
The Java API for XML Web Services
(JAX-WS) 2.0

Proposed Final Draft
October 7, 2005

Editors:
Roberto Chinnici

Marc Hadley
Rajiv Mordani

Comments to: jsr224-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

ii JAX-WS 2.0 October 7, 2005

Specification: JSR-000224 - Java™API for XML Web Services v. 2.0 (“Specification”)

Status: Pre-FCS, Proposed Final Draft

Release: October 7, 2005
Copyright 2005 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054,
U.S.A
All rights reserved.

NOTICE: The Specification is protected by copyright and the information described therein may be protected by one
or more U.S. patents, foreign patents, or pending applications. Except as provided under the following license, no
part of the Specification may be reproduced in any form by any means without the prior written authorization of Sun
Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of the Specification and the information described therein
will be governed by the terms and conditions of this Agreement.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable,
limited license (without the right to sublicense) under Sun’s intellectual property rights to review the Specification
only for the purposes of evaluation. This license includes the right to discuss the Specification (including the right to
provide limited excerpts of text to the extent relevant to the point[s] under discussion) with other licensees (under this
or a substantially similar version of this Agreement) of the Specification. Other than this limited license, you acquire
no right, title or interest in or to the Specification or any other Sun intellectual property, and the Specification may only
be used in accordance with the license terms set forth herein. This license will expire on the earlier of: (i) two (2) years
from the date of Release listed above; (ii) the date on which the final version of the Specification is publicly released;
or (iii) the date on which the Java Specification Request (JSR) to which the Specification corresponds is withdrawn.
In addition, this license will terminate immediately without notice from Sun if you fail to comply with any provision
of this license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS: No right, title, or interest in or to any trademarks, service marks, or trade names of Sun, Sun’s
licensors, Specification Lead or the Specification Lead’s licensors is granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, J2SE, J2EE, J2ME, Java Compatible, the Java Compatible Logo, and the Java Coffee Cup logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES: THE SPECIFICATION IS PROVIDED “AS IS”AND IS EXPERIMENTAL
AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY
SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT IN-
FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This docu-
ment does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVE-
MENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPEC-
IFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-current license
for the applicable version of the Specification.

LIMITATION OF LIABILITY: TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR
ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RE-
LATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Sun (and its licensors) harmless from any claims based on your use of the Specification for any purposes
other than the limited right of evaluation as described above, and from any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification provided to you under this license.

October 7, 2005 JAX-WS 2.0 iii

RESTRICTED RIGHTS LEGEND: If this Software is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Specification and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-
DoD acquisitions).

REPORT: You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you hereby:
(i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a per-
petual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS: Any action related to this Agreement will be governed by California law and controlling U.S.
federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

Neither party may assign or otherwise transfer any of its rights or obligations under this Agreement, without the prior
written consent of the other party, except that Sun may assign this Agreement to an affiliated company.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contempo-
raneous oral or written communications, proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties
relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding,
unless in writing and signed by an authorized representative of each party.

(Sun.pre-FCS.Spec.license.11.14.2003)

iv JAX-WS 2.0 October 7, 2005

Document Status

This section describes the status of this document at the time of its publication. Other documents may
supersede this document; the latest revision of this document can be found on the JSR 224 homepage at
http://www.jcp.org/en/jsr/detail?id=224. This is the Proposed Final Draft of JSR 224 (JAX-
WS 2.0). It has been produced by the JSR 224 expert group. Comments on this document are welcome,
send them to jsr224-spec-comments@sun.com.

October 7, 2005 JAX-WS 2.0 v

vi JAX-WS 2.0 October 7, 2005

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Non-Goals . 2

1.3 Requirements . 3

1.3.1 Relationship To JAXB . 3

1.3.2 Standardized WSDL Mapping . 3

1.3.3 Customizable WSDL Mapping . 4

1.3.4 Standardized Protocol Bindings . 4

1.3.5 Standardized Transport Bindings . 4

1.3.6 Standardized Handler Framework . 4

1.3.7 Versioning and Evolution . 5

1.3.8 Standardized Synchronous and Asynchronous Invocation 5

1.3.9 Session Management . 5

1.4 Use Cases . 5

1.4.1 Handler Framework . 5

1.5 Conventions . 6

1.6 Expert Group Members . 7

1.7 Acknowledgements . 7

2 WSDL 1.1 to Java Mapping 9

2.1 Definitions. 9

2.1.1 Extensibility . 10

2.2 Port Type . 10

2.3 Operation . 10

2.3.1 Message and Part . 11

2.3.2 Parameter Order and Return Type . 13

2.3.3 Holder Class . 15

October 7, 2005 JAX-WS 2.0 vii

2.3.4 Asynchrony . 16

2.4 Types . 20

2.5 Fault . 20

2.5.1 Example . 21

2.6 Binding . 21

2.6.1 General Considerations . 23

2.6.2 SOAP Binding . 23

2.6.3 MIME Binding . 24

2.7 Service and Port . 26

2.7.1 Example . 27

2.8 XML Names . 28

2.8.1 Name Collisions . 28

3 Java to WSDL 1.1 Mapping 29

3.1 Java Names . 29

3.1.1 Name Collisions . 29

3.2 Package . 29

3.3 Class . 30

3.4 Interface . 31

3.4.1 Inheritance . 31

3.5 Method . 31

3.5.1 One Way Operations . 32

3.6 Method Parameters and Return Type . 32

3.6.1 Parameter and Return Type Classification . 35

3.6.2 Use of JAXB . 36

3.7 Service Specific Exception . 39

3.8 Bindings . 39

3.8.1 Interface . 40

3.8.2 Method and Parameters . 40

3.9 SOAP HTTP Binding . 41

3.9.1 Interface . 41

3.9.2 Method and Parameters . 41

3.10 Service and Ports . 42

4 Client APIs 47

viii JAX-WS 2.0 October 7, 2005

4.1 javax.xml.ws.Service . 47

4.1.1 Service Usage . 48

4.1.2 Provider and Service Delegate . 49

4.1.3 Handler Resolver . 49

4.1.4 Executor . 50

4.2 javax.xml.ws.BindingProvider . 50

4.2.1 Configuration . 51

4.2.2 Asynchronous Operations . 52

4.2.3 Proxies . 53

4.2.4 Exceptions . 54

4.3 javax.xml.ws.Dispatch . 54

4.3.1 Configuration . 55

4.3.2 Operation Invocation . 55

4.3.3 Asynchronous Response . 56

4.3.4 Using JAXB . 56

4.3.5 Examples . 57

4.4 Catalog Facility . 58

5 Service APIs 59

5.1 javax.xml.ws.Provider . 59

5.1.1 Invocation . 60

5.1.2 Configuration . 60

5.1.3 Examples . 60

5.2 javax.xml.ws.Endpoint . 61

5.2.1 Endpoint Usage . 61

5.2.2 Publishing . 62

5.2.3 Publishing Permission . 64

5.2.4 Endpoint Metadata . 64

5.2.5 Endpoint Publishing and Metadata . 64

5.2.6 Endpoint Properties . 66

5.2.7 Executor . 66

5.3 javax.xml.ws.WebServiceContext . 67

5.3.1 MessageContext . 68

6 Core APIs 69

October 7, 2005 JAX-WS 2.0 ix

6.1 javax.xml.ws.Binding . 69

6.2 javax.xml.ws.spi.Provider . 69

6.2.1 Configuration . 70

6.2.2 Creating Endpoint Objects . 70

6.2.3 Creating ServiceDelegate Objects . 71

6.3 javax.xml.ws.spi.ServiceDelegate . 71

6.4 Exceptions . 71

6.4.1 Protocol Specific Exception Handling . 71

6.4.2 One-way Operations . 72

7 Annotations 73

7.1 javax.xml.ws.ServiceMode . 73

7.2 javax.xml.ws.WebFault . 74

7.3 javax.xml.ws.RequestWrapper . 74

7.4 javax.xml.ws.ResponseWrapper . 75

7.5 javax.xml.ws.WebServiceClient . 75

7.6 javax.xml.ws.WebEndpoint . 75

7.6.1 Example . 76

7.7 javax.xml.ws.WebServiceProvider . 76

7.8 javax.xml.ws.BindingType . 77

7.9 javax.xml.ws.WebServiceRef . 77

7.9.1 Example . 78

7.10 Annotations Defined by JSR-181 . 79

7.10.1 javax.jws.WebService . 79

7.10.2 javax.jws.WebMethod . 79

7.10.3 javax.jws.OneWay . 79

7.10.4 javax.jws.WebParam . 79

7.10.5 javax.jws.WebResult . 80

7.10.6 javax.jws.SOAPBinding . 80

7.10.7 javax.jws.HandlerChain . 80

8 Customizations 81

8.1 Binding Language . 81

8.2 Binding Declaration Container . 81

8.3 Embedded Binding Declarations . 82

x JAX-WS 2.0 October 7, 2005

8.3.1 Example . 82

8.4 External Binding File . 82

8.4.1 Example . 84

8.5 Using JAXB Binding Declarations . 84

8.6 Scoping of Bindings . 86

8.7 Standard Binding Declarations . 86

8.7.1 Definitions . 86

8.7.2 PortType . 87

8.7.3 PortType Operation . 88

8.7.4 PortType Fault Message . 89

8.7.5 Binding . 89

8.7.6 Binding Operation . 89

8.7.7 Service . 90

8.7.8 Port . 90

9 Handler Framework 93

9.1 Architecture . 93

9.1.1 Types of Handler . 94

9.1.2 Binding Responsibilities . 94

9.2 Configuration . 95

9.2.1 Programmatic Configuration . 95

9.2.2 Deployment Model . 97

9.3 Processing Model . 97

9.3.1 Handler Lifecycle . 97

9.3.2 Handler Execution . 98

9.3.3 Handler Implementation Considerations . 101

9.4 Message Context . 101

9.4.1 javax.xml.ws.handler.MessageContext . 101

9.4.2 javax.xml.ws.handler.LogicalMessageContext . 102

9.4.3 Relationship to Application Contexts . 104

10 SOAP Binding 105

10.1 Configuration . 105

10.1.1 Programmatic Configuration . 105

10.1.2 Deployment Model . 106

October 7, 2005 JAX-WS 2.0 xi

10.2 Processing Model . 107

10.2.1 SOAP mustUnderstand Processing . 107

10.2.2 Exception Handling . 107

10.3 SOAP Message Context . 109

10.4 SOAP Transport and Transfer Bindings . 109

10.4.1 HTTP . 109

11 HTTP Binding 113

11.1 Configuration . 113

11.1.1 Programmatic Configuration . 113

11.1.2 Deployment Model . 114

11.2 Processing Model . 114

11.2.1 Exception Handling . 114

11.3 HTTP Support . 115

11.3.1 One-way Operations . 115

11.3.2 Security . 115

11.3.3 Session Management . 116

A Conformance Requirements 117

B Change Log 123

B.1 Changes since Public Draft . 123

B.2 Changes Since Early Draft 3 . 125

B.3 Changes Since Early Draft 2 . 126

B.4 Changes Since Early Draft 1 . 126

Bibliography 129

xii JAX-WS 2.0 October 7, 2005

Chapter 1 1

Introduction 2

XML[1] is a platform-independent means of representing structured information. XML Web Services use 3

XML as the basis for communication between Web-based services and clients of those services and inherit 4

XML’s platform independence. SOAP[2, 3, 4] describes one such XML based message format and “defines, 5

using XML technologies, an extensible messaging framework containing a message construct that can be 6

exchanged over a variety of underlying protocols.” 7

WSDL[5] is “an XML format for describing network services as a set of endpoints operating on messages 8

containing either document-oriented or procedure-oriented information.” WSDL can be considered the de- 9

facto service description language for XML Web Services. 10

JAX-RPC 1.0[6] defined APIs and conventions for supporting RPC oriented XML Web Services in the 11

Java™ platform. JAX-RPC 1.1[7] added support for the WS-I Basic Profile 1.0[8] to improve interoperabil- 12

ity between JAX-RPC implementations and with services implemented using other technologies. 13

