CS520 Web Programming
Introduction to Ajax and jQuery

Chengyu Sun
California State University, Los Angeles

Th

o8

ience

The Desktop Advantage

#Large selection of GUI components
#Interactive

= Rich event model
#Responsive

= Partial redraw

HTML Event Models

HTML 4 Event Model

= HTML 4.01 Specification -
http://www.w3.0rg/TR/REC-
html40/interact/scripts.html#h-18.2.3

» Limited but widely supported
Standard Event Model

= DOM Level 2 HTML Specification -
http://www.w3.0rg/TR/DOM-Level-2-
Events/events.html

Browser specific event models

Events and Event Handler

#Events
= onfocus, onblur, onkeypress, onkeydown,
onkeyup, onclick, ondbclick,
onmousedown, onmouseup,
onmousemove, ONMOoUSEOVer ...
Specify event handler
= <element event="code”>
= For example:

<button onclick="clickHandler ();">click</button>

Example: Event Handling

#41.html

= Uses X Library from http://cross-
browser.com/
» Event handler
* Written in JavaScript
* Modify the HTML document

JavaScript

4 Interpreted language
% Originally developed by Netscape
Syntax is similar to Java

Web Server

A

Client-side Core Server-side

Browser

Core JavaScript

#Mainly covers language syntax, which is
similar to Java
#Some “un-Java-like” language features
= Object creation
= Functions as first-class citizens

Object Creation — Approach 1

var car = new Object();
car.make = ‘Honda’;
car.model = “‘Civic’;
car.year = 2001;

var owner = new Object();
owner .name = ‘Chengyu’;

car.owner = owner;

4 A JavaScript object consists of a set of
properties which can be added dynamically

Object Creation — Approach 2

var car = {
make: ‘Honda’,
model: ‘Civic’,
year: 2001,
owner: {

name: ‘Chengyu’

}

bi

#® Object Literal

Object Creation — Approach 3

var car = {
‘make’: ‘Honda’,
‘model’: ‘Civic’,
‘year’: 2001,
‘owner’: {
‘name’: ‘Chengyu’

}
}i

JSON (JavaScript Object Notation)

Functions as First-class
Citizens

#In JavaScript, functions are considered
objects like other object types
= Assigned to variables
= Assigned as a property of an object
= Passed as a parameter
= Returned as a function result

= Function literals (i.e. functions without
names)

Function Examples

function foo() { Regular function
alert ('foo'); creation

}

bar = function() { « Function literal
alert('bar'); « Function assignment

}

setTimeout (bar, 5000); Function as parameter

setTimeout (function() {
alert (‘foobar’);},
5000)

Function literal
as parameter

Client-Side JavaScript

#Embed JavsScript in HTML
» <script>
¢ type="text/javascript”
¢ language=“JavaScript”

¢ src="path_to_script_file”

#Run inside a browser

Processing an HTML
Document

<html>
<head> <title>JavaScript Example</title></head>
<body>
<h1>JavaScript Example</h1>
<p>Some content.</p>
</body>
</html>

#As a text file — very difficult
As an object

Document Object Model
(DOM)

#Representing documents as objects so
they can be processed more easily by a
programming language

DOM Representation

‘ “JavaScript Example” | ‘ “JavaScript Example” | | “Some content.” |

Manipulate a Document

#Find Elements
#Modify Elements
Create Elements

Find Elements

#document.getElementById()
#document.getElementsByName()

#document.getElementsByTagName()

Modify Elements ...

#HTMLElement properites and methods
« IE
¢ innerHTML
¢ innerText
+ insertAdjacentHTML()
+ insertAdjacentText()
= Netscape/Mozilla
¢ innerHTML
= Element-specific

... Modify Elements

#node
= setAttribute(), removeAttribute()
= appendChild(), removeChild()
= insertBefore(), replaceChild()

Create Elements

#document
= createElement()
= createTextNode()

Example: Document
Manipulation

#52.html
= Read and display the text input
= Display "Hello <name>"??
= Add text input to table??

Create Desktop-Like Web
Applications

Interactivity

= HTML events

= JavaScript for event handling

= DOM for document manipulation
#Responsiveness??

