CS422 Principles of Database Systems

Failure Recovery

Chengyu Sun
California State University, Los Angeles

ACID Properties of DB
Transaction

@ Atomicity

Consistency
[solation

Durability

Failure Recovery

Ensure atomicity and durability despite
system failures

start transaction;
select balance from accounts where id=1;
update accounts set balance=balance-100
System crash where id=1;
—_—
update accounts set balance=balance+100
where 1d=2;

System crash ~ commit;
AN

Failure Model

System crash
= CPU halts
= Data in memory is lost
» Data on disk is OK

Everything else

Logging

#Log
= A sequence of /log records
= Append only

What Do We Log

Transaction

Log

start transaction;

select balance
from accounts
where id=1;

update accounts
set balance=balance-100
where id=1;

update accounts
set balance=balance+100
where 1d=2;

commit;

??

Log Records in SimpleDB

Record Type Transaction #

-

<START, 27>
<SETINT, 27 accounts.tbl, 0, 1000 900>
<SETINT, accounts.tbl, 2, 110>

<COMMI Ty// / ’

File Name Block # Position Old Value New Value

General Notation for Log
Records

#® <START, T>

@ <UPATE, T, X, v,, v/ >
#® <COMMIT, T>

<ABORT, T>

Recover from System Crash

#Remove changes made by uncommitted
transactions — Undo

#Reapply changes made by committed
transactions — Redo

Recover with Undo Only

Assumption: all changes made by
committed transactions have been
saved to disk

Example: Create Undo
Logging Records

Transaction Log

Start Transaction; | ——— | <START, T>
Write(X, v,”) | ——— | <UPDATE, T, X, v,>
Write(Y, v,") . | <UPDATE, T, Y, v,>

Commit; | <COMMIT, T>

About Logging

#Undo logging records do not need to
store the new values
= VVhY??

#The key of logging is to decide when to
flush to disk
= The changes made by the transaction
= The log records

Example: Flushing for Undo
Recovery
Order the actions, including F1ush (x) and

Flush (<log>), into a sequence that allows
Undo Recovery

Transaction Log
Start Transaction; <START, T>
Write(X, v,") <UPDATE, T, X, v,>
Write(Y, v,") <UPDATE, T, Y, v,>
Commit; <COMMIT, T>

Order Flush(X) and
Flush(<UPDATE,X>) for Undo

Consider an incomplete transaction
= (a) Both X and <UPDATE,X> are written to
disk
= (b) X is written to disk but not
<UPDATE,X>

= (C) <UPDATE,X> is written to disk but not
X

= (d) Neither is written to disk

Write-Ahead Logging

A modified buffer can be written to disk
only after all of its update log records
have been written to disk

Implement Write-Ahead
Logging

Each log record has a unique id called
log sequence number (LSN)

#Each buffer page keeps the LSN of the
log record corresponding to the latest
change

Before a buffer page is flushed, notify
the log manager to flush the log up to
the buffer's LSN

Order Flush(<COMMIT,T>) for
Undo

<COMMIT,T> cannot be written to disk
before new value of X is written to disk

Commit statement cannot return before
<COMMIT, T> is written to disk

Undo Logging

#\Write <UPDATE,T,X,v,> to disk before
writing new value of X to disk

#Write <COMMIT,T> after writing all
new values to disk

#COMMIT returns after writing
<COMMIT, T> to disk

Undo Recovery

Scan the log
» forward or backward??

<COMMIT,T>: add T to a list of committed
transactions

<UPDATE,T,X,v,>: if T is not in the lists of
committed transactions, restore X’'s value to
VX

Undo Logging and Recovery
Example

Consider two transactions T, and T,
= T, updates X and Y
= T, updates Z

Show a possible sequence of undo
logging

Discuss possible crushes and recoveries

About Undo Recovery

#No need to keep the new value
Scan the log once for recovery

COMMIT must wait until all changes are
flushed

#Idempotent — recovery processes can
be run multiple times with the same
result

Recover with Redo Only

Assumption: none of the changes made
by uncommitted transactions have been
saved to disk

Example: Flushing for Redo
Recovery
Order the actions, including F1ush (x) and

Flush (<log>), into a sequence that allows
Undo Recovery

Transaction Log
Start Transaction; <START, T>
Write(X, v,) <UPDATE, T, X, v,">
Write(Y, v,) <UPDATE, T, Y, v,">
Commit; <COMMIT, T>

Redo Logging

#Write <UPDATE,T,X,v,/> and
<COMMLIT, T> to disk before writing any
new value of the transaction to disk

#COMMIT returns after writing
<COMMIT, T> to disk

Redo Recovery

Scan the log to create a list of
committed transactions

Scan the log again to replay the
updates of the committed transactions
» Forward or backward??