JAX-WS 2.0 (this specification) is a follow-on to JAX-RPC 1.1, extending it as described in the following 14

sections. 15

1.1 Goals 16

Since the release of JAX-RPC 1.0[6], new specifications and new versions of the standards it depends on 17

have been released. JAX-WS 2.0 relates to these specifications and standards as follows: 18

JAXB Due primarily to scheduling concerns, JAX-RPC 1.0 defined its own data binding facilities. With 19

the release of JAXB 1.0[9] there is no reason to maintain two separate sets of XML mapping rules 20

in the Java™ platform. JAX-WS 2.0 will delegate data binding-related tasks to the JAXB 2.0[10] 21

specification that is being developed in parallel with JAX-WS 2.0. 22

JAXB 2.0[10] will add support for Java to XML mapping, additional support for less used XML 23

schema constructs, and provide bidirectional customization of Java ⇔ XML data binding. JAX- 24

WS 2.0 will allow full use of JAXB provided facilities including binding customization and optional 25

schema validation. 26

SOAP 1.2 Whilst SOAP 1.1 is still widely deployed, it’s expected that services will migrate to SOAP 1.2[3, 27

4] now that it is a W3C Recommendation. JAX-WS 2.0 will add support for SOAP 1.2 whilst requiring 28

continued support for SOAP 1.1. 29

October 7, 2005 JAX-WS 2.0 1

Chapter 1. Introduction

WSDL 2.0 The W3C is expected to progress WSDL 2.0[11] to Recommendation during the lifetime of this 1

JSR. JAX-WS 2.0 will add support for WSDL 2.0 whilst requiring continued support for WSDL 1.1. 2

WS-I Basic Profile 1.1 JAX-RPC 1.1 added support for WS-I Basic Profile 1.0. WS-I Basic Profile 1.1 is 3

expected to supersede 1.0 during the lifetime of this JSR and JAX-WS 2.0 will add support for the 4

additional clarifications it provides. 5

A Metadata Facility for the Java Programming Language (JSR 175) JAX-WS 2.0 will define the use of 6

Java annotations[12] to simplify the most common development scenarios for both clients and servers. 7

Web Services Metadata for the Java Platform (JSR 181) JAX-WS 2.0 will align with and complement 8

the annotations defined by JSR 181[13]. 9

Implementing Enterprise Web Services (JSR 109) The JSR 109[14] defined jaxrpc-mapping-info 10

deployment descriptor provides deployment time Java ⇔ WSDL mapping functionality. In conjunc- 11

tion with JSR 181[13], JAX-WS 2.0 will complement this mapping functionality with development 12

time Java annotations that control Java ⇔ WSDL mapping. 13

Web Services Security (JSR 183) JAX-WS 2.0 will align with and complement the security APIs defined 14

by JSR 183[15]. 15

JAX-WS 2.0 will improve support for document/message centric usage: 16

Asynchrony JAX-WS 2.0 will add support for client side asynchronous operations. 17

Non-HTTP Transports JAX-WS 2.0 will improve the separation between the XML message format and 18

the underlying transport mechanism to simplify use of JAX-WS with non-HTTP transports. 19

Message Access JAX-WS 2.0 will simplify client and service access to the messages underlying an ex- 20

change. 21

Session Management JAX-RPC 1.1 session management capabilities are tied to HTTP. JAX-WS 2.0 will 22

add support for message based session management. 23

JAX-WS 2.0 will also address issues that have arisen with experience of implementing and using JAX-RPC 24

1.0: 25

Inclusion in J2SE JAX-WS 2.0 will prepare JAX-WS for inclusion in a future version of J2SE. Application 26

portability is a key requirement and JAX-WS 2.0 will define mechanisms to produce fully portable 27

clients. 28

Handlers JAX-WS 2.0 will simplify the development of handlers and will provide a mechanism to allow 29

handlers to collaborate with service clients and service endpoint implementations. 30

Versioning and Evolution of Web Services JAX-WS 2.0 will describe techniques and mechanisms to ease 31

the burden on developers when creating new versions of existing services. 32

1.2 Non-Goals 33

The following are non-goals: 34

2 JAX-WS 2.0 October 7, 2005

1.3. Requirements

Backwards Compatibility of Binary Artifacts Binary compatibility between JAX-RPC 1.x and JAX-WS 1

2.0 implementation runtimes. 2

Pluggable data binding JAX-WS 2.0 will defer data binding to JAXB[10]; it is not a goal to provide a 3

plug-in API to allow other types of data binding technologies to be used in place of JAXB. However, 4

JAX-WS 2.0 will maintain the capability to selectively disable data binding to provide an XML based 5

fragment suitable for use as input to alternative data binding technologies. 6

SOAP Encoding Support Use of the SOAP encoding is essentially deprecated in the web services com- 7

munity, e.g., the WS-I Basic Profile[8] excludes SOAP encoding. Instead, literal usage is preferred, 8

either in the RPC or document style. 9

SOAP 1.1 encoding is supported in JAX-RPC 1.0 and 1.1 but its support in JAX-WS 2.0 runs counter 10

to the goal of delegation of data binding to JAXB. Therefore JAX-WS 2.0 will make support for SOAP 11

1.1 encoding optional and defer description of it to JAX-RPC 1.1. 12

Support for the SOAP 1.2 Encoding[4] is optional in SOAP 1.2 and JAX-WS 2.0 will not add support 13

for SOAP 1.2 encoding. 14

Backwards Compatibility of Generated Artifacts JAX-RPC 1.0 and JAXB 1.0 bind XML to Java in dif- 15

ferent ways. Generating source code that works with unmodified JAX-RPC 1.x client source code is 16

not a goal. 17

Support for Java versions prior to J2SE 5.0 JAX-WS 2.0 relies on many of the Java language features 18

added in J2SE 5.0. It is not a goal to support JAX-WS 2.0 on Java versions prior to J2SE 5.0. 19

Service Registration and Discovery It is not a goal of JAX-WS 2.0 to describe registration and discovery 20

of services via UDDI or ebXML RR. This capability is provided independently by JAXR[16]. 21

1.3 Requirements 22

1.3.1 Relationship To JAXB 23

JAX-WS describes the WSDL ⇔ Java mapping, but data binding is delegated to JAXB[10]. The specifi- 24

cation must clearly designate where JAXB rules apply to the WSDL ⇔ Java mapping without reproducing 25

those rules and must describe how JAXB capabilities (e.g., the JAXB binding language) are incorporated 26

into JAX-WS. JAX-WS is required to be able to influence the JAXB binding, e.g., to avoid name collisions 27

and to be able to control schema validation on serialization and deserialization. 28

1.3.2 Standardized WSDL Mapping 29

WSDL is the de-facto service description language for XML Web Services. The specification must specify 30

a standard WSDL ⇔ Java mapping. The following versions of WSDL must be supported: 31

• WSDL 1.1[5] as clarified by the WS-I Basic Profile[8, 17] 32

• WSDL 2.0[11, 18, 19] 33

The standardized WSDL mapping will describe the default WSDL ⇔ Java mapping. The default mapping 34

may be overridden using customizations as described below. 35

October 7, 2005 JAX-WS 2.0 3

Chapter 1. Introduction

1.3.3 Customizable WSDL Mapping 1

The specification must provide a standard way to customize the WSDL ⇔ Java mapping. The following 2

customization methods will be specified: 3

Java Annotations In conjunction with JAXB[10] and JSR 181[13], the specification will define a set of 4

standard annotations that may be used in Java source files to specify the mapping from Java artifacts 5

to their associated WSDL components. The annotations will support mapping to both WSDL 1.1 and 6

WSDL 2.0. 7

WSDL Annotations In conjunction with JAXB[10] and JSR 181[13], the specification will define a set of 8

standard annotations that may be used either within WSDL documents or as in an external form to 9

specify the mapping from WSDL components to their associated Java artifacts. The annotations will 10

support mapping from both WSDL 1.1 and WSDL 2.0. 11

The specification must describe the precedence rules governing combinations of the customization methods. 12

1.3.4 Standardized Protocol Bindings 13

The specification must describe standard bindings to the following protocols: 14

• SOAP 1.1[2] as clarified by the WS-I Basic Profile[8, 17] 15

• SOAP 1.2[3, 4] 16

The specification must not prevent non-standard bindings to other protocols. 17

1.3.5 Standardized Transport Bindings 18

The specification must describe standard bindings to the following protocols: 19

• HTTP/1.1[20]. 20

The specification must not prevent non-standard bindings to other transports. 21

1.3.6 Standardized Handler Framework 22

The specification must include a standardized handler framework that describes: 23

Data binding for handlers The framework will offer data binding facilities to handlers and will support 24

handlers that are decoupled from the SAAJ API. 25

Handler Context The framework will describe a mechanism for communicating properties between han- 26

dlers and the associated service clients and service endpoint implementations. 27

Unified Response and Fault Handling The handleResponse and handleFault methods will be uni- 28

fied and the the declarative model for handlers will be improved. 29

4 JAX-WS 2.0 October 7, 2005

1.4. Use Cases

1.3.7 Versioning and Evolution 1

The specification must describe techniques and mechanisms to support versioning of service endpoint inter- 2

faces. The facilities must allow new versions of an interface to be deployed whilst maintaining compatibility 3

for existing clients. 4

1.3.8 Standardized Synchronous and Asynchronous Invocation 5

There must be a detailed description of the generated method signatures to support both asynchronous and 6

synchronous method invocation in stubs generated by JAX-WS. Both forms of invocation will support a 7

user configurable timeout period. 8

1.3.9 Session Management 9

The specification must describe a standard session management mechanism including: 10

Session APIs Definition of a session interface and methods to obtain the session interface and initiate ses- 11

sions for handlers and service endpoint implementations. 12

HTTP based sessions The session management mechanism must support HTTP cookies and URL rewrit- 13

ing. 14

SOAP based sessions The session management mechanism must support SOAP based session information. 15

1.4 Use Cases 16

1.4.1 Handler Framework 17

1.4.1.1 Reliable Messaging Support 18

A developer wishes to add support for a reliable messaging SOAP feature to an existing service endpoint. 19

The support takes the form of a JAX-WS handler. 20

1.4.1.2 Message Logging 21

A developer wishes to log incoming and outgoing messages for later analysis, e.g., checking messages using 22

the WS-I testing tools. 23

1.4.1.3 WS-I Conformance Checking 24

A developer wishes to check incoming and outgoing messages for conformance to one or more WS-I profiles 25

at runtime. 26

October 7, 2005 JAX-WS 2.0 5

Chapter 1. Introduction

1.5 Conventions 1

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD 2

NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described 3

in RFC 2119[21]. 4

For convenience, conformance requirements are called out from the main text as follows: 5

♦ Conformance (Example): Implementations MUST do something. 6

A list of all such conformance requirements can be found in appendix A. 7

Java code and XML fragments are formatted as shown in figure1.1: 8

Figure 1.1: Example Java Code

1 package com.example.hello;
2
3 public class Hello {
4 public static void main(String args[]) {
5 System.out.println("Hello World");
6 }
7 }

Non-normative notes are formatted as shown below. 9

Note: This is a note. 10

This specification uses a number of namespace prefixes throughout; they are listed in Table1.1. Note that 11

the choice of any namespace prefix is arbitrary and not semantically significant (see XML Infoset[22]). 12

Prefix Namespace Notes
env http://www.w3.org/2003/05/soap-envelope A normative XML Schema[23, 24] document for

the http://www.w3.org/2003/05/soap-envelope
namespace can be found at
http://www.w3.org/2003/05/soap-envelope.

xsd http://www.w3.org/2001/XMLSchema The namespace of the XML schema[23, 24]
specification

wsdl http://schemas.xmlsoap.org/wsdl/ The namespace of the WSDL schema[5]
soap http://schemas.xmlsoap.org/wsdl/soap/ The namespace of the WSDL SOAP binding

schema[23, 24]
jaxb http://java.sun.com/xml/ns/jaxb The namespace of the JAXB [9] specification
jaxws http://java.sun.com/xml/ns/jaxws The namespace of the JAX-WS specification

Table 1.1: Prefixes and Namespaces used in this specification.