Communicate with Server

#The synchronous request-response
model is still a limiting factor in
responsiveness

Solution: XMLHttpRequest
= A JavaScript object
+ Send request and receive response
= Response can be handled asynchronously
+ Do not need to wait for the response

Understand Asynchronous ...

4 Synchronous # Asynchronous

send(request); send(request);

// wait for response // don’t wait for response
process(response); process(response);

// do other things // do other things

What’s the problem??
What's the solution??

... Understand Asynchronous

Asynchronous
// callback function // set a callback function
function foo(response) // which will be called
{ // when the response comes
process(response); // back

Yoo

3 send(request);
Same as handling events
like click. // do other things

An XMLHttpRequest Example

#al.html
= A client scripts sends an XMLHttpRequest
= A servlet responses with a random number

= When the message arrives on the client, a
callback function is invoked to update the
document

About the Example

clickHandler()
#newXMLHttpRequest()
updateDocument()

getReadyStateHandler()

XMLHttpRequest - Properties

onreadystatechange 4 responseBody

readyState # responseStream
» 0 - uninitialized # responseText
= 1 —loading
= 2 — loaded # responseXML

= 3 —interactive
» 4 — complete
% status
% statusText

XMLHttpRequest - Methods

4 abort()
4 getAllResponseHeaders()
getResponseHeader(header)

4 open(method, url, asyncFlag, username,
password)
= asyncFlag, username, password are optional
4 send(messageBody)
setRequestHeader(name, value)

So What is Ajax?

Asynchronous JavaScript and XML

= http://www.adaptivepath.com/ideas/essays
/[archives/000385.php

= JavaScript + XMLHttpRequest
Characteristics of Ajax

= Non-blocking — the server response is
handled asynchronously with a callback
function

= Partial page update using JavaScript

More About AJAX

#XMLHttpRequest used to be an IE
specific feature that received little
attention

#1It's all started by Google Maps

#The beginning of “Web 2.0”

Key Elements of an Ajax
Operation

Client Server
Event # Process the request
Event handler # Send back a response

= Create a XMLHttpRequest
= Attach a callback function
= Send the request

Callback function
= Process the response
= Update the HTML Page

Problems of Plain JavaScript +
XmlIHttpRequest

#Each browser has their own JavaScript
implementation

= Code that works on some browsers may
not work on others

#Lack of pre-made GUI components
#Implementing Ajax operations is quite
tedious

JavaScript/Ajax Frameworks
and Libraries

#http://en.wikipedia.org/wiki/List of Aja
x_frameworks
= Cross-browser compatibility
+ New JavaScript API, e.g. X Lib, JQuery
+ New language, e.g. ZK, Taconite
= Pre-made, Ajax-enabled GUI component

= Simplify the implementation of Ajax
operations

One Library to Rule Them All -
JQuery

#jQuery - http://iquery.com/
#jQuery UI - http://jqueryui.com/
#The market share of jQuery

= http://trends.builtwith.com/javascript/javas
cript-library

A jQuery Example

#®53.html
= Usage
= jQuery wrapper
= Selectors
= Elements
= Events and event handling
= DOM manipulation

Use jQuery Library

http://jquery.com/download/
= Local copy vs. CDN hosted
ml.xVS2.x

jQuery Wrapper

#jQuery () oOr $()

= Return a collection of matched elements
either found in the DOM based on passed
argument(s) or created by passing an

HTML string.
$(:input[name:'firstName']T)
Y
$("#uhon) $("Ht1n)
— —
\

Selector /

Basic Selectors

% By id # By attribute
= S (“#foo”) u $(“[name]”)

By tag name = $(“[name=‘joe’]")
= S (“div”)

% By CSS class
m $(“.fo0”)

Combine Selectors

#Select all the <div> elements with CSS
class foo and an attribute bar

$(“div.foo[bar]”)

#Select all the <div> elements, and all
the elements with CSS class foo, and
all the elements with an attribute bar

$(“div, .foo, [bar]”)

Other Selectors and Filters

% Form selectors
#

#Hierarchy selectors

#Filters

What Can We Do With An
Element

Get and set # Manipulate CSS

= html () m addClass ()
m attr() m removeClass()
= prop() » toggleClass ()
n val() m hasClass ()

Property tagName

<input name=“username” value=“cysun” />
Attribute name val()

Typical Event and Event
Handling in jQuery

Event

S ("#click") .click(

i

<button id="click”

Click Me</button>

Event Handler

!

function () {

Unobtrusive JavaScript:
separate style, behavior, and structure.

