
1

CS520 Web Programming
Introduction to Web Services

Chengyu Sun

California State University, Los Angeles

Client-Server Architecture

Client Server

p
ro
ce

ssin
g

data

result

Client-Server Example

Client Server

p
ro
ce

ssin
g

username

password

first_name

last_name

age

user not found

or

Socket Programming – Client

Tedious networking code

Application specific data exchange protocols

create socket

write string to socket

write string to socket

read string from socket

if(“user not found”) return null;

else

return new User(

read string from socket

read string from socket

read integer from socket

)

close socket

Client-Server Interaction as
Function Calls

Client

Server

User user = auth(username, password);

User auth(String u, String p)

{ … return user; }

Automatically translate function calls to

network operations

� Encode and decode parameters and return

values

� Send and receive data between the client
and the server

RPC and RMI

Remote Procedure Call (RPC)

� C

Remote Method Invocation (RMI)

� Java

2

RMI – Server

Create a service interface

� Remote interface

� Declares the methods to be remotely invoked

Create a service implementation

� Remote object

� Implements the methods to be remotely invoked

Register the service with a RMI registry so a
client can find and use this service

RMI – Client

Connect to the RMI registry

Look up the service by name

Invoke the service

RMI Example: AuthService

Shared by both server and client
� AuthService

� User

Server
� AuthServiceImpl

� AuthServiceStartup

Client
� AuthServiceClient

Why does User have to implement the Serializable interface?

What exactly does registry.lookup() return?

How RMI Works

Registry

Remote

Object

Client

code

1. Lookup

Stub
(Proxy)

2. Stub (proxy)

0. Register

3. Method invocation

5. Result

4. Parameters

6. Return result

Client Server

Cross Platform RPC

The client and the server use different
languages and/or platforms

Client Server

C/C++
Java
C#
Python
PHP
…

C/C++
Java
C#
Python
PHP
…

Windows
Linux
…

Windows
Linux
…

??

How do we define service interface??

CORBA

Common Object Request Broker Architecture

Use Interface Definition Language (IDL) to
describe service interface

Provide mappings from IDL to other
languages such as Java, C++, and so on.

Service

Implementation

Service

Interface
in IDL

Java

C++

…

ServerClient

3

IDL Example

module bank {

interface BankAccount {

exception ACCOUNT_ERROR { long errcode; string message;};

long querybalance(in long acnum) raises (ACCOUNT_ERROR);
string queryname(in long acnum) raises (ACCOUNT_ERROR);

string queryaddress(in long acnum) raises (ACCOUNT_ERROR);

void setbalance(in long acnum, in long balance) raises (ACCOUNT_ERROR);
void setaddress(in long acnum, in string address) raises (ACCOUNT_ERROR);

};

};

(Traditional) Web Services

RPC over HTTP

� Client and server communicate using HTTP
requests and responses

Many different web service protocols

� Language support: single language vs.
language independent

� Message encoding: binary vs. text

Most widely used: SOAP

Web Service Example:
HashService

HashService
� @WebService

� @WebMethod

web.xml

sun-jaxws.xml
� <endpoint>

Metro

http://metro.java.net/

A Java web service library backed by
SUN/Oracle

Implementation of the latest Java web service
specifications

Guaranteed interoperability with .NET
Windows Communication Foundation (WCF)
web services

Easy to use

Other Java Web Service
Libraries

Apache Axis2

� http://axis.apache.org/axis2/java/core/

Apache CXF

� http://cxf.apache.org/

WSDL

A language for describing web services

� Where the service is

� What the service does

� How to invoke the operations of the
service

Plays a role similar to IDF in CORBA

4

Sample WSDL Documents

HashService -
http://localhost:8080/ws/hash?wsdl

Amazon ECS -
http://webservices.amazon.com/AWSEComm
erceService/AWSECommerceService.wsdl

How Do We Describe an API

interface Foo {

…

int bar(String, BigDecimal)

}

interface name

Method name ParametersReturn value

Type

How Do We Describe an Web
Service API

Type

Parameters

Return values

Method name

Interface name

WSDL

<types>

<message>
(request and response)

<operation>

<portType>

Web Service Example:
Consume HashService

Generate client side interface and stub
from WSDL using Metro’s wsimport

Write client code

SOAP

http://www.w3.org/TR/soap/

Simple Object Access Protocol

Client

Web Service
Client

Server

Web Service
Implementation

SOAP

A Sample SOAP Message

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/1999/XMLSchema-instance
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:doSpellingSuggestion xmlns:ns1="urn:GoogleSearch"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<key xsi:type="xsd:string">00000000000000000000000000000000</key>
<phrase xsi:type="xsd:string">britney speers</phrase>

</ns1:doSpellingSuggestion>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5

A Sample SOAP RPC Response

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/1999/XMLSchema-instance
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:doSpellingSuggestionResponse xmlns:ns1="urn:GoogleSearch“

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string">britney spears</return>

</ns1:doSpellingSuggestionResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A Sample Fault Response

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>

<faultstring>Client Error</faultstring>
<detail>

<m:dowJonesfaultdetails xmlns:m="DowJones">
<message>Invalid Currency</message>

<errorcode>1234</errorcode>
</m:dowJonesfaultdetails>

</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Encoding

http://schemas.xmlsoap.org/encoding

Include all built-in data types of XML
Schema Part 2: Datatypes
� xsi and xsd name spaces

SOAP Encoding Examples

<a xsi:type="xsd:int">10

<x xsi:type="xsd:float">3.14159</x>

<s xsi:type="xsd:string">SOAP</s>

int a = 10;

float x = 3.14159;