About Redo Recovery

A transaction must keep all the blocks it
needs pinned until the transaction
completes — increases buffer contention

Combine Undo and Redo —
Undo/Redo Logging

#Write <UPDATE, T, X,v,,v,> to disk
before writing new value of X to disk

#COMMIT returns after writing
<COMMIT, T> to disk

Undo/Redo Recovery

Stage 1: undo recovery
Stage 2: redo recovery

Advantages of Undo/Redo

#\/s, Undo??
#\Vs, Redo??

Checkpoint

#Log can get very large
A recovery algorithm can stop scanning
the log if it knows
= All the remaining records are for completed
transactions
= All the changes made by these transactions
have been written to disk

Quiescent Checkpointing

Stop accepting new transactions

#\Wait for all existing transactions to
finish

Flush all dirty buffer pages

Create a <CHECKPOINT> log record

Flush the log

Start accepting new transactions

Nonquiescent Checkpointing

Stop accepting new transactions

#Let Ty,..,T, be the currently running
transactions

Flush all modified buffers

Write the record <NQCKPT, T,,...,T,> to
the log

Start accepting new transactions

Quiescent vs. Nonquiescent

Quiescent Nonquiescent
<START, 0> <START, 0>
;.START, 1> ;.START, 1>
<COMMIT, 0> <NQCHPT, 0, 1>
<START, 2>
<COMMIT, 1>

<CHPT> <COMMIT, 0>
<START, 2>

<COMMIT, 1>

Example: Nonquiescent
Checkpoint

#Using Undo/Redo Recovery

<START, 0>

<WRITE, 0, A, v, v,">
<START, 1>

<START, 2>
<COMMIT, 1>
<WRITE, 2, B, v, vy">
<NQCKPT, 0, 2>
<WRITE, 0, C, v, v.>
<COMMIT, 0>
<START, 3>

<WRITE, 2, D, vg, V4>
<WRITE, 3, E, Vg, Vo>

About Nonquiescent
Checkpointing

Do not need to wait for existing
transactions to complete

#® But why do we need to stop accepting
new transactions??

Recovery algorithm may stop at
= <NQCKPT> if all {Ty,...,T,} committed, or

» <START> of the earliest uncommitted
transaction in {Ty,..., T,}

Failure Recovery in SimpleDB

#Log Manager
m simpledb.log

#Recovery Manager
m simpledb.tx.recovery

SimpleDB Log Manager

| og file:
${USER}/${DB}/simpledb.log
Grows the log one block at a time

#The last block is kept in memory (i.e.
only needs one page)

Append()

Records are treated as arrays of objects
(String or int)

A new block is created if the current
block does not have enough room to
hold the new record

#The LSN of a log record is the block
number

Locate Records in a Block

Two records: <1, ‘Hi’>, <2,32>

24 1
H i 0
2 32

12

LoglIterator

Loglterator iterates through a log
backwards

Again, only keeps one block in memory

#BasicLogRecord is simply a page and
the starting position of a record in the
page — it's up to the Recovery Manager
to decide how to read the record

SimpleDB Recovery Manager

Each transaction has its own recovery
manager

Transaction

Concurrency Recovery
Manager Manager

LogRecord Interface

Record types # Record operations

= Checkpoint = Write to log
(quiescent) = Get record type

= Start = Get transaction #
= Commit = Undo
= Rollback = [Redo]
= SetInt
» SetString

Log Record Format

Array of Integer and String
= Record type
= Additional information (optional)
#See the writeToLog () method in
each log record class

LogRecordIterator

Built on top of Loglterator

Convert each BasicLogRecord to an a
LogRecord object

Example: LogViewer

Display the log
= Up to the last <CHECKPOINT>

Recovery Manager

Each transaction operation (e.g. start,
commit, setint, setstring, rollback)
creates a log record

Rollback: undo the changes made by
this transaction

Recovery: perform recovery for the
whole database

Undo Recovery in SimpleDB

Recovery is done inside a transaction

[terate through the log backward
» EOF or <Checkpoint>: stop

» <Commit> or <Abort>: add transaction number

to a list of finished transactions

» Other: if the transaction # is not in the list of
finished transactions, call undo()

% Save the changes (i.e. flush buffers)
Write a <Checkpoint> log record

Example: TestLogWriter

#Write some records in the log for
testing purpose

Readings

Textbook
= Chapter 13.1-13.3
= Chapter 14.1-14.3
SimpleDB source code
= simpledb.log
= simpledb.tx
= simpledb.txt.recovery