Namespace names of the general form ‘http://example.org/...’ and ‘http://example.com/...’ represent appli- 13

cation or context-dependent URIs (see RFC 2396[20]). 14

All parts of this specification are normative, with the exception of examples, notes and sections explicitly 15

marked as ‘Non-Normative’. 16

6 JAX-WS 2.0 October 7, 2005

1.6. Expert Group Members

1.6 Expert Group Members 1

The following people have contributed to this specification: 2

Chavdar Baikov (SAP AG) 3

Russell Butek (IBM) 4

Manoj Cheenath (BEA Systems) 5

Shih-Chang Chen (Oracle) 6

Claus Nyhus Christensen (Trifork) 7

Ugo Corda (SeeBeyond Technology Corp) 8

Glen Daniels (Sonic Software) 9

Alan Davies (SeeBeyond Technology Corp) 10

Thomas Diesler (JBoss, Inc.) 11

Jim Frost (Art Technology Group Inc) 12

Alastair Harwood (Cap Gemini) 13

Marc Hadley (Sun Microsystems, Inc.) 14

Kevin R. Jones (Developmentor) 15

Anish Karmarkar (Oracle) 16

Toshiyuki Kimura (NTT Data Corp) 17

Jim Knutson (IBM) 18

Doug Kohlert (Sun Microsystems, Inc) 19

Daniel Kulp (IONA Technologies PLC) 20

Sunil Kunisetty (Oracle) 21

Changshin Lee (Tmax Soft, Inc) 22

Carlo Marcoli (Cap Gemini) 23

Srividya Natarajan (Nokia Corporation) 24

Sanjay Patil (SAP AG) 25

Greg Pavlik (Oracle) 26

Bjarne Rasmussen (Novell, Inc) 27

Sebastien Sahuc (Intalio, Inc.) 28

Rahul Sharma (Motorola) 29

Rajiv Shivane (Pramati Technologies) 30

Richard Sitze (IBM) 31

Dennis M. Sosnoski (Sosnoski Software) 32

Christopher St. John (WebMethods Corporation) 33

Mark Stewart (ATG) 34

Neal Yin (BEA Systems) 35

Brian Zotter (BEA Systems) 36

37

1.7 Acknowledgements 38

Robert Bissett, Arun Gupta, Graham Hamilton, Mark Hapner, Jitendra Kotamraju, Rajiv Mordani, Vivek 39

Pandey, Santiago Pericas-Geertsen, Eduardo Pelegri-Llopart, Rama Pulavarthi, Paul Sandoz, Bill Shannon, 40

and Kathy Walsh (all from Sun Microsystems) have provided invaluable technical input to the JAX-WS 2.0 41

specification. 42

October 7, 2005 JAX-WS 2.0 7

Chapter 1. Introduction

8 JAX-WS 2.0 October 7, 2005

Chapter 2 1

WSDL 1.1 to Java Mapping 2

This chapter describes the mapping from WSDL 1.1 to Java. This mapping is used when generating web 3

service interfaces for clients and endpoints from a WSDL 1.1 description. 4

♦ Conformance (WSDL 1.1 support): Implementations MUST support mapping WSDL 1.1 to Java. 5

The following sections describe the default mapping from each WSDL 1.1 construct to the equivalent Java 6

construct. In WSDL 1.1, the separation between the abstract port type definition and the binding to a 7

protocol is not complete. Bindings impact the mapping between WSDL elements used in the abstract port 8

type definition and Java method parameters. Section2.6 describes binding dependent mappings. 9

An application MAY customize the mapping using embedded binding declarations (see section 8.3) or an 10

external binding file (see section8.4). 11

♦ Conformance (Customization required): Implementations MUST support customization of the WSDL 12

1.1 to Java mapping using the JAX-WS binding language defined in chapter 8. 13

In order to enable annotations to be used at runtime for method dispatching and marshalling, this spec- 14

ification requires generated Java classes and interfaces to be annotated with the Web service annotations 15

described in section 7.10. The annotations present on a generated class MUST faithfully reflect the informa- 16

tion in the WSDL document(s) that were given as input to the mapping process, as well as the customizations 17

embedded in them and those specified via any external binding files. 18

♦ Conformance (Annotations on generated classes): The values of all the properties of all the generated 19

annotations MUST be consistent with the information in the source WSDL document and the applicable 20

external binding files. 21

2.1 Definitions 22

A WSDL document has a root wsdl:definitions element. A wsdl:definitions element and its 23

associated targetNamespace attribute is mapped to a Java package. JAXB[10] (see appendix D) defines 24

a standard mapping from a namespace URI to a Java package name. By default, this algorithm is used to 25

map the value of a wsdl:definitions element’s targetNamespace attribute to a Java package name. 26

♦ Conformance (Definitions mapping): In the absence of customizations, the Java package name is mapped 27

from the value of a wsdl:definitions element’s targetNamespace attribute using the algorithm de- 28

fined by JAXB[10]. 29

October 7, 2005 JAX-WS 2.0 9

Chapter 2. WSDL 1.1 to Java Mapping

An application MAY customize this mapping using the jaxws:package binding declaration defined in 1

section 8.7.1. 2

No specific authoring style is required for the input WSDL document; implementations should support 3

WSDL that uses the WSDL and XML Schema import directives. 4

♦ Conformance (WSDL and XML Schema import directives): Implementations MUST support the WS-I 5

Basic Profile 1.1[17] defined mechanisms (See R2001, R2002, and R2003) for use of WSDL and XML 6

Schema import directives. 7

2.1.1 Extensibility 8

WSDL 1.1 allows extension elements and attributes to be added to many of its constructs. JAX-WS specifies 9

the mapping to Java of the extensibility elements and attributes defined for the SOAP and MIME bindings. 10

JAX-WS does not address mapping of any other extensibility elements or attributes and does not provide 11

a standard extensibility framework though which such support could be added in a standard way. Future 12

versions of JAX-WS might add additional support for standard extensions as these become available. 13

♦ Conformance (Optional WSDL extensions): An implementation MAY support mapping of additional 14

WSDL extensibility elements and attributes not described in JAX-WS. 15

Note that such support may limit interoperability and application portability. 16

2.2 Port Type 17

A WSDL port type is a named set of abstract operation definitions. A wsdl:portType element is mapped 18

to a Java interface in the package mapped from the wsdl:definitions element (see section 2.1 for a 19

description of wsdl:definitions mapping). A Java interface mapped from a wsdl:portType is called 20

a Service Endpoint Interface or SEI for short. 21

♦ Conformance (SEI naming): In the absence of customizations, the name of an SEI MUST be the value of 22

the name attribute of the corresponding wsdl:portType element mapped according to the rules described 23

in section 2.8. 24

An application MAY customize this mapping using the jaxws:class binding declaration defined in section 25

8.7.2. 26

♦ Conformance (javax.jws.WebService required): A mapped SEI MUST be annotated with a javax- 27

.jws.WebService annotation. 28

An SEI contains Java methods mapped from the wsdl:operation child elements of the corresponding 29

wsdl:portType, see section 2.3 for further details on wsdl:operation mapping. WSDL 1.1 does not 30

support port type inheritance so each generated SEI will contain methods for all operations in the corre- 31

sponding port type. 32

2.3 Operation 33

Each wsdl:operation in a wsdl:portType is mapped to a Java method in the corresponding Java ser- 34

vice endpoint interface. 35

10 JAX-WS 2.0 October 7, 2005

2.3. Operation

♦ Conformance (Method naming): In the absence of customizations, the name of a mapped Java method 1

MUST be the value of the name attribute of the wsdl:operation element mapped according to the rules 2

described in section 2.8. 3

An application MAY customize this mapping using the jaxws:method binding declaration defined in sec- 4

tion 8.7.3. 5

♦ Conformance (javax.jws.WebMethod required): A mapped Java method MUST be annotated with a 6

javax.jws.WebMethod annotation. The annotation MAY be omitted if all its properties would have the 7

default values. 8

The WS-I Basic Profile[17] R2304 requires that operations within a wsdl:portType have unique values for 9

their name attribute so mapping of WS-I compliant WSDL descriptions will not generate Java interfaces with 10

overloaded methods. However, for backwards compatibility, JAX-WS supports operation name overloading 11

provided the overloading does not cause conflicts (as specified in the Java Language Specification[25]) in 12

the mapped Java service endpoint interface declaration. 13

♦ Conformance (Transmission primitive support): An implementation MUST support mapping of opera- 14

tions that use the one-way and request-response transmission primitives. 15

♦ Conformance (Using javax.jws.OneWay): A Java method mapped from a one-way operation MUST 16

be annotated with a javax.jws.OneWay annotation. 17

Mapping of notification and solicit-response operations is out of scope. 18

2.3.1 Message and Part 19

Each wsdl:operation refers to one or more wsdl:message elements via child wsdl:input, wsdl- 20

:output, and wsdl:fault elements that describe the input, output, and fault messages for the operation 21

respectively. Each operation can specify one input message, zero or one output message, and zero or more 22

fault messages. 23

Fault messages are mapped to application specific exceptions (see section 2.5). The contents of input and 24

output messages are mapped to Java method parameters using two different styles: non-wrapper style and 25

wrapper style. The two mapping styles are described in the following subsections. Note that the binding of 26

a port type can affect the mapping of that port type to Java, see section 2.6 for details. 27

♦ Conformance (Using javax.jws.SOAPBinding): An SEI mapped from a port type that is bound using 28

the WSDL SOAP binding MUST be annotated with a javax.jws.SOAPBinding annotation describing 29

the choice of style, encoding and parameter style. The annotation MAY be omitted if all its properties would 30

have the default values (i.e. document/literal/wrapped). 31

♦ Conformance (Using javax.jws.WebParam): Generated Java method parameters MUST be annotated 32

with a javax.jws.WebParam annotation. If the style is rpc or if the style is Document and the parameter 33

style is BARE then the partName element of javax.jws.WebParam MUST refer to the wsdl:part 34

name of the parameter. 35

♦ Conformance (Using javax.jws.WebResult): Generated Java methods MUST be annotated with a 36

javax.jws.WebResult annotation. If the style is rpc or if the style is Document and the parameter style 37

is BARE then the partName element of javax.jws.WebResultMUST refer to the wsdl:part name of 38

the parameter. The annotation MAY be omitted if all its properties would have the default values. 39

October 7, 2005 JAX-WS 2.0 11

Chapter 2. WSDL 1.1 to Java Mapping

2.3.1.1 Non-wrapper Style 1

A wsdl:message is composed of zero or more wsdl:part elements. Message parts are classified as 2

follows: 3

in The message part is present only in the operation’s input message. 4

out The message part is present only in the operation’s output message. 5

in/out The message part is present in both the operation’s input message and output message. 6

Two parts are considered equal if they have the same values for their name attribute and they reference 7

the same global element or type. Using non-wrapper style, message parts are mapped to Java parameters 8

according to their classification as follows: 9

in The message part is mapped to a method parameter. 10

out The message part is mapped to a method parameter using a holder class (see section 2.3.3) or is mapped 11

to the method return type. 12

in/out The message part is mapped to a method parameter using a holder class. 13

♦ Conformance (Non-wrapped parameter naming): In the absence of any customizations, the name of a 14

mapped Java method parameter MUST be the value of the name attribute of the wsdl:part element mapped 15

according to the rules described in sections 2.8 and 2.8.1. 16

An application MAY customize this mapping using the jaxws:parameter binding declaration defined in 17

section 8.7.3. 18

Section 2.3.2 defines rules that govern the ordering of parameters in mapped Java methods and identification 19

of the part that is mapped to the method return type. 20

2.3.1.2 Wrapper Style 21

A WSDL operation qualifies for wrapper style mapping only if the following criteria are met: 22

(i) The operation’s input and output messages (if present) each contain only a single part 23