!

1 N o .
lick="digp] 51>

Document Ready Event
#Triggered when the DOM hierarchy of
the HTML document is fully constructed

$(document).ready(handler)

A g

$() .ready(handler) (notrecommended)

$

$(handler)

Other Events

4 Mouse events
m .click()
m .dbclick()
" ...
% Keyboard events
= .keyup ()
» .keydown ()
m .keypress()

Form events
= .change ()
= .submit ()
LI

@ Browser events
m .resize()

Document events

DOM Manipulation

4 Insertion # Removal

= Around (i.e. parent) 4 Replacement
= Inside (i.e. children)
= Outside (i.e. sibling)

Example:

$("#tl") .append("<tr><td>John</td><td>Doe</td></tr>");

Example: jQuery Tic Tac Toe

#j4.html

AJAX with jQuery

http://api.jguery.com/category/ajax/
#$.ajax(url [, settings])
= url: request URL
= data: data to be sent to the server
= success: a function to be called if the
request succeeds
#Example: a2.html

Example: Who's Online (I)

Who's Online

- cysun
* admin

#WhosOnlineService bean

= In-memory storage like the “application
scope” in servelt programming

#1,0gin, Logout
#WhosOnline controller and view

Who's Online (II)

#Use an AJAX request to get the list of
online users as a JSON object, then use
the JSON object to populate the list

= JSON

= Jackson

= JSON view in Spring
= More jQuery

Java JSON Library

Serialize and de-serialize Java objects
% Jackson

= http://wiki.fasterxml.com/JacksonHome
= Maven dependency: jackson-databind

#Gson
= https://code.google.com/p/google-gson/

Jackson and Spring

#Add a BeanNameViewResolver
#Add a MappingJackson2JsonView

#Model objects passed to the view will be
automatically serialized to JSON

Who's Online (III)

Automatically update the Who's Online
list
n How??

Repeated Requests

Refresh response header, or

E 3
#setInterval (function,
interval) in JavaScript

Asynchronous Request
Processing

#Introduced in Servlet 3.0 specification
Supported by Spring 3.2+

= http://docs.spring.io/spring/docs/current/s

pring-framework-
reference/html/mvc.html#mvc-ann-async

Enable Asynchrous Request
Processing

#web.xml
» Add <async-supported> to servlets and

filters
= Add <dispatcher> to filter mapping
<servlet>-context.xml

» Add <mvc:async-support> to
<mvc:annotation-driven>

DeferredResult ...

http://docs.spring.io/spring/docs/curren

t/javadoc-

api/org/springframework/web/context/r
equest/async/DeferredResult.html

... DeferredResult ...

Controller code:

@RequestMapping ("/whosonline.deferred.json")

@ResponseBody
public DeferredResult<String> wosDeferred()

{
DeferredResult<String> deferredResult =

new DeferredResult<String>();
return result;

}

Some other code:

deferredResult.setResult (data) ;

10

... DeferredResult

Controller can return immediately so
the associated servlets and filters can
finish and their resources released

#The response remains open until
setResult (data) is called, at which
point data is sent back to the client as
the response body (per
@ResponseBody)

How Will Who's Online Work

WhosOnlineService Controller

Users Deferred Results

getUpdatedUserList()
{

// add a DeferredResult
// to the Results list

LTS

addUser() and removeUser()

// update Users list
// setResult() to all DeferredResults
// in the Results list

Use Jackson’s ObjectMapper

http://fasterxml.github.io/jackson-
databind/javadoc/2.3.0/com/fasterxml/j

ackson/databind/ObjectMapper.html

= JSON to Java
¢ readValue(input, type)

= Java to JSON

*writeValue(output, object)

Potential Issues

#Concurrency issues

= E.g. multiple users login/logout at the
same time

#Speed issues

= E.g. requests coming in faster than we can
setResult()

#Various exceptions
= E.g. connection timeout

Some Possible Solutions

#Use thread-safe data structures in
java.util.concurrent

#Keep track of which client has already
been served

11

