
1

CS520 Web Programming
Object-Relational Mapping with Hibernate and JPA

Chengyu Sun

California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects

So we use object-oriented languages to
write applications

We want to store some of the
application objects (a.k.a. persistent
objects)

So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
� Best performance

� Most reliable

� Widest support

Bridge between OO applications and
relational databases
� CLI and embedded SQL

� Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)

Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);

Statement stmt = c.createStatement();

ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL

SQL statements are embedded in host
language

String name;

#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

}

2

Employee – Database Table

create table employees (

id integer primary key,

name varchar(255),

supervisor integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;

String name;

Employee supervisor;

public Employee(Integer id)

{
// access database to get name and supervisor

… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {
…
PreparedStatment p;
p = connection.prepareStatment(

“select * from employees where id = ?”
);
…

}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);
…

}
}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

…
supervisor = ??

}
}

The ORM Approach

customer

employee

account

Application

Persistent Data Store

ORM tool

Oracle, MySQL, SQL Server …

Flat files, XML …

3

Hibernate and JPA

Java Persistence API (JPA)

� Annotations for object-relational mapping

� Data access API

� An object-oriented query language JPQL

Hibernate

� The most popular Java ORM library

� An implementation of JPA

Hibernate Usage

Hibernate without JPA
� API: SessionFactory, Session, Query,
Transaction

� More features

Hibernate with JPA
� API: EntityManagerFactory,
EntityManager, Query, Transaction

� Better portability

� Behaviors are better defined and documented

A Hibernate Example

Java classes
� Employee.java

JPA configuration file
� persistence.xml

Code to access the persistent objects
� EmployeeTest.java

(Optional) Logging configuration files
� log4j.properties

Java Classes

Plain Java classes (POJOs); however, it
is recommended that

� Each persistent class has an identity field

� Each persistent class implements the
Serializable interface

� Each persistent field has a pair of getter
and setter, which don’t have to be public

O/R Mapping Annotations

Describe how Java classes are mapped to
relational tables

@Entity Persistent Java Class

@Id Id field

@Basic (can be omitted) Fields of simple types

@ManyToOne
@OneToMany

@ManyToMany
@OneToOne

Fields of class types

persistence.xml

<persistence-unit>
� name

<properties>

� Database information

� Provider-specific properties

No need to specify persistent classes

4

Access Persistent Objects

EntityManagerFactory

EntityManager

Query and TypedQuery

Transaction

� A transaction is required for updates

Some EntityManager Methods

find(entityClass, primaryKey)

createQuery(query)

createQuery(query, resultClass)

persist(entity)

merge(entity)

getTransaction()

http://sun.calstatela.edu/~cysun/documentation/jpa-2.0-api/javax/persistence/EntityManager.html

Persist() vs. Merge()
Scenario Persist Merge

Object passed was
never persisted

1. Object added to persistence
context as new entity
2. New entity inserted into database
at flush/commit

1. State copied to new entity.
2. New entity added to persistence
context
3. New entity inserted into
database at flush/commit

4. New entity returned

Object was
previously
persisted, but not
loaded in this
persistence context

1. EntityExistsException thrown (or
a PersistenceException at
flush/commit)

1. Existing entity loaded.
2. State copied from object to
loaded entity
3. Loaded entity updated in
database at flush/commit

4. Loaded entity returned

Object was
previously persisted
and already loaded
in this persistence
context

1. EntityExistsException thrown (or
a PersistenceException at flush or
commit time)

1. State from object copied to
loaded entity
2. Loaded entity updated in
database at flush/commit
3. Loaded entity returned

http://blog.xebia.com/2009/03/jpa-implementation-patterns-saving-detached-entities/

Java Persistence Query
Language (JPQL)

A query language that looks like SQL,
but for accessing objects

Automatically translated to DB-specific
SQL statements

select e from Employee e

where e.id = :id

� From all the Employee objects, find the
one whose id matches the given value

See Chapter 4 of Java Persistence API, Version 2.0

Hibernate Query Language
(HQL)

A superset of JPQL

http://docs.jboss.org/hibernate/core/4.
2/manual/en-US/html/ch16.html

Join in HQL …

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
User instructor;
…

}

id

users sections

instructor_ididusername

1 cysun

2 vcrespi

11

12

23

5

… Join in HQL …

Query: find all the sections taught by
the user “cysun”.

� SQL??

� HQL??

… Join in HQL …

Database tables??

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
Set<User> instructors;
…

}

… Join in HQL

Query: find all the sections for which
“cysun” is one of the instructors

� SQL??

� HQL??

Advantages of ORM

Make RDBMS look like ODBMS

Data are accessed as objects, not rows and
columns

Simplify many common operations. E.g.
System.out.println(e.supervisor.name)

Improve portability
� Use an object-oriented query language (OQL)

� Separate DB specific SQL statements from
application code

Object caching

SchemaExport

Part of the Hibernate Core library

Generate DDL from Java classes and
annotations

In Hibernate Examples, run Hbm2ddl
<output_file>

Basic Object-Relational
Mapping

Class-level annotations

� @Entity and @Table

Id field

� @Id and @GeneratedValue

Fields of simple types

� @Basic (can be omitted) and @Column

Fields of class types

� @ManyToOne and @OneToOne

6

Advanced ORM

Embedded class

Collections

Inheritance

Embedded Class

public class Address {
String street;
String city;
String state;
String zip;