(ii) The input message part refers to a global element declaration whose localname is equal to the opera- 24

tion name 25

(iii) The output message part refers to a global element declaration 26

(iv) The elements referred to by the input and output message parts (henceforth referred to as wrapper 27

elements) are both complex types defined using the xsd:sequence compositor 28

(v) The wrapper elements only contain child elements, they must not contain other structures such as 29

wildcards (element or attribute), xsd:choice, substitution groups (element references are not per- 30

mitted) or attributes; furthermore, they must not be nillable. 31

♦ Conformance (Default mapping mode): Operations that do not meet the criteria above MUST be mapped 32

using non-wrapper style. 33

12 JAX-WS 2.0 October 7, 2005

2.3. Operation

In some cases use of the wrapper style mapping can lead to undesirable Java method signatures and use of 1

non-wrapper style mapping would be preferred. 2

♦ Conformance (Disabling wrapper style): An implementation MUST support use of the jaxws:enable- 3

WrapperStyle binding declaration to enable or disable the wrapper style mapping of operations (see sec- 4

tion 8.7.3). 5

Using wrapper style, the child elements of the wrapper element (henceforth called wrapper children) are 6

mapped to Java parameters, wrapper children are classified as follows: 7

in The wrapper child is only present in the input message part’s wrapper element. 8

out The wrapper child is only present in the output message part’s wrapper element. 9

in/out The wrapper child is present in both the input and output message part’s wrapper element. 10

Two wrapper children are considered equal if they have the same local name, the same XML schema type 11

and the same Java type after mapping (see section 2.4 for XML Schema to Java type mapping rules). The 12

mapping depends on the classification of the wrapper child as follows: 13

in The wrapper child is mapped to a method parameter. 14

out The wrapper child is mapped to a method parameter using a holder class (see section 2.3.3) or is 15

mapped to the method return value. 16

in/out The wrapper child is mapped to a method parameter using a holder class. 17

♦ Conformance (Wrapped parameter naming): In the absence of customization, the name of a mapped Java 18

method parameter MUST be the value of the local name of the wrapper child mapped according to the rules 19

described in sections 2.8 and 2.8.1. 20

An application MAY customize this mapping using the jaxws:parameter binding declaration defined in 21

section 8.7.3. 22

♦ Conformance (Parameter name clash): If the mapping results in two Java parameters with the same name 23

and one of those parameters is not mapped to the method return type, see section 2.3.2, then this is reported as 24

an error and requires developer intervention to correct, either by disabling wrapper style mapping, modifying 25

the source WSDL or by specifying a customized parameter name mapping. 26

2.3.1.3 Example 27

Figure 2.1 shows a WSDL extract and the Java method that results from using wrapper and non-wrapper 28

mapping styles. For readability, annotations are omitted. 29

2.3.2 Parameter Order and Return Type 30

A wsdl:operation element may have a parameterOrder attribute that defines the ordering of parame- 31

ters in a mapped Java method as follows: 32

October 7, 2005 JAX-WS 2.0 13

Chapter 2. WSDL 1.1 to Java Mapping

1 <!-- WSDL extract -->
2 <types>
3 <xsd:element name="setLastTradePrice">
4 <xsd:complexType>
5 <xsd:sequence>
6 <xsd:element name="tickerSymbol" type="xsd:string"/>
7 <xsd:element name="lastTradePrice" type="xsd:float"/>
8 </xsd:sequence>
9 </xsd:complexType>

10 </xsd:element>
11
12 <xsd:element name="setLastTradePriceResponse">
13 <xsd:complexType>
14 <xsd:sequence/>
15 </xsd:complexType>
16 </xsd:element>
17 </types>
18
19 <message name="setLastTradePrice">
20 <part name="setLastTradePrice"
21 element="tns:setLastTradePrice"/>
22 </message>
23
24
25 <message name="setLastTradePriceResponse">
26 <part name="setLastTradePriceResponse"
27 element="tns:setLastTradePriceResponse"/>
28 </message>
29
30
31 <portType name="StockQuoteUpdater">
32 <operation name="setLastTradePrice">
33 <input message="tns:setLastTradePrice"/>
34 <output message="tns:setLastTradePriceResponse"/>
35 </operation>
36 </portType>
37
38 // non-wrapper style mapping
39 SetLastTradePriceResponse setLastTradePrice(
40 SetLastTradePrice setLastTradePrice);
41
42 // wrapper style mapping
43 void setLastTradePrice(String tickerSymbol, float lastTradePrice);

Figure 2.1: Wrapper and non-wrapper mapping styles

14 JAX-WS 2.0 October 7, 2005

2.3. Operation

• Message parts are either listed or unlisted. If the value of a wsdl:part element’s name attribute is 1

present in the parameterOrder attribute then the part is listed, otherwise it is unlisted. 2

Note: R2305 in WS-I Basic Profile 1.1 [17] requires that if the parameterOrder attribute is present 3

then at most one part may be unlisted. However, the algorithm outlined in this section supports 4

WSDLs that do not conform with this requirement. 5

• Parameters that are mapped from message parts are either listed or unlisted. Parameters that are 6

mapped from listed parts are listed; parameters that are mapped from unlisted parts are unlisted. 7

• Parameters that are mapped from wrapper children (wrapper style mapping only) are unlisted. 8

• Listed parameters appear first in the method signature in the order in which their corresponding parts 9

are listed in the parameterOrder attribute. 10

• Unlisted parameters either form the return type or follow the listed parameters 11

• The return type is determined as follows: 12

Non-wrapper style mapping Only parameters that are mapped from parts in the abstract output mes- 13

sage may form the return type, parts from other messages (see e.g. section 2.6.2.1) do not qual- 14

ify. If there is a single unlisted out part in the abstract output message then it forms the method 15

return type, otherwise the return type is void. 16

Wrapper style mapping If there is a single out wrapper child then it forms the method return type, 17

if there is an out wrapper child with a local name of “return” then it forms the method return 18

type, otherwise the return type is void. 19

• Unlisted parameters that do not form the return type follow the listed parameters in the following 20

order: 21

1. Parameters mapped from in and in/out parts appear in the same order the corresponding parts 22

appear in the input message. 23

2. Parameters mapped from in and in/outwrapper children (wrapper style mapping only) appear 24

in the same order as the corresponding elements appear in the wrapper. 25

3. Parameters mapped from out parts appear in the same order the corresponding parts appear in 26

the output message. 27

4. Parameters mapped from outwrapper children (wrapper style mapping only) appear in the same 28

order as the corresponding wrapper children appear in the wrapper. 29

2.3.3 Holder Class 30

Holder classes are used to support out and in/out parameters in mapped method signatures. They provide 31

a mutable wrapper for otherwise immutable object references. JAX-WS defines a generic holder class 32

(javax.xml.ws.Holder<T>) that can be used for any Java class. 33

Parameters whose XML data type would normally be mapped to a Java primitive type (e.g., xsd:int to 34

int) are instead mapped to a Holder whose type parameter is bound to the Java wrapper class correspond- 35

ing to the primitive type. E.g., an out or in/out parameter whose XML data type would normally be 36

mapped to a Java int is instead mapped to Holder<java.lang.Integer>. 37

♦ Conformance (Use of Holder): Implementations MUST map out and in/out method parameters us- 38

ing javax.xml.ws.Holder<T>, with the exception of a out part that has been mapped to the method’s 39

return type. 40

October 7, 2005 JAX-WS 2.0 15

Chapter 2. WSDL 1.1 to Java Mapping

2.3.4 Asynchrony 1

In addition to the synchronous mapping of wsdl:operation described above, a client side asynchronous 2

mapping is also supported. It is expected that the asynchronous mapping will be useful in some but not 3

all cases and therefore generation of the client side asynchronous methods should be optional at the users 4

discretion. 5

♦ Conformance (Asynchronous mapping required): An implementation MUST support the asynchronous 6

mapping. 7

♦ Conformance (Asynchronous mapping option): An implementation MUST support use of the jaxws- 8

:enableAsyncMapping binding declaration defined in section8.7.3 to enable and disable the asynchronous 9

mapping. 10

Editors Note 2.1 JSR-181 currently does not define annotations that can be used to mark a method as being 11

asynchronous. 12

2.3.4.1 Standard Asynchronous Interfaces 13

The following standard interfaces are used in the asynchronous operation mapping: 14

javax.xml.ws.Response A generic interface that is used to group the results of a method invocation 15

with the response context. Response extends Future<T> to provide asynchronous result polling 16

capabilities. 17

javax.xml.ws.AsyncHandler A generic interface that clients implement to receive results in an asyn- 18

chronous callback. 19

2.3.4.2 Operation 20

Each wsdl:operation is mapped to two additional methods in the corresponding service endpoint inter- 21

face: 22

Polling method A polling method returns a typed Response<ResponseBean> that may be polled using 23

methods inherited from Future<T> to determine when the operation has completed and to retrieve 24

the results. See below for further details on ResponseBean. 25

Callback method A callback method takes an additional final parameter that is an instance of a typed 26

AsyncHandler<ResponseBean> and returns a wildcard Future<?> that may be polled to determine 27

when the operation has completed. The object returned from Future<?>.get() has no standard 28

type. Client code should not attempt to cast the object to any particular type as this will result in 29

non-portable behavior. 30

♦ Conformance (Asynchronous method naming): In the absence of customizations, the name of the polling 31

and callback methods MUST be the value of the name attribute of the wsdl:operation suffixed with 32

“Async” mapped according to the rules described in sections 2.8 and 2.8.1. 33

♦ Conformance (Asynchronous parameter naming): The name of the method parameter for the callback 34

handler MUST be “asyncHandler”. Parameter name collisions require user intervention to correct, see 35

section 2.8.1. 36

16 JAX-WS 2.0 October 7, 2005

2.3. Operation

An application MAY customize this mapping using the jaxws:method binding declaration defined in sec- 1

tion 8.7.3. 2

♦ Conformance (Failed method invocation): If there is any error prior to invocation of the operation, an 3

implementation MUST throw a WebServiceException1. 4

2.3.4.3 Message and Part 5

The asynchronous mapping supports both wrapper and non-wrapper mapping styles, but differs in how it 6

maps out and in/out parts or wrapper children: 7

in The part or wrapper child is mapped to a method parameter as described in section 2.3.1. 8

out The part or wrapper child is mapped to a property of the response bean (see below). 9

in/out The part or wrapper child is mapped to a method parameter (no holder class) and to a property of the 10

response bean. 11

2.3.4.4 Response Bean 12

A response bean is a mapping of an operation’s output message, it contains properties for each out and 13

in/out message part or wrapper child. 14

♦ Conformance (Response bean naming): In the absence of customizations, the name of a response bean 15

MUST be the value of the name attribute of the wsdl:operation suffixed with “Response” mapped ac- 16

cording to the rules described in sections 2.8 and 2.8.1. 17

A response bean is mapped from a global element declaration following the rules described in section 2.4. 18

The global element declaration is formed as follows (in order of preference): 19

• If the operation’s output message contains a single part and that part refers to a global element decla- 20

ration then use the referenced global element. 21

• Synthesize a global element declaration of a complex type defined using the xsd:sequence com- 22

positor. Each output message part is mapped to a child of the synthesized element as follows: 23

– Each global element referred to by an output part is added as a child of the sequence. 24

– Each part that refers to a type is added as a child of the sequence by creating an element in no 25

namespace whose localname is the value of the name attribute of the wsdl:part element and 26

whose type is the value of the type attribute of the wsdl:part element 27

If the resulting response bean has only a single property then the bean wrapper should be discarded in method 28

signatures. In this case, if the property is a Java primitive type then it is boxed using the Java wrapper type 29

(e.g. int to Integer) to enable its use with Response. 30

1Errors that occur during the invocation are reported when the client attempts to retrieve the results of the operation, see section
2.3.4.5.

