

Recommendation Systems

- Predict items a user may be interested in based on information about the user and the items
- An effective way to help people cope with information overload
- Examples: Amazon, Netflix, Tivo, ...

So How Can We Do It?

- The content based approach
- $\ensuremath{\circledast}\xspace$ The user feedback based approach

Collaborative Filtering

Rate items based on the ratings of other users who have similar taste as you

Problem Definitions

Prediction

- \blacksquare Given: a user and \Bbbk items
- Return: predicted rating for each item
- Recommendation
 - Given: a user
 - Return: k items from the database with the highest predicted rating

Basic Assumptions

- Items are evaluated by users explicitly or implicitly
 - Ratings, reviews
 - Purchases, browsing behaviors
 - **•** ...
- We may map explicit and implicit evaluations to a rating scale, e.g. 1-5.

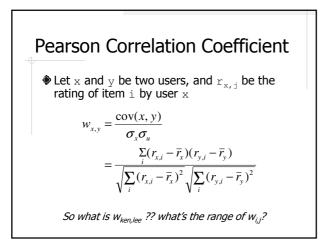
Heuristic

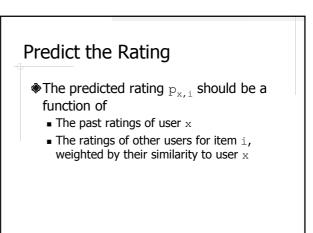
People who agreed in the past are likely to agree in the future

Problem Formulation

User-Item Matrix

Item	Ken	Lee	Meg	Nan
1	1	4	2	2
2	5	2	4	4
3			3	
4	2	5		5
5	4	1		1
6	??	2	5	

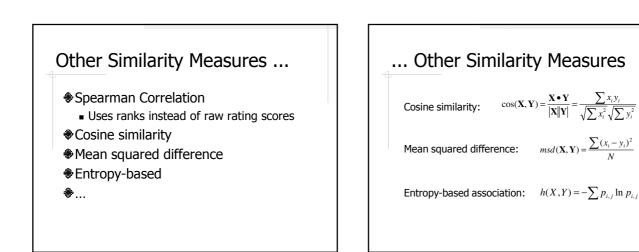

So what would be Ken's rating for Item 6??

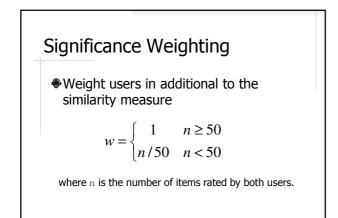

Solving the Problem

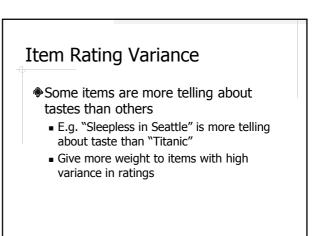
- Intuition: Ken's rating for Item 6 is likely to be high
 - Ken's ratings are similar to Meg's
 - Ken's ratings are opposite of Lee's
- Develop the algorithm
 - 1. Quantify rating similarity
 - 2. Calculate the predicted rating

Similarity Measure

 Pearson Correlation Coefficient
 A measure of linear correlation of two random variables


Predicted Rating


$$p_{x,i} \text{ is the predicted rating of item } \text{i by user}$$


$$p_{x,i} = \overline{r_x} + \frac{\sum_{u} (r_{u,i} - \overline{r_u}) \times w_{x,u}}{\sum_{u} |w_{x,u}|}$$
So what is $p_{ken,6}$??

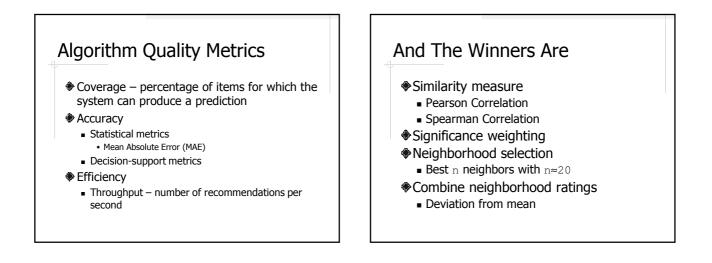
Variations and Optimizations

- Similarity measure
- Significance weighting
- Item rating variance
- Neighborhood selection
- Combine neighborhood ratings

Neighborhood Selection

- Select a subset of users for better performance and *accuracy*
 - Correlation threshold
 - Best n neighbors

Combine Neighborhood Ratings


- Deviation from mean
- Weighted average
- Weighted average of z-scores

```
s = \frac{1}{n} \sum_{i=1}^{n} \left| r_i - \overline{r} \right|
```

Standardized measurement (*z-score*):

Mean absolute deviation:

 $z_i = \frac{r_i - r}{s}$

Other Recommendation Algorithms

- Combine collaborative and contentbased filtering
- Item-item collaborative filtering
- Bayesian networks

۰...

Collaborative Filtering Libraries

<u>http://en.wikipedia.org/wiki/Collaborativ</u> <u>e_filtering#Software_libraries</u>

References

- GroupLens: An Open Architecture for Collaborative Filtering of Netnews by P. Resnick et. al, 1994.
- An Algorithmic Framework for Performing Collaborative Filtering by J. Herlocker et. Al, 1999.
- *E-Commerce Recommendation Applications* by J. B. Schafer et. al, 2001.