}

users

id … street city state zip …

public class User {
Integer id;
String username
String password;
Address address;

}

Mapping Embedded Class

@Embeddable
public class Address {

String street;
String city;
String state;
String zip;

}

@Entity
public class User {

@Id
Integer id;
String username
String password;
@Embedded
Address address;

}

Collection of Simple Types

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

Mapping Element Collection

id

customers Customer_phones

Customer_id phones

@ElementCollection
Set<String> phones;

Customize Collection Table

@ElementCollection
@CollectionTable(

name = “customer_phones”,
joinColumns=@JoinColumn(name = “customer_id”)

)
@Column(name=“phone”)
Set<String> phones;

7

List of Simple Types

Order by property

� @OrderBy(“<property_name> ASC|DESC”)

� Simple types do not have properties

Order by a separate column

@ElementCollection

@OrderBy(“asc”)
List<String> phones;

@ElementCollection

@OrderColumn(name = “phone_order”)
List<String> phones;

Issues Related to Collections
of Object Types

Relationships (a.k.a. associations)

� one-to-many

� many-to-many

Unidirectional vs. Bidirectional

Set and List

Cascading behaviors

Types of Relationships

Many-to-Many

Many-to-One / One-to-Many

One-to-One

Many-to-Many Relationship

Each entity in E1 can
be related to many
entities in E2

Each entity in E2 can
be related to many
entities in E1

E1 E2

Many-to-One Relationship

Each entity in E1 can
be related to one
entities in E2

Each entity in E2 can
be related to many
entities in E1

E1 E2

One-to-One Relationship

Each entity in E1 can
be related to one
entities in E2

Each entity in E2 can
be related to one
entities in E1

E1 E2

8

Relationship Type Examples

Books and authors??

Books and editors??

One-To-Many Example

A customer may own multiple accounts

An account only has one owner

Bidirectional Association – OO
Design #1

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

Set<Account> accounts;

}

Unidirectional Association –
OO Design #2

public class Account {

Integer id;

Double balance;
Date createdOn;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

Set<Account> accounts;

}

Unidirectional Association –
OO Design #3

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

Unidirectional vs. Bidirectional

Do the three OO designs result in
different database schemas??

Does it make any difference on the
application side??

Which one should we use??

9

Mapping Bidirectional One-To-
Many

public class Account {

Integer id;

Double balance;
Date createdOn;

@ManyToOne
Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@OneToMany(mappedBy=“owner”)

Set<Account> accounts;

}

property

Using List

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@OneToMany(mappedBy=“owner”)

@OrderBy(“createdOn asc”)

List<Account> accounts;

}

Many-To-Many Example

A customer may own multiple accounts

An account may have multiple owners

Mapping Many-To-Many

public class Account {

Integer id;

Double balance;
Date createdOn;

@ManyToMany
Set<Customer> owners;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@ManyToMany(mappedBy=“owners”)

Set<Account> accounts;

}

Customize Join Table

@ManyToMany
@JoinTable(

name = “account_owners”,
joinColumns=@JoinColumn(name = “account_id”),
inverseJoinColumns=@JoinColumn(name=“owner_id”)

)
Set<Customer> owners;

Cascading Behavior

Whether an operation on the parent object
(e.g. Customer) should be applied to the
children objects in a collection (e.g.
List<Account>)

Customer c = new Customer(“cysun”);

Account a1 = new Account();
Account a2 = new Account();

c.getAccounts().add(a1);

c.getAccounts().add(a2);

entityManager.persist(c); // will a1 and a2 be saved as well?
entityManager.remove(c); // will a1 and a2 be deleted from db??

10

Cascading Types in JPA

http://sun.calstatela.edu/~cysun/docum
entation/jpa-2.0-
api/javax/persistence/CascadeType.html

CascadeType Examples

@OneToMany(mappedBy=“owner”,

cascade=CascadeType.PERSIST)
List<Account> accounts;

@OneToMany(mappedBy=“owner”,

cascade={CascadeType.PERSIST, CascadeType.MERGE})
List<Account> accounts;

@OneToMany(mappedBy=“owner”,

cascade=CascadeType.ALL)
List<Account> accounts;

Inheritance

public class CDAccount extends Account {

Integer term;

}

Everything in One Table

id account_type balance created_on term

accounts

Discriminator column

Inheritance Type –
SINGLE_TABLE

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name=“account_type”)
@DiscrimnatorValue(“CHECKING”)
public class Account { … }

@Entity
@DiscrimnatorValue(“CD”)
public class CDAccount { … }

Table Per Subclass

id balance created_onaccounts

account_id termcd_accounts

foreign key

11

Inheritance Type – JOINED

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.JOINED)
public class Account { … }

@Entity
@Table(name=“cd_accounts”)
public class CDAccount { … }

Table Per Concrete Class

id balance created_on

accounts

id balance created_on term

cd_accounts

Inheritance Type –
TABLE_PER_CLASS

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public class Account { … }

@Entity
@Table(name=“cd_accounts”)
public class CDAccount { … }

Tips for Hibernate Mapping

Understand relational design

� Know what the database schema should
looks like before doing the mapping

Understand OO design

� Make sure the application design is object-
oriented

Further Readings

TopLink JPA Annotation Reference –
http://www.oracle.com/technetwork/mi
ddleware/ias/toplink-jpa-annotations-
096251.html

Pro JPA 2 by Mike Keith and Merrick
Schincariol