October 7, 2005 JAX-WS 2.0 17

Chapter 2. WSDL 1.1 to Java Mapping

2.3.4.5 Faults 1

Mapping of WSDL faults to service specific exceptions is identical for both asynchronous and synchronous 2

cases, section 2.5 describes the mapping. However, mapped asynchronous methods do not throw service spe- 3

cific exceptions directly. Instead a java.util.concurrent.ExecutionException is thrown when a 4

client attempts to retrieve the results of an asynchronous method invocation via the Response.getmethod. 5

♦ Conformance (Asynchronous fault reporting): A WSDL fault that occurs during execution of an asyn- 6

chronous method invocation MUST be mapped to a java.util.concurrent.ExecutionException 7

thrown when the client calls Response.get. 8

Response is a static generic interface whose get method cannot throw service specific exceptions. Instead 9

of throwing a service specific exception, a Response instance throws an ExecutionException whose 10

cause is set to an instance of the service specific exception mapped from the corresponding WSDL fault. 11

♦ Conformance (Asychronous fault cause): An ExecutionException that is thrown by the get method 12

of Response as a result of a WSDL fault MUST have as its cause the service specific exception mapped 13

from the WSDL fault, if there is one, otherwise the ProtocolException mapped from the WSDL fault 14

(see 6.4). 15

2.3.4.6 Mapping Examples 16

Figure 2.2 shows an example of the asynchronous operation mapping. Note that the mapping uses Float 17

instead of a response bean wrapper (GetPriceResponse) since the synthesized global element declaration 18

for the operations output message (lines 17–24) maps to a response bean that contains only a single property. 19

2.3.4.7 Usage Examples 20

• Synchronous use. 21

1 Service service = ...; 22

2 StockQuote quoteService = (StockQuote)service.getPort(portName); 23

3 Float quote = quoteService.getPrice(ticker); 24

• Asynchronous polling use. 25

1 Service service = ...; 26

2 StockQuote quoteService = (StockQuote)service.getPort(portName); 27

3 Response<Float> response = quoteService.getPriceAsync(ticker); 28

4 while (!response.isDone()) { 29

5 // do something while we wait 30

6 } 31

7 Float quote = response.get(); 32

• Asynchronous callback use. 33

1 class MyPriceHandler implements AsyncHandler<Float> { 34

2 ... 35

3 public void handleResponse(Response<Float> response) { 36

4 Float price = response.get(); 37

18 JAX-WS 2.0 October 7, 2005

2.3. Operation

1 <!-- WSDL extract -->
2 <message name="getPrice">
3 <part name="ticker" type="xsd:string"/>
4 </message>
5
6
7 <message name="getPriceResponse">
8 <part name="price" type="xsd:float"/>
9 </message>

10
11
12 <portType name="StockQuote">
13 <operation name="getPrice">
14 <input message="tns:getPrice"/>
15 <output message="tns:getPriceResponse"/>
16 </operation>
17 </portType>
18
19 <!-- Synthesized response bean element -->
20 <xsd:element name="getPriceResponse">
21 <xsd:complexType>
22 <xsd:sequence>
23 <xsd:element name="price" type="xsd:float"/>
24 </xsd:sequence>
25 </xsd:complexType>
26 </xsd:element>
27
28 // synchronous mapping
29 @WebService
30 public interface StockQuote {
31 float getPrice(String ticker);
32 }
33
34 // asynchronous mapping
35 @WebService
36 public interface StockQuote {
37 float getPrice(String ticker);
38 Response<Float> getPriceAsync(String ticker);
39 Future<?> getPriceAsync(String ticker, AsyncHandler<Float>);
40 }

Figure 2.2: Asynchronous operation mapping

October 7, 2005 JAX-WS 2.0 19

Chapter 2. WSDL 1.1 to Java Mapping

5 // do something with the result 1

6 } 2

7 } 3

8 4

9 Service service = ...; 5

10 StockQuote quoteService = (StockQuote)service.getPort(portName); 6

11 MyPriceHandler myPriceHandler = new MyPriceHandler(); 7

12 quoteService.getPriceAsync(ticker, myPriceHandler); 8

2.4 Types 9

Mapping of XML Schema types to Java is described by the JAXB 2.0 specification[10]. The contents of a 10

wsdl:types section is passed to JAXB along with any additional type or element declarations (e.g., see 11

section 2.3.4) required to map other WSDL constructs to Java. E.g., section 2.3.4 defines an algorithm 12

for synthesizing additional global element declarations to provide a mapping from WSDL operations to 13

asynchronous Java method signatures. 14

JAXB supports mapping XML types to either Java interfaces or classes. By default JAX-WS uses the class 15

based mapping of JAXB but also allows use of the interface based mapping. 16

♦ Conformance (JAXB class mapping): In the absence of user customizations, an implementation MUST 17

use the JAXB class based mapping with generateValueClass set to true and generateElement- 18

Class set to false when mapping WSDL types to Java. 19

♦ Conformance (JAXB customization use): An implementation MUST support use of JAXB customiza- 20

tions during mapping as detailed in section 8.5. 21

♦ Conformance (JAXB customization clash): To avoid clashes, if a user customizes the mapping, an im- 22

plementation MUST NOT add the default class based mapping customizations. 23

In addition, for ease of use, JAX-WS strips any JAXBElement<T> wrapper off the type of a method pa- 24

rameter if the normal JAXB mapping would result in one2. E.g. a parameter that JAXB would map to 25

JAXBElement<Integer> is instead be mapped to Integer. 26

JAXB provides support for the SOAP MTOM[26]/XOP[27] mechanism for optimizing transmission of bi- 27

nary data types. JAX-WS provides the MIME processing required to enable JAXB to serialize and de- 28

serialize MIME based MTOM/XOP packages. The contract between JAXB and an MTOM/XOP pack- 29

age processor is defined by the javax.xml.bind.AttachmentMarshaller and javax.xml.bind- 30

.AttachmentUnmarshaller classes. A JAX-WS implementation can plug into it by registering its 31

own AttachmentMarshaller and AttachmentUnmarshaller at runtime using the setAttachment- 32

Unmarshaller method of javax.xml.bind.Unmarshaller (resp. the setAttachmentMarshaller 33

method of javax.xml.bind.Marshaller). 34

2.5 Fault 35

A wsdl:fault element is mapped to a Java exception. 36

♦ Conformance (javax.xml.ws.WebFault required): A mapped exception MUST be annotated with a 37

javax.xml.ws.WebWebFault annotation. 38

2JAXB maps an element declaration to a Java instance that implements JAXBElement.

20 JAX-WS 2.0 October 7, 2005

2.6. Binding

♦ Conformance (Exception naming): In the absence of customizations, the name of a mapped exception 1

MUST be the value of the name attribute of the wsdl:message referred to by the wsdl:fault element 2

mapped according to the rules in sections 2.8 and 2.8.1. 3

An application MAY customize this mapping using the jaxws:class binding declaration defined in section 4

8.7.4. 5

Multiple operations within the same service can define equivalent faults. Faults defined within the same 6

service are equivalent if the values of their message attributes are equal. 7

♦ Conformance (Fault equivalence): An implementation MUST map equivalent faults within a service to a 8

single Java exception class. 9

A wsdl:fault element refers to a wsdl:message that contains a single part. The global element decla- 10

ration3 referred to by that part is mapped to a Java bean, henceforth called a fault bean, using the mapping 11

described in section 2.4. An implementation generates a wrapper exception class that extends java.lang- 12

.Exception and contains the following methods: 13

WrapperException(String message, FaultBean faultInfo) A constructor where WrapperExcep- 14

tion is replaced with the name of the generated wrapper exception and FaultBean is replaced by the 15

name of the generated fault bean. 16

WrapperException(String message, FaultBean faultInfo, Throwable cause) A constructor 17

where WrapperException is replaced with the name of the generated wrapper exception and FaultBean 18

is replaced by the name of the generated fault bean. The last argument, cause, may be used to convey 19

protocol specific fault information, see section 6.4.1. 20

FaultBean getFaultInfo() Getter to obtain the fault information, where FaultBean is replaced by the 21

name of the generated fault bean. 22

The WrapperException class is annotated using the WebFault annotation (see section 7.2) to capture the 23

local and namespace name of the global element mapped to the fault bean. 24

Two wsdl:fault child elements of the same wsdl:operation that indirectly refer to the same global 25

element declaration are considered to be equivalent since there is no interoperable way of differentiating 26

between their serialized forms. 27

♦ Conformance (Fault equivalence): At runtime an implementation MAY map a serialized fault into any 28

equivalent Java exception. 29

2.5.1 Example 30

Figure 2.3 shows an example of the WSDL fault mapping described above. 31

2.6 Binding 32

The mapping from WSDL 1.1 to Java is based on the abstract description of a wsdl:portType and its 33

associated operations. However, the binding of a port type to a protocol can introduce changes in the 34

3WS-I Basic Profile[17] R2205 requires parts to refer to elements rather than types.

October 7, 2005 JAX-WS 2.0 21

Chapter 2. WSDL 1.1 to Java Mapping

1 <!-- WSDL extract -->
2 <types>
3 <xsd:schema targetNamespace="...">
4 <xsd:element name="faultDetail">
5 <xsd:complexType>
6 <xsd:sequence>
7 <xsd:element name="majorCode" type="xsd:int"/>
8 <xsd:element name="minorCode" type="xsd:int"/>
9 </xsd:sequence>

10 </xsd:complexType>
11 </xsd:element>
12 </xsd:schema>
13 </types>
14
15 <message name="operationException">
16 <part name="faultDetail" element="tns:faultDetail"/>
17 </message>
18
19
20 <portType name="StockQuoteUpdater">
21 <operation name="setLastTradePrice">
22 <input .../>
23 <output .../>
24 <fault name="operationException"
25 message="tns:operationException"/>
26 </operation>
27 </portType>
28
29 // fault mapping
30 @WebFault(name="faultDetail", targetNamespace="...")
31 class OperationException extends Exception {
32 OperationException(String message, FaultDetail faultInfo) {...}
33 OperationException(String message, FaultDetail faultInfo,
34 Throwable cause) {...}
35 FaultDetail getFaultInfo() {...}
36 }

Figure 2.3: Fault mapping

22 JAX-WS 2.0 October 7, 2005

2.6. Binding

mapping – this section describes those changes in the general case and specifically for the mandatory WSDL 1

1.1 protocol bindings. 2

♦ Conformance (Required WSDL extensions): An implementation MUST support mapping of the WSDL 3

1.1 specified extension elements for the WSDL SOAP and MIME bindings. 4

2.6.1 General Considerations 5

R2209 in WS-I Simple SOAP Binding Profile 1.1[28] recommends that all parts of a message be bound but 6

does not require it. 7

♦ Conformance (Unbound message parts): To preserve the protocol independence of mapped operations, 8

an implementation MUST NOT ignore unbound message parts when mapping from WSDL 1.1 to Java. 9

Instead an implementation MUST generate binding code that ignores in and in/out parameters mapped 10

from unbound parts and that presents out parameters mapped from unbound parts as null. 11

2.6.2 SOAP Binding 12

This section describes changes to the WSDL 1.1 to Java mapping that may result from use of certain SOAP 13

binding extensions. 14

2.6.2.1 Header Binding Extension 15

A soap:header element may be used to bind a part from a message to a SOAP header. As clarified by 16

R2208 in WS-I Basic Profile 1.1[17], the part may belong to either the message bound by the soap:body 17

or to a different message: 18

• If the part belongs to the message bound by the soap:body then it is mapped to a method parameter 19

as described in section 2.3. Such a part is always mapped using the non-wrapper style. 20

• If the part belongs to a different message than that bound by the soap:body then it may optionally 21

be mapped to an additional method parameter. When mapped to a parameter, the part is treated as an 22

additional unlisted part for the purposes of the mapping described in section 2.3. This additional part 23

does not affect eligibility for wrapper style mapping of the message bound by the soap:body (see 24

section 2.3.1); the additional part is always mapped using the non-wrapper style. 25

Note that the order of headers in a SOAP message is independent of the order of soap:header elements 26

in the WSDL binding – see R2751 in WS-I Basic Profile 1.0[8]. This causes problems when two or more 27

headers with the same qualified name are present in a message and one or more of those headers are bound 28

to a method parameter since it is not possible to determine which header maps to which parameter. 29

♦ Conformance (Duplicate headers in binding): When mapping, an implemention MUST report an error 30

if the binding of an operation includes two or more soap:header elements that would result in SOAP 31

headers with the same qualified name. 32

♦ Conformance (Duplicate headers in message): An implementation MUST generate a runtime error if, 33

during unmarshalling, there is more than one instance of a header whose qualified name is mapped to a 34

method parameter. 35

October 7, 2005 JAX-WS 2.0 23

Chapter 2. WSDL 1.1 to Java Mapping

2.6.3 MIME Binding 1

The presence of a mime:multipartRelated binding extension element as a child of a wsdl:input or 2

wsdl:output element in a wsdl:binding indicates that the corresponding messages may be serialized as 3

