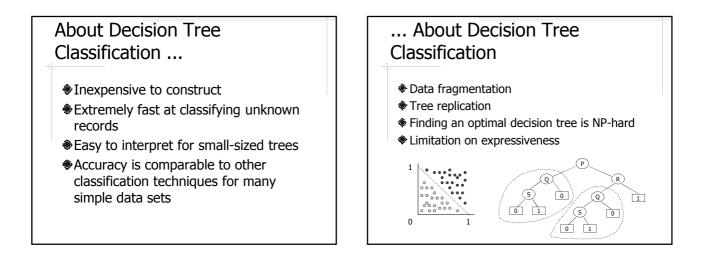












Readings

Texbook Chapter 6.1, 6.2, and 6.3