
1

CS520 Web Programming
Declarative Security

Chengyu Sun

California State University, Los Angeles

Need for Security in Web
Applications

Potentially large number of users

Multiple user types

No operating system to rely on

Web Application Security

request

who are you?

username/password

you’re not authorized to access

A
u
th
e
n
ti
ca
ti
o
n

Connection Security

A
u
th
o
ri
za
ti
o
n

(A
cc
e
ss
 C
o
n
tr
o
l)

Client Server

Connection Security

Secure Socket Layer (SSL)

� Server authentication

� Client authentication

� Connection encryption

Transport Layer Security (TLS)

� TLS 1.0 is based on SSL 3.0

� IETF standard (RFC 2246)

HTTPS

HTTP over SSL

Configure SSL in Tomcat -
http://tomcat.apache.org/tomcat-6.0-
doc/ssl-howto.html

Programmatic Security

Security is implemented in the
application code

Example:
� Login.jsp

� Members.jsp

Pros?? Cons??

2

Security by J2EE Application
Server

HTTP Basic

HTTP Digest

HTTPS Client

Form-based

HTTP Basic

HTTP 1.0, Section 11.1-
http://www.w3.org/Protocols/HTTP/1.0/draft-
ietf-http-spec.html

request for a restricted page

prompt for username/password

resend request + username & password

Client Server

HTTP Basic – Configuration

AuthType Basic
AuthName "Basic Authentication Example"
AuthUserFile /home/cysun/etc/htpasswords
Require user cs520

HTTP Basic – Request

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*

HTTP Basic – Server Response

HTTP/1.1 401 Authorization Required
Date: Tue, 24 Oct 2006 14:57:50 GMT
Server: Apache/2.2.2 (Fedora)
WWW-Authenticate: Basic realm="Restricted Access Area"
Content-Length: 484
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head><title>401 Authorization Required</title></head>
… …
</html>

HTTP Basic – Request Again

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*
Authorization: Basic Y3lzdW46YWJjZAo=

Base64 Encoding of “cysun:abcd”

An online Base64 decoder is at
http://www.opinionatedgeek.com/dotnet/tools/Base64Decode/

3

Improve HTTP Basic (I)

HTTP Basic
Username and password are
sent in plain text.

Encrypt username and
password.

Cryptographic Hash Function…

String of arbitrary length � n bits digest

Properties

1. Given a hash value, it’s virtually impossible to find a
message that hashes to this value

2. Given a message, it’s virtually impossible to find another
message that hashes to the same value

3. It’s virtually impossible to find two messages that hash to
the same value

A.K.A.

� One-way hashing, message digest, digital fingerprint

…Cryptographic Hash Function

Common usage

� Store passwords, software checksum …

Popular algorithms

� MD5 (broken, partially)

� SHA-1 (broken, sort of)

� SHA-256 and SHA-512 (recommended)

Encrypting Password is Not
Enough

Why??

Improve HTTP Basic (II)

HTTP Basic
Username and password are
sent in plain text.

Encrypt username and
password.

HTTP Digest
Additional measures to prevent
common attacks.

HTTP Digest

RFC 2617 (Part of HTTP 1.1) -
http://www.ietf.org/rfc/rfc2617.txt

request for a restricted page

prompt for username/password + nonce

resend request + message digest

4

HTTP Digest – Server
Response

HTTP/1.1 401 Authorization Required
Date: Tue, 24 Oct 2006 14:57:50 GMT
Server: Apache/2.2.2 (Fedora)
WWW-Authenticate: Digest realm="Restricted Access Area“,

qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
algorithm=“MD5”,
opaque="5ccc069c403ebaf9f0171e9517f40e41"

Content-Length: 484
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head><title>401 Authorization Required</title></head>
… …
</html>

HTTP Digest – Request Again

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*
Authorization: Digest username=“cysun”,

realm=“Restricted Access Area",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/restricted/index.html", qop=auth,
nc=00000001, cnonce="0a4f113b",
opaque="5ccc069c403ebaf9f0171e9517f40e41”,
algorithm=“MD5”
response="6629fae49393a05397450978507c4ef1"

Hash value of the combination of of username, password,
realm, uri, nonce, cnonce, nc, qop

Form-based Security

Unique to J2EE application servers

Username/password are passed as clear
text

Login page instead of login prompt

Form-base Security using
Tomcat

$TOMCAT/conf/tomcat-users.xml

� Users and roles

$APPLICATION/WEB-INF/web.xml

� Authentication type (FORM)

� Login and login failure page

� URLs to be protected

Example – Users and Roles

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
<role rolename=“admin"/>
<role rolename=“member"/>
<role rolename="guest"/>
<user username="cysun" password="abcd" roles=“admin,member"/>
<user username="test" password="test" roles=“member"/>
<user username="guest" password="guest" roles="guest"/>

</tomcat-users>

Example – Directory Layout

index.html

login.html

logout.jsp

/admin

/member

index.html

index.html

/WEB-INF web.xml

error.html

5

Example – Login Page

<form action="j_security_check" method="post">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="login" value="Login">

</form>

Example – web.xml …

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>

</form-login-config>
</login-config>

… Example – web.xml

<security-constraint>
<web-resource-collection>
<web-resource-name>AdminArea</web-resource-name>
<url-pattern>/admin/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>

</auth-constraint>
</security-constraint>

Declarative Security

Security constraints are defined outside
application code in some metadata
file(s)