MIME packages. The WS-I Attachments Profile[29] describes two separate attachment mechanisms, both 4

based on use of the WSDL 1.1 MIME binding[5]: 5

wsiap:swaRef A schema type that may be used in the abstract message description to indicate a reference 6

to an attachment. 7

mime:content A binding construct that may be used to bind a message part to an attachment. 8

JAXB[10] describes the mapping from the WS-I defined wsiap:swaref schema type to Java and, since 9

JAX-WS inherits this capability, it is not discussed further here. Use of the mime:content construct is 10

outside the scope of JAXB mapping and the following subsection describes changes to the WSDL 1.1 to 11

Java mapping that results from its use. 12

2.6.3.1 mime:content 13

Message parts are mapped to method parameters as described in section 2.3 regardless of whether the part 14

is bound to the SOAP message or to an attachment. JAXB rules are used to determine the Java type of 15

message parts based on the XML schema type referenced by the wsdl:part. However, when a message 16

part is bound to a MIME part (using the mime:content element of the WSDL MIME binding) additional 17

information is available that provides the MIME type of the data and this can optionally be used to narrow 18

the default JAXB mapping. 19

♦ Conformance (Use of MIME type information): An implementation MUST support using the jaxws- 20

:enableMIMEContent binding declaration defined in section 8.7.5 to enable or disable the use of the 21

additional metadata in mime:content elements when mapping from WSDL to Java. 22

JAXB defines a mapping between MIME types and Java types. When a part is bound using one or more 23

mime:content elements4 and use of the additional metadata is enabled then the JAXB mapping is cus- 24

tomized to use the most specific type allowed by the set of MIME types described for the part in the binding. 25

The case where the parameter mode is INOUT and is bound to different mime bindings in the input and 26

output messages using the mime:content element MUST also be treated in the same way as described 27

above. Please refer to appendix H in the JAXB 2.0 specification [10] for details of the type mapping. 28

Parts bound to MIME using the mime:contentWSDL extension are considered as additional unlisted parts 29

for the purposes of the mapping described in section 2.3. These additional parts do not affect eligibility for 30

wrapper style mapping of the message bound by the soap:body; additional parts are always mapped using 31

the non-wrapper style. 32

Figure 2.4 shows an example WSDL and two mapped interfaces: one without using the mime:content 33

metadata, the other using the additional metadata to narrow the binding. Note that in the latter the type of 34

the claimPhoto method parameter is Image rather than the default byte[]. 35

♦ Conformance (MIME type mismatch): On receipt of a message where the MIME type of a part does not 36

match that described in the WSDL an implementation SHOULD throw a WebServiceException. 37

4Multiple mime:content elements for the same part indicate a set of permissible alternate types.

24 JAX-WS 2.0 October 7, 2005

2.6. Binding

1 <!-- WSDL extract -->
2 <wsdl:message name="ClaimIn">
3 <wsdl:part name="body" element="types:ClaimDetail"/>
4 <wsdl:part name="ClaimPhoto" type="xsd:base64Binary"/>
5 </wsdl:message>
6
7 <wsdl:portType name="ClaimPortType">
8 <wsdl:operation name="SendClaim">
9 <wsdl:input message="tns:ClaimIn"/>

10 </wsdl:operation>
11 </wsdl:portType>
12
13 <wsdl:binding name="ClaimBinding" type="tns:ClaimPortType">
14 <soapbind:binding style="document" transport="..."/>
15 <wsdl:operation name="SendClaim">
16 <soapbind:operation soapAction="..."/>
17 <wsdl:input>
18 <mime:multipartRelated>
19 <mime:part>
20 <soapbind:body parts="body" use="literal"/>
21 </mime:part>
22 <mime:part>
23 <mime:content part="ClaimPhoto" type="image/jpeg"/>
24 <mime:content part="ClaimPhoto" type="image/gif"/>
25 </mime:part>
26 </mime:multipartRelated>
27 </wsdl:input>
28 </wsdl:operation>
29 </wsdl:binding>
30
31 // Mapped Java interface without mime:content metadata
32 @WebService
33 public interface ClaimPortType {
34 public String sendClaim(ClaimDetail detail, byte claimPhoto[]);
35 }
36
37 // Mapped Java interface using mime:content metadata
38 @WebService
39 public interface ClaimPortType {
40 public String sendClaim(ClaimDetail detail, Image claimPhoto);
41 }

Figure 2.4: Use of mime:content metadata

October 7, 2005 JAX-WS 2.0 25

Chapter 2. WSDL 1.1 to Java Mapping

♦ Conformance (MIME part identification): An implementation MUST use the algorithm defined in the 1

WS-I Attachments Profile[29] when generating the MIME Content-ID header field value for a part bound 2

using mime:content. 3

2.7 Service and Port 4

A wsdl:service is a collection of related wsdl:port elements. A wsdl:port element describes a port 5

type bound to a particular protocol (a wsdl:binding) that is available at particular endpoint address. On 6

the client side, a wsdl:service element is mapped to a generated service class that extends javax.xml- 7

.ws.Service (see section 4.1 for more information on the Service class). 8

♦ Conformance (Service superclass required): A generated service class MUST extend the javax.xml- 9

.ws.Service class. 10

♦ Conformance (Service class naming): In the absence of customization, the name of a generated service 11

class MUST be the value of the name attribute of the wsdl:service element mapped according to the 12

rules described in sections 2.8 and 2.8.1. 13

An application MAY customize the name of the generated service class using the jaxws:class binding 14

declaration defined in section8.7.7. 15

In order to allow an implementation to identify the Web service that a generated service class corre- 16

sponds to, the latter is required to be annotated with javax.xml.ws.WebServiceClient annotation. 17

The annotation contains all the information necessary to locate a WSDL document and uniquely identify a 18

wsdl:service inside it. 19

♦ Conformance (javax.xml.ws.WebServiceClient required): A generated service class MUST be 20

annotated with a javax.xml.ws.WebServiceClient annotation. 21

JAX-WS 2.0 mandates that two constructors be present on every generated service class. 22

♦ Conformance: A generated service class MUST have a default (i.e. zero-argument) public construc- 23

tor. This constructor MUST call the protected constructor declared in javax.xml.ws.Service, pass- 24

ing as arguments the WSDL location and the service name. The values of the actual arguments for this 25

call MUST be equal (in the java.lang.Object.equals sense) to the values specified in the mandatory 26

WebServiceClient annotation on the generated service class itself. 27

♦ Conformance: The implementation class MUST have a public constructor that takes two arguments, 28

the wsdl location (a java.net.URL) and the service name (a javax.xml.namespace.QName). This 29

constructor MUST call the protected constructor in javax.xml.ws.Service passing as arguments the 30

WSDL location and the service name values with which it was invoked. 31

For each port in the service, the generated client side service class contains the following methods, one for 32

each port defined by the WSDL service and whose binding is supported by the JAX-WS implementation: 33

getPortName() One required method that takes no parameters and returns a proxy that implements the 34

mapped service endpoint interface. The method generated delegates to the Service.getPort(...) 35

method passing it the port name. The value of the port name MUST be equal to the value specified in 36

the mandatory WebEndpoint annotation on the method itself. 37

26 JAX-WS 2.0 October 7, 2005

2.7. Service and Port

♦ Conformance (Failed getPort Method): A generated getPortName method MUST throw javax.xml- 1

.ws.WebServiceException on failure. 2

The value of PortName in the above is derived as follows: the value of the name attribute of the wsdl:port 3

element is first mapped to a Java identifier according to the rules described in section2.8, this Java identifier 4

is then treated as a JavaBean property for the purposes of deriving the getPortName method name. 5

An application MAY customize the name of the generated method for a port using the jaxws:method 6

binding declaration defined in section8.7.8. 7

In order to enable an implementation to determine the wsdl:port that a port getter method corresponds to, 8

the latter is required to be annotated with a javax.xml.ws.WebEndpoint annotation. 9

♦ Conformance (javax.xml.ws.WebEndpoint required): The getPortName methods of generated ser- 10

vice interface MUST be annotated with a javax.xml.ws.WebEndpoint annotation. 11

2.7.1 Example 12

The following shows a WSDL extract and the resulting generated service class. 13

1 <!-- WSDL extract --> 14

2 <wsdl:service name="StockQuoteService"> 15

3 <wsdl:port name="StockQuoteHTTPPort" binding="StockQuoteHTTPBinding"/> 16

4 <wsdl:port name="StockQuoteSMTPPort" binding="StockQuoteSMTPBinding"/> 17

5 </wsdl:service> 18

6 19

7 // Generated Service Class 20

8 @WebServiceClient(name="StockQuoteService", 21

9 targetNamespace="http://example.com/stocks", 22

10 wsdlLocation="http://example.com/stocks.wsdl") 23

11 public class StockQuoteService extends javax.xml.ws.Service { 24

12 25

13 public StockQuoteService() { 26

14 super(new URL("http://example.com/stocks.wsdl"), 27

15 new QName("http://example.com/stocks", 28

16 "StockQuoteService")); 29

17 } 30

18 31

19 public StockQuoteService(URL wsdlLocation, QName serviceName) { 32

20 super(wsdlLocation, serviceName); 33

21 } 34

22 35

23 @WebEndpoint(name="StockQuoteHTTPPort") 36

24 public StockQuoteProvider getStockQuoteHTTPPort() { 37

25 return (StockQuoteProvider)super.getPort("StockQuoteHTTPPort", 38

26 StockQuoteProvider.class); 39

27 } 40

28 41

29 @WebEndpoint(name="StockQuoteSMTPPort") 42

30 public StockQuoteProvider getStockQuoteSMTPPort() { 43

31 return (StockQuoteProvider)super.getPort("StockQuoteSMTPPort", 44

32 StockQuoteProvider.class); 45

33 } 46

34 } 47

October 7, 2005 JAX-WS 2.0 27

Chapter 2. WSDL 1.1 to Java Mapping

In the above, StockQuoteProvider is the service endpoint interface mapped from the WSDL port type 1

for both referenced bindings. 2

2.8 XML Names 3

Appendix C of JAXB 1.0[9] defines a mapping from XML names to Java identifiers. JAX-WS uses this 4

mapping to convert WSDL identifiers to Java identifiers with the following modifications and additions: 5

Method identifiers When mapping wsdl:operation names to Java method identifiers, the get or set 6

prefix is not added. Instead the first word in the word-list has its first character converted to lower 7

case. 8

Parameter identifiers When mapping wsdl:part names or wrapper child local names to Java method 9

parameter identifiers, the first word in the word-list has its first character converted to lower case. 10

Clashes with Java language reserved words are reported as errors and require use of appropriate cus- 11

tomizations to fix the clash. 12

2.8.1 Name Collisions 13

WSDL name scoping rules may result in name collisions when mapping from WSDL 1.1 to Java. E.g., a 14

port type and a service are both mapped to Java classes but WSDL allows both to be given the same name. 15

This section defines rules for resolving such name collisions. 16

The order of precedence for name collision resolution is as follows (highest to lowest); 17

1. Service endpoint interface 18

2. Non-exception Java class 19

3. Exception class 20

4. Service class 21

If a name collision occurs between two identifiers with different precedences, the lower precedence item has 22

its name changed as follows: 23

Non-exception Java class The suffix “ Type” is added to the class name. 24

Exception class The suffix “ Exception” is added to the class name. 25

Service class The suffix “ Service” is added to the class name. 26

If a name collision occurs between two identifiers with the same precedence, this is reported as an error 27

and requires developer intervention to correct. The error may be corrected either by modifying the source 28

WSDL or by specifying a customized name mapping. 29

If a name collision occurs between a mapped Java method and a method in javax.xml.ws.Binding- 30

Provider (an interface that proxies are required to implement, see section 4.2), the prefix “ ” is added to 31

the mapped method. 32

28 JAX-WS 2.0 October 7, 2005

Chapter 3 1

Java to WSDL 1.1 Mapping 2

This chapter describes the mapping from Java to WSDL 1.1. This mapping is used when generating web 3

service endpoints from existing Java interfaces. 4

♦ Conformance (WSDL 1.1 support): Implementations MUST support mapping Java to WSDL 1.1. 5