String s = “SOAP”;

Compound Values and Other
Rules

References, default values, custom types,
complex types, custom serialization …

<iArray xsi:type=SOAP-ENC:Array SOAP-ENC:arrayType="xsd:int[3]">

<val>10</val>
<val>20</val>

<val>30</val>

</iArray>

<Sample>

<iVal xsi:type="xsd:int">10</iVal>
<sVal xsi:type="xsd:string">Ten</sVal>

</Sample>

UDDI

Universal Description Discovery and
Integration

A registry for web services

A web API for publishing, retrieving,
and managing information in the
registry

6

UDDI Registries
Problems with SOAP Web
Service

Very complex

� Based on some very complex specifications

� Very difficult to create supporting libraries

� Virtually impossible to use without
supporting libraries

Not very efficient

RESTful Web Services

A RESTful Web Service

Get user with id=1: /service/user/1

<user>

<id>1</id>

<firstName>John</firstName>

<lastName>Doe</lastName>

<email>jdoe1@localhost</email>

</user>

Request

XML Response or JSON Response

{

“id”: 1,

“firstName”: “John”,

“lastName”: “Doe”,

“email”: “jdoe1@localhost”

}

Is This Really A Web Service?

Where is the method call?

Why does it look like a web application?

Why is it called RESTful?

Where Is The Method Call?

Answer: does it have to be a method
call?

User user = getUser(1);

HTTP request: http://<host>/service/user/ 1

HTTP response

The downside is that now it’s the client’s responsibility
to turn an HTTP response into a “return value”.

Why Does It Look Like A Web
Application?

Answer: it does, and it’s a good thing.

Now all web technologies/languages
can be used to create web services
(and you don’t have to implement
complex specifications like SOAP).

7

Why Is It Called RESTful?

REpresentational State Transfer

Introduced by Roy Fielding in his Ph.D.
dissertation on network-base software
architecture

Describes the common characteristics of
scalable, maintainable, and efficient
distributed software systems

The REST Constraints

Client and server

Stateless

Support caching

Uniformly accessible

Layered

(Optional) support code-on-demand

RESTful Web Services

Web applications for programs
� Generate responses in formats to be read by
machines (i.e. XML and JSON) rather than by
humans (i.e. HTML)

Simulate how the static web (the largest
REST system) works

� Use URLs that look like static web pages

� Utilize HTTP request methods and headers

� Stateless

RESTful Web Service Example

User Management

� List

� Get

� Add

� Update

� Delete

Create a RESTful Web Service

Identify resources and operations

Determine resource representation, i.e.
data exchange format between the
service and the clients

Design URL and request mapping

Implement the operations

Resource Representation

XML

� Already widely in use as

a platform independent

data exchange format

� XML parsers are readily
available in many

languages

JSON

� Much more concise than

XML

� Can be used directly in

JavaScript

Data format should be easily
“understandable” by all programming
languages

8

URL Design and Request
Mapping Conventions (1)

Operation: get a user

URL

� /user/{id} or

� /user/get?id={id}

Path variable based design is usually preferred to
request parameter based design.

URL Design and Request
Mapping Conventions (2)

Operation: get a user

Choose which data format to use

Solution:
� /user/{id}.{format}

� Check the Accept request header

Checking Accept header is preferred in theory, but
the URL based solution is more convenient in practice,
e.g. https://dev.twitter.com/docs/api/1.1

URL Design and Request
Mapping Conventions (3)

Map HTTP Request Methods to CRUD
operations

� POST (or PUT)

� GET

� PUT (or POST)

� DELETE

� Create

� Retrieve

� Update

� Delete

Request Mapping Example

GET /user/1 HTTP 1.1Get a user

Operation

Delete a user DELETE /user/1 HTTP 1.1

HTTP Request

Update a user PUT /user/1 HTTP 1.1

{ “id”:1,

“firstName”:“John”,

“lastName”:“Doe”,

“email”:“jdoe@localhost”}

Service Implementation –
Know Your Libraries

Map HTTP requests to service operations

� Modern webapp framework like Spring

� Jersey - https://jersey.java.net/

Convert between objects and XML/JSON

� Simple XML Serialization -
http://simple.sourceforge.net/

� Jackson - http://jackson.codehaus.org/

Serialization and
Deserialization

Java
Object

XML/JSON

Serialization

De-serialization

9

Service Implement Example:
Simple XML Serialization

Dependency
� org.simpleframework:simple-xml

Usage

� Content type

� Serializer and Persister

Service Implementation
Example: Jackson

Dependency
� com.fasterxml.jackson.core:jacks

on-databind

Additional view resolver
� BeanNameViewerResolver

Additional view
� MappingJackson2JsonView

Using Multiple View Resolvers
in Spring

View resolution order

� Order of the resolver beans, or

� Based on the order property of the beans

InternalResourceViewResolver

should always be the last

Access RESTful Web Service

Apache HttpClient

� http://hc.apache.org/httpcomponents-client-ga/

HttpUrlConnection

� http://developer.android.com/reference/java/net/
HttpURLConnection.html

Examples:
� XmlClient and JsonClient

� CSNSAA

Summary

RPC and RMI

CORBA

� IDL

SOAP, WSDL, UDDI

� Create and consume SOAP web services
using Metro

RESTful web services

Further Readings

Java Web Services Up and Running by
Martin Kalin

RESTful Java Web Services by Jose
Sandoval

The Rise and Fall of CORBA by Michi
Henning