Advantages

� Application server provides the security
implementation

� Separate security code from normal code

� Easy to use and maintain

Limitations of Declarative
Security by App Servers

Application server dependent

Not flexible enough

Servlet Specification only requires URL
access control

Security Requirements of Web
Applications

Authentication

Authorization (Access Control)

� URL

� Domain object

� Method invocation

� Access to service layer, e.g. DAO

� Access to web services

6

Spring Security (SS)

A security framework for Spring-based
applications

Addresses all the security requirements
of web applications

Formerly known as Acegi Security

� ABCDEFGHI

How Does Spring Security
Work

Intercept request and/or response

� Servlet filters

� Spring handler interceptors

Intercept method calls

� Spring method interceptors

Servlet Filter

Intercept, examine, and/or modify
request and response

Servlet/JSP

Filter

request response

Servlet Filter Example

web.xml

� <filter> and <filter-mapping>

Modify request

Modify response

Spring Handler Interceptor

Serve the same purpose as servlet filter

Configured as Spring beans, i.e. support dependency
injection

Controller

Handler Interceptor

request response

Intercept Request/Response

Controller
/member/index.html

Request

Response

What can we do by
intercepting the

request??

What can we do by
intercepting the
response??

7

Intercept Method Call

Method Invocation
User getUserById(1)

BeforeAdvice

AfterAdvice

What can we do
in BeforeAdvice??

What can we do
in AfterAdvice??

Authentication Processing
Filter

Request

AuthenticationProcessingFilter

Authenticated?
Y

Login Form
N

Login Successful?

N Y

Has Target URL?

Target URL

Target URL

Default URL

Y

N

Authentication Manager

Login Form

Action: j_spring_security_check

Username: j_username

Password: j_password

Configure Authentication Filter
Beans

DelegatingFilterProxy in web.xml

In spring-security.xml
� springSecurityFilterChain

� authenticationProcessingFilter

Authentication Manager

Authentication Manager

Authentication
Provider

Authentication
Provider

Authentication
Provider

Authentication
Sources

database LDAP Servlet
Container

Authentication Sources
Supported

Database

LDAP

JAAS

CAS

OpenID

SiteMinder

X.509

Windows NTLM

Container-based

� JBoss

� Jetty

� Resin

� Tomcat

8

Authenticate Against a
Database …

What SS expects your tables look like:

create table users (
username string primary key,
password string, -- encrypted
enabled boolean

);

create table authorities (
username string references users(username),
authority string -- role name

);

... Authenticate Against a
Database …

username password enabled

‘cysun’ md5(‘abcd’) ‘t’

‘jdoe’ md5(‘xyz’) ‘f’

username authority

‘cysun’ ‘ROLE_ADMIN’

‘cysun’ ‘ROLE_MEMBER’

‘jdoe’ ‘ROLE_MEMBER’

users

authorities

… Authenticate Against a
Database

Define your owner queries if your tables
are different
� usersByUsernameQuery

� authoritiesByUsernameQuery

CSNS Example: Configure an
Authentication Manager

Authentication Manager

Anonymous Provider DAO Provider

Password Encoder

MD5

JDBC DAO Impl

Data Source Authority QueryUser Query

Anonymous Authentication

An anonymous user has their own
credentials
� AnonymousProcessingFilter

� AnonymousAuthenticationProvider

Access User Details in
Application Code

User details –
http://static.springsource.org/spring-
security/site/docs/2.0.x/apidocs/org/springfra
mework/security/userdetails/UserDetails.html

� Username

� Password

� Authorities (Roles)

Example: SecurityUtils in CSNS

9

Authorization (Access Control)

Secure URL access

Secure method invocation

Secure object access

Access Decision Manager

Access Decision Manager

Access Decision
Voter

Access Decision
Voter

Access Decision
Voter

Role Voter

E.g. if a user is of Admin role,
then grant access.

User-defined Voter

Types of Decision Managers

Affirmative based

Consensus based

Unanimous based

How Decision Voter Works

AccessDecisonVoter Interface

Given

� Object to be accessed

� User information: username, roles

� Configuration attributes, typically are roles names
and/or access types like READ, WRITE etc.

Return
� ACCESS_GRANTED, or ACCESS_DENIED, or
ACCESS_ABSTAIN

Secure URL Access

FilterSecurityInterceptor

CSNS Example:
� Mapping from URL patterns to roles

� RoleVoter

Secure Method Invocation

MethodSecurityInterceptor

CSNS Example

� Mapping from method name patterns to
roles

� RoleVoter

10

Secure Object Access

Implemented by checking the returned object
of a method call

Access decision is manage by
AfterInvocationManager

AfterInvocation Manager

AfterInvocation
Provider

AfterInvocation
Provider

AfterInvocation
Provider

Secure Object Access Example

CSNS
� MethodSecurityInterceptor

� AfterInvocationManager

� Customized AfterInvocation providers to
provide application-specific access control
� SectionAccessVoter

� AssignmentAccessVoter

� SubmissionAccessVoter

� FileAccessVoter

Security Tag Library

URI -
http://www.springframework.org/securi
ty/tags

<authorize>

� ifNotGranted, ifAllGranted, ifAnyGranted

<authentication>

� property

Usage of the Security Tag
Library

CSNS Examples

� WEB-INF/jsp/surveys.jsp

� WEB-INF/jsp/include/header.jspf

Other Interesting Features of
Spring Security

Simplified namespace-based
configuration syntax

ACL based authorization

Groups and hierarchical roles

Conclusion

Declarative security vs. Programmatic
security

Spring Security provides the best of
both worlds

� Declarative security framework

� Portability and flexibility

� Separate security code from regular code