The following sections describe the default mapping from each Java construct to the equivalent WSDL 1.1 6

artifact. 7

An application MAY customize the mapping using the annotations defined in section 7. 8

♦ Conformance (Standard annotations): An implementation MUST support the use of annotations defined 9

in section 7 to customize the Java to WSDL 1.1 mapping. 10

3.1 Java Names 11

♦ Conformance (Java identifier mapping): In the absence of annotations described in this specification, 12

Java identifiers MUST be mapped to XML names using the algorithm defined in appendix B of SOAP 13

1.2 Part 2[4]. 14

3.1.1 Name Collisions 15

WS-I Basic Profile 1.0[8] (see R2304) requires operations within a wsdl:portType to be uniquely named – 16

support for customization of the operation name allows this requirement to be met when a Java SEI contains 17

overloaded methods. 18

♦ Conformance (Method name disambiguation): An implementation MUST support the use of the javax- 19

.jws.WebMethod annotation to disambiguate overloaded Java method names when mapped to WSDL. 20

3.2 Package 21

A Java package is mapped to a wsdl:definitions element and an associated targetNamespace at- 22

tribute. The wsdl:definitions element acts as a container for other WSDL elements that together form 23

the WSDL description of the constructs in the corresponding Java package. 24

A default value for the targetNamespace attribute is derived from the package name as follows: 25

October 7, 2005 JAX-WS 2.0 29

Chapter 3. Java to WSDL 1.1 Mapping

1. The package name is tokenized using the “.” character as a delimiter. 1

2. The order of the tokens is reversed. 2

3. The value of the targetNamespace attribute is obtained by concatenating “http://”to the list of 3

tokens separated by “ . ”and “/”. 4

E.g., the Java package “com.example.ws” would be mapped to the target namespace “http://ws.example- 5

.com/ ”. 6

♦ Conformance (Package name mapping): The javax.jws.WebService annotation (see section 7.10.1) 7

MAY be used to specify the target namespace to use for a Web service and MUST be used for classes or 8

interfaces in no package. In the absence of a javax.jws.WebService annotation the Java package name 9

MUST be mapped to the value of the wsdl:definitions element’s targetNamespace attribute using 10

the algorithm defined above. 11

No specific authoring style is required for the mapped WSDL document; implementations are free to gener- 12

ate WSDL that uses the WSDL and XML Schema import directives. 13

♦ Conformance (WSDL and XML Schema import directives): Generated WSDL MUST comply with the 14

WS-I Basic Profile 1.0[8] restrictions (See R2001, R2002, and R2003) on usage of WSDL and XML Schema 15

import directives. 16

3.3 Class 17

A Java class (not an interface) annotated with a javax.jws.WebService annotation can be used to define 18

a Web service. 19

In order to allow for a separation between Web service interface and implementation, if the WebService 20

annotation on the class under consideration has a endpointInterface element, then the interface referred 21

by this element is for all purposes the SEI associated with the class. 22

Otherwise, the class implicitly defines a service endpoint interface (SEI) which comprises all of the public 23

methods that satisfy one of the following conditions: 24

1. They are annotated with the javax.jws.WebMethod annotation with the exclude element set to 25

false or missing (since false is the default for this annotation element). 26

2. They are not annotated with the javax.jws.WebMethod annotation but their declaring class has a 27

javax.jws.WebService annotation. 28

For mapping purposes, this implicit SEI and its methods are considered to be annotated with the same Web 29

service-related annotations that the original class and its methods have. 30

In pratice, in order to exclude a public method of a class annotated with WebService and not directly 31

specifying a endpointInterface from the implicitly defined SEI, it is necessary to annotate the method 32

with a WebMethod annotation with the exclude element set to true. 33

♦ Conformance (Class mapping): An implementation MUST support the mapping of javax.jws.Web- 34

Service annotated classes to implicit service endpoint interfaces. 35

30 JAX-WS 2.0 October 7, 2005

3.4. Interface

3.4 Interface 1

A Java service endpoint interface (SEI) is mapped to a wsdl:portType element. The wsdl:portType 2

element acts as a container for other WSDL elements that together form the WSDL description of the 3

methods in the corresponding Java SEI. An SEI is a Java interface that meets all of the following criteria: 4

• It MUST carry a javax.jws.WebService annotation (see 7.10.1). 5

• Any of its methods MAY carry a javax.jws.WebMethod annotation (see 7.10.2). 6

• javax.jws.WebMethod if used, MUST NOT have the exclude element set to true. 7

• All method parameters and return types are compatible with the JAXB 2.0[10] Java to XML Schema 8

mapping definition 9

♦ Conformance (portType naming): The javax.jws.WebService annotation (see section 7.10.1) MAY 10

be used to customize the name and targetNamespace attributes of the wsdl:portType element. If not 11

customized, the value of the name attribute of the wsdl:portType element MUST be the name of the SEI 12

not including the package name and the target namespace is computed as defined above in section 3.2. 13

Figure 3.1 shows an example of a Java SEI and the corresponding wsdl:portType. 14

3.4.1 Inheritance 15

WSDL 1.1 does not define a standard representation for the inheritance of wsdl:portType elements. When 16

mapping an SEI that inherits from another interface, the SEI is treated as if all methods of the inherited 17

interface were defined within the SEI. 18

♦ Conformance (Inheritance flattening): A mapped wsdl:portType element MUST contain WSDL def- 19

initions for all the methods of the corresponding Java SEI including all inherited methods. 20

♦ Conformance (Inherited interface mapping): An implementation MAY map inherited interfaces to addi- 21

tional wsdl:portType elements within the wsdl:definitions element. 22

3.5 Method 23

Each public method in a Java SEI is mapped to a wsdl:operation element in the corresponding wsdl- 24

:portType plus one or more wsdl:message elements. 25

♦ Conformance (Operation naming): In the absence of customizations, the value of the name attribute of 26

the wsdl:operation element MUST be the name of the Java method. The javax.jws.WebMethod (see 27

7.10.2) annotation MAY be used to customize the value of the name attribute of the wsdl:operation 28

element and MUST be used to resolve naming conflicts. If the exclude element of the javax.jws- 29

.WebMethod is set to true then the Java method MUST NOT be present in the wsdl as a wsdl:operation 30

element. 31

Methods are either one-way or two-way: one way methods have an input but produce no output, two way 32

methods have an input and produce an output. Section 3.5.1 describes one way operations further. 33

The wsdl:operation element corresponding to each method has one or more child elements as follows: 34

October 7, 2005 JAX-WS 2.0 31

Chapter 3. Java to WSDL 1.1 Mapping

• A wsdl:input element that refers to an associated wsdl:message element to describe the operation 1

input. 2

• (Two-way methods only) an optional wsdl:output element that refers to a wsdl:message to de- 3

scribe the operation output. 4

• (Two-way methods only) zero or more wsdl:fault child elements, one for each exception thrown 5

by the method. The wsdl:fault child elements refer to associated wsdl:message elements to 6

describe each fault. See section 3.7 for further details on exception mapping. 7

The value of a wsdl:message element’s name attribute is not significant but by convention it is normally 8

equal to the corresponding operation name for input messages and the operation name concatenated with 9

“Response” for output messages. Naming of fault messages is described in section section 3.7. 10

Each wsdl:message element has one of the following1: 11

Document style A single wsdl:part child element that refers, via an element attribute, to a global ele- 12

ment declaration in the wsdl:types section. 13

RPC style Zero or more wsdl:part child elements (one per method parameter and one for a non-void 14

return value) that refer, via a type attribute, to named type declarations in the wsdl:types section. 15

Figure 3.1 shows an example of mapping a Java interface containing a single method to WSDL 1.1 using 16

document style. Figure 3.2 shows an example of mapping a Java interface containing a single method to 17

WSDL 1.1 using RPC style. 18

Section 3.6 describes the mapping from Java methods and their parameters to corresponding global element 19

declarations and named types in the wsdl:types section. 20

3.5.1 One Way Operations 21

Only Java methods whose return type is void, that have no parameters that implement Holder and that do 22

not throw any checked exceptions can be mapped to one-way operations. Not all Java methods that fulfill 23

this requirement are amenable to become one-way operations and automatic choice between two-way and 24

one-way mapping is not possible. 25

♦ Conformance (One-way mapping): Implementations MUST support use of the javax.jws.OneWay (see 26

7.10.3) annotation to specify which methods to map to one-way operations. Methods that are not annotated 27

with javax.jws.OneWay MUST NOT be mapped to one-way operations. 28

♦ Conformance (One-way mapping errors): Implementations MUST prevent mapping to one-way opera- 29

tions of methods that do not meet the necessary criteria. 30

3.6 Method Parameters and Return Type 31

A Java method’s parameters and return type are mapped to components of either the messages or the 32

global element declarations mapped from the method. Parameters can be mapped to components of the 33

1The javax.jws.WebParam and javax.jws.WebResult annotations can introduce additional parts into mes-
sages when the header element is true.

32 JAX-WS 2.0 October 7, 2005

3.6. Method Parameters and Return Type

1 // Java
2 package com.example;
3 @WebService
4 public interface StockQuoteProvider {
5 float getPrice(String tickerSymbol)
6 throws TickerException;
7 }
8
9 <!-- WSDL extract -->

10 <types>
11 <xsd:schema targetNamespace="...">
12 <!-- element declarations -->
13 <xsd:element name="getPrice"
14 type="tns:getPriceType"/>
15 <xsd:element name="getPriceResponse"
16 type="tns:getPriceResponseType"/>
17 <xsd:element name="TickerException"
18 type="tns:TickerExceptionType"/>
19
20 <!-- type definitions -->
21 ...
22 </xsd:schema>
23 </types>
24
25 <message name="getPrice">
26 <part name="getPrice" element="tns:getPrice"/>
27 </message>
28
29
30 <message name="getPriceResponse">
31 <part name="getPriceResponse" element="tns:getPriceResponse"/>
32 </message>
33
34
35 <message name="TickerException">
36 <part name="TickerException" element="tns:TickerException"/>
37 </message>
38
39
40 <portType name="StockQuoteProvider">
41 <operation name="getPrice">
42 <input message="tns:getPrice"/>
43 <output message="tns:getPriceResponse"/>
44 <fault message="tns:TickerException"/>
45 </operation>
46 </portType>

Figure 3.1: Java interface to WSDL portType mapping using document style

October 7, 2005 JAX-WS 2.0 33

Chapter 3. Java to WSDL 1.1 Mapping

1 // Java
2 package com.example;
3 @WebService
4 public interface StockQuoteProvider {
5 float getPrice(String tickerSymbol)
6 throws TickerException;
7 }
8
9 <!-- WSDL extract -->

10 <types>
11 <xsd:schema targetNamespace="...">
12 <!-- element declarations -->
13 <xsd:element name="TickerException"
14 type="tns:TickerExceptionType"/>
15
16 <!-- type definitions -->
17 ...
18 </xsd:schema>
19 </types>
20
21 <message name="getPrice">
22 <part name="tickerSymbol" type="xsd:string"/>
23 </message>
24
25
26 <message name="getPriceResponse">
27 <part name="return" type="xsd:float"/>
28 </message>
29
30
31 <message name="TickerException">
32 <part name="TickerException" element="tns:TickerException"/>
33 </message>
34
35
36 <portType name="StockQuoteProvider">
37 <operation name="getPrice">
38 <input message="tns:getPrice"/>
39 <output message="tns:getPriceResponse"/>
40 <fault message="tns:TickerException"/>
41 </operation>
42 </portType>

Figure 3.2: Java interface to WSDL portType mapping using RPC style

34 JAX-WS 2.0 October 7, 2005

3.6. Method Parameters and Return Type

message or global element declaration for either the operation input message, operation output message 1

or both. The mapping depends on the parameter classification.The javax.jws.WebParam annotation’s 2

header element MAY be used to map parameters to SOAP headers. Header parameters MUST be included 3

as soap:header elements in the operation’s input message. The javax.jws.WebResult annotation’s 4

header element MAY be used to map results to SOAP headers. Header results MUST be included as 5

soap:header elements in the operation’s output message. 6

3.6.1 Parameter and Return Type Classification 7

Method parameters and return type are classified as follows: 8

in The value is transmitted by copy from a service client to the SEI but is not returned from the service 9

endpoint to the client. 10

out The value is returned by copy from an SEI to the client but is not transmitted from the client to the 11

service endpoint implementation. 12

in/out The value is transmitted by copy from a service client to the SEI and is returned by copy from the 13

