
### Difficulties in Classifier Evaluation and Comparison

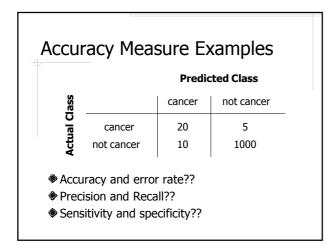
- Training error is not a good indicator of testing error
- Data with known class labels are often in short supply
- Costs of errors need to be taken into account
- Evaluation results must be evaluated themselves



| Confusion Matrix |            |                 |            |  |  |  |  |
|------------------|------------|-----------------|------------|--|--|--|--|
|                  |            | Predicted Class |            |  |  |  |  |
| SS               |            | cancer          | not cancer |  |  |  |  |
| Actual Class     | cancer     | 20              | 5          |  |  |  |  |
| Actua            | not cancer | 10              | 1000       |  |  |  |  |
| Act              | not cancer | 10              | 1000       |  |  |  |  |
|                  |            |                 |            |  |  |  |  |

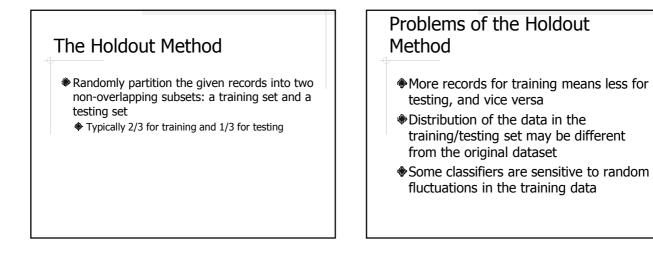





Precision and Recall  

$$precision = \frac{t - pos}{t - pos + f - pos}$$

$$recall = \frac{t - pos}{t - pos + f - neg}$$

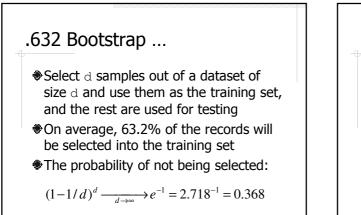

#### Sensitivity and Specificity

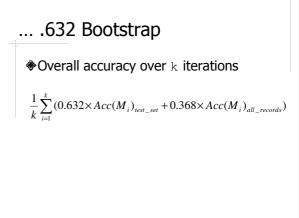
- Sensitivity = Recall
- Specificity = t\_neg/(t\_neg+f\_pos)





 More testing records → better accuracy estimate





#### Random Subsampling

- $\ensuremath{\circledast}\xspace \mathsf{Repeat}$  the holdout method  $\ensuremath{\Bbbk}$  times
- Take the average accuracy over the k iterations
- Random subsampling methods
  - Bootstrap Method
  - Cross-validation

#### **Bootstrap Method**

- Each iteration uses a sample to train the classifier, and the remaining records for testing
- Uniform sampling with replacement bootstrapping
  - The sample record may be selected more than once



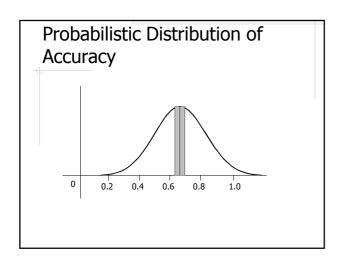


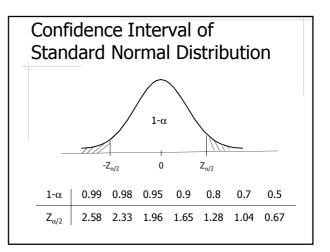
## K-fold Cross Validation

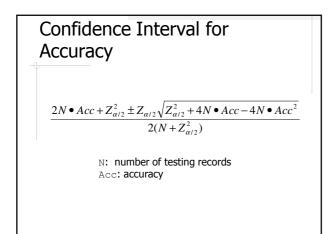
- Randomly divide the data into k nonoverlapping subsets of roughly equal size called *folds*
- Each iteration uses (k-1) subsets for training, and the remaining subset for testing

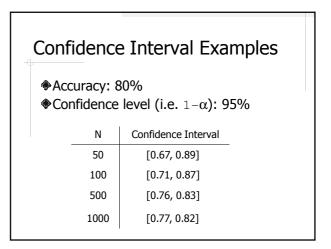
#### Variants of K-fold Cross Validation

- Stratified folds: the class distribution in each fold is roughly the same as in the original dataset
- Leave-one-out
- 10-fold Cross Validation


#### Accuracy Using K-fold Cross Validation


Total # of correctly classified records over k iterations


Total # of records in the original dataset

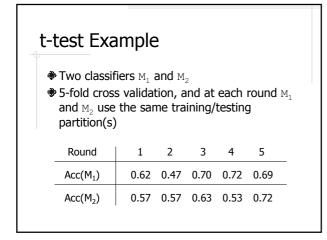

### **Confidence** Interval

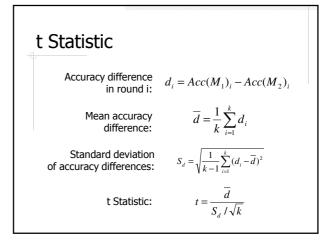
- Accuracies are estimated
- We want to say something like: the accuracy is in the range of 0.66±0.04 with 99% confidence
  - Confidence interval: 0.66±0.04
  - Degree of confidence (a.k.a. confidence level): 99%



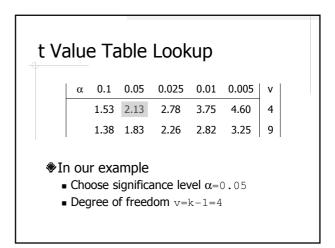








#### **Comparing Classifiers**

Is a classifier with 72% accuracy better than one with 68% accuracy? Or in other words, is the 4% difference statistically significant?


#### t-test

- Test whether the means of two normally distributed populations are the same
  - 1. Null hypothesis:  $\mu_1 \mu_2 = 0$
  - $\ensuremath{\text{2.}}$  Choose significance level:  $\ensuremath{\alpha}$
  - $_{\rm 3.}$  Calculate  $\rm t$  statistic
  - 4. Reject hypothesis if  $\texttt{t>t}_{\texttt{v},\,\alpha}$  where v is the degree of freedom





| t | Statistic                                                                         | Calc | ulat  | ion  | Exa  | mple  |
|---|-----------------------------------------------------------------------------------|------|-------|------|------|-------|
|   | Round                                                                             | 1    | 2     | 3    | 4    | 5     |
|   | $Acc(M_1)$                                                                        | 0.62 | 0.47  | 0.70 | 0.72 | 0.69  |
|   | $Acc(M_2)$                                                                        | 0.57 | 0.57  | 0.63 | 0.53 | 0.72  |
|   | d <sub>i</sub>                                                                    | 0.05 | -0.10 | 0.07 | 0.19 | -0.03 |
|   | $\overline{d} = 0.036$<br>$S_d = 0.109$ $t = \frac{0.036}{0.109/\sqrt{5}} = 0.74$ |      |       |      |      |       |



# Readings

Textbook 6.12, 6.13, and 6.15