SEI to the client. 14

A methods return type is always out. For method parameters, holder classes are used to determine the 15

classification. javax.xml.ws.Holder. A parameter whose type is a parameterized javax.xml.ws- 16

.Holder<T> class is classified as in/out or out, all other parameters are classified as in. 17

♦ Conformance (Parameter classification): The javax.jws.WebParam annotation (see 7.10.4) MAY be 18

used to specify whether a holder parameter is treated as in/out or out. If not specified, the default MUST 19

be in/out. 20

♦ Conformance (Parameter naming): The javax.jws.WebParam annotation (see 7.10.4) MAY be used to 21

specify the name of the wsdl:part or XML Schema element declaration corresponding to a Java parameter. 22

If both the name and partName elements are used in the javax.jws.WebParam annotation then the 23

partName MUST be used for the wsdl:part name attribute and the name element from the annotation 24

will be ignored. If not specified, the default is “argN”, where N is replaced with the zero-based argument 25

index. Thus, for instance, the first argument of a method will have a default parameter name of “arg0”, the 26

second one “arg1”and so on. 27

♦ Conformance (Result naming): The javax.jws.WebResult annotation (see 7.10.4) MAY be used to 28

specify the name of the wsdl:part or XML Schema element declaration corresponding to the Java method 29

return type. If both the name and partName elements are used in the javax.jws.WebResult annota- 30

tions then the partName MUST be used for the wsdl:part name attribute and the name elment from the 31

annotation will be ignored. In the absence of customizations, the default name is return. 32

♦ Conformance (Header mapping of parameters and results): The javax.jws.WebParam annotation’s - 33

header element MAY be used to map parameters to SOAP headers. Header parameters MUST be included 34

as soap:header elements in the operation’s input message. The javax.jws.WebResult annotation’s 35

header element MAY be used to map results to SOAP headers. Header results MUST be included as 36

soap:header elements in the operation’s output message. 37

October 7, 2005 JAX-WS 2.0 35

Chapter 3. Java to WSDL 1.1 Mapping

3.6.2 Use of JAXB 1

JAXB defines a mapping from Java classes to XML Schema constructs. JAX-WS uses this mapping to 2

generate XML Schema named type and global element declarations that are referred to from within the 3

WSDL message constructs generated for each operation. 4

Three styles of Java to WSDL mapping are supported: document wrapped, document bare and RPC. The 5

styles differ in what XML Schema constructs are generated for a method. The three styles are described in 6

the following subsections. 7

The javax.jws.SOAPBinding annotation MAY be used to specify at the type level which style to use for 8

all methods it contains or on a per method basis if the style is document. 9

3.6.2.1 Document Wrapped 10

This style is identified by a javax.jws.SOAPBinding annotation with the following properties: a style 11

of DOCUMENT, a use of LITERAL and a parameterStyle of WRAPPED. 12

For the purposes of utilizing the JAXB mapping, each method is converted to two Java bean classes: one for 13

the method input (henceforth called the request bean) and one for the method output (henceforth called the 14

response bean). 15

♦ Conformance (Default wrapper bean names): In the absence of customizations, the wrapper request bean 16

class MUST be named the same as the method and the wrapper response bean class MUST be named the 17

same as the method with a “Response” suffix. The first letter of each bean name is capitalized to follow Java 18

class naming conventions. 19

♦ Conformance (Default wrapper bean package): In the absence of customizations, the wrapper beans pack- 20

age MUST be a generated jaxws subpackage of the SEI package. 21

The javax.xml.ws.RequestWrapper and javax.xml.ws.ResponseWrapper annotations (see 7.3 22

and 7.4) MAY be used to customize the name of the generated wrapper bean classes. 23

♦ Conformance (Wrapper element names): The javax.xml.ws.RequestWrapper and javax.xml.ws- 24

.ResponseWrapper annotations (see 7.3 and 7.4) MAY be used to specify the qualified name of the ele- 25

ments generated for the wrapper beans. 26

♦ Conformance (Wrapper bean name clash): Generated bean classes must have unique names within a pack- 27

age and MUST NOT clash with other classes in that package. Clashes during generation MUST be reported 28

as an error and require user intervention via name customization to correct. Note that some platforms do not 29

distiguish filenames based on case so comparisons MUST ignore case. 30

A request bean is generated containing properties for each in and in/out non-header parameter. A re- 31

sponse bean is generated containing properties for the method return value, each out non-header parameter, 32

and in/out non-header parameter. Method return values are represented by an out property named “re- 33

turn”. The order of the properties in the request bean is the same as the order of parameters in the method 34

signature. The order of the properties in the response bean is the property corresponding to the return value 35

(if present) followed by the properties for the parameters in the same order as the parameters in the method 36

signature. 37

The request and response beans are generated with the appropriate JAXB customizations to result in a global 38

element declaration for each bean class when mapped to XML Schema by JAXB. Whereas the element name 39

36 JAX-WS 2.0 October 7, 2005

3.6. Method Parameters and Return Type

is derived from the RequestWrapper or ResponseWrapper annotations, its type is named according to 1

the operation name (for the local part) and the target namespace for the portType that contains the operation 2

(for the namespace name). 3

Figure 3.3 illustrates this conversion. 4

1 float getPrice(@WebParam(name="tickerSymbol") String sym);
2
3 @XmlRootElement(name="getPrice", targetNamespace="...")
4 @XmlType(name="getPrice", targetNamespace="...")
5 @XmlAccessorType(AccessType.FIELD)
6 public class GetPrice {
7 @XmlElement(name="tickerSymbol", targetNamespace="")
8 public String tickerSymbol;
9 }

10
11 @XmlRootElement(name="getPriceResponse", targetNamespace="...")
12 @XmlType(name="getPriceResponse", targetNamespace="...")
13 @XmlAccessorType(AccessType.FIELD)
14 public class GetPriceResponse {
15 @XmlElement(name="return", targetNamespace="")
16 public float _return;
17 }

Figure 3.3: Wrapper mode bean representation of an operation

When the JAXB mapping to XML Schema is utilized this results in global element declarations for the 5

mapped request and response beans with child elements for each method parameter according to the param- 6

eter classification: 7

in The parameter is mapped to a child element of the global element declaration for the request bean. 8

out The parameter or return value is mapped to a child element of the global element declaration for the 9

response bean. In the case of a parameter, the class of the value of the holder class (see section 3.6.1) 10

is used for the mapping rather than the holder class itself. 11

in/out The parameter is mapped to a child element of the global element declarations for the request and 12

response beans. The class of the value of the holder class (see section 3.6.1) is used for the mapping 13

rather than the holder class itself. 14

The global element declarations are used as the values of the wsdl:part elements element attribute, see 15

figure3.1. 16

3.6.2.2 Document Bare 17

This style is identified by a javax.jws.SOAPBinding annotation with the following properties: a style 18

of DOCUMENT, a use of LITERAL and a parameterStyle of BARE. 19

In order to qualify for use of bare mapping mode a Java method must fulfill all of the following criteria: 20

1. It must have at most one in or in/out non-header parameter. 21

October 7, 2005 JAX-WS 2.0 37

Chapter 3. Java to WSDL 1.1 Mapping

2. If it has a return type other than void it must have no in/out or out non-header parameters. 1

3. If it has a return type of void it must have at most one in/out or out non-header parameter. 2

If present, the type of the input parameter is mapped to a named XML Schema type using the mapping 3

defined by JAXB. If the input parameter is a holder class then the class of the value of the holder is used 4

instead. 5

If present, the type of the output parameter or return value is mapped to a named XML Schema type using 6

the mapping defined by JAXB. If an output parameter is used then the class of the value of the holder class 7

is used. 8

A global element declaration is generated for the method input and, in the absence of a WebParam anno- 9

tation, its local name is equal to the operation name. A global element declaration is generated for the 10

method output and, in the absence of a WebParam or WebResult annotation, the local name is equal to the 11

operation name suffixed with “Response”. The type of the two elements depends on whether a type was 12

generated for the corresponding element or not: 13

Named type generated The type of the global element is the named type. 14

No type generated The type of the element is an anonymous empty type. 15

The namespace name of the input and output global elements is the value of the targetNamespace at- 16

tribute of the WSDL definitions element. 17

The global element declarations are used as the values of the wsdl:part elements element attribute, see 18

figure3.1. 19

3.6.2.3 RPC 20

This style is identified by a javax.jws.SOAPBinding annotation with the following properties: a style 21

of RPC, a use of LITERAL and a parameterStyle of WRAPPED2. 22

The Java types of each in, out and in/out parameter and the return value are mapped to named XML 23

Schema types using the mapping defined by JAXB. For out and in/out parameters the class of the value 24

of the holder is used rather than the holder itself. 25

Each method parameter and the return type is mapped to a message part according to the parameter classifi- 26

cation: 27

in The parameter is mapped to a part of the input message. 28

out The parameter or return value is mapped to a part of the output message. 29

in/out The parameter is mapped to a part of the input and output message. 30

The named types are used as the values of the wsdl:part elements type attribute, see figure 3.2. The 31

value of the name attribute of each wsdl:part element is the name of the corresponding method parameter 32

or “return”for the method return value. 33

2Use of RPC style requires use of WRAPPED parameter style. Deviations from this is an error

38 JAX-WS 2.0 October 7, 2005

3.7. Service Specific Exception

3.7 Service Specific Exception 1

A service specific Java exception is mapped to a wsdl:fault element, a wsdl:message element with 2

a single child wsdl:part element and an XML Schema global element declaration. The wsdl:fault 3

element appears as a child of the wsdl:operation element that corresponds to the Java method that 4

throws the exception and refers to the wsdl:message element. The wsdl:part element refers to an XML 5

Schema global element declaration that describes the fault. 6

♦ Conformance (Exception naming): In the absence of customizations, the name of the global element dec- 7

laration for a mapped exception MUST be the name of the Java exception. The javax.xml.ws.WebFault 8

annotation MAY be used to customize the local name and namespace name of the element. 9

JAXB defines the mapping from a Java bean to XML Schema element declarations and type definitions 10

and is used to generate the global element declaration that describes the fault. For exceptions that match 11

the pattern described in section 2.5 (i.e. exceptions that have a getFaultInfo method and WebFault 12

annotation), the FaultBean is used as input to JAXB when mapping the exception to XML Schema. For 13

exceptions that do not match the pattern described in section 2.5, JAX-WS maps those exceptions to Java 14

beans and then uses those Java beans as input to the JAXB mapping. The following algorithm is used to 15

map non-matching exception classes to the corresponding Java beans for use with JAXB: 16

1. In the absence of customizations, the name of the bean is the same as the name of the Exception 17

suffixed with “Bean”. 18

2. In the absence of customizations, the package of the bean is a generated jaxws subpackage of the 19

SEI package. E.g. if the SEI package is com.example.stockquote then the package of the bean 20

would be com.example.stockquote.jaxws. 21

3. For each getter in the exception and its superclasses, a property of the same type and name is added 22

to the bean. The getCause, getLocalizedMessage and getStackTrace getters from java- 23

.lang.Throwable and the getClass getter from java.lang.Object are excluded from the list 24

of getters to be mapped. 25

4. The bean is annotated with a JAXB @XmlRootElement annotation whose name property is set, in 26

the absence of customizations, to the name of the exception. 27

♦ Conformance (Fault bean name clash): Generated bean classes must have unique names within a package 28

and MUST NOT clash with other classes in that package. Clashes during generation MUST be reported as 29

an error and require user intervention via name customization to correct. Note that some platforms do not 30

distiguish filenames based on case so comparisons MUST ignore case. 31

Figure 3.4 illustrates this mapping. 32

3.8 Bindings 33

In WSDL 1.1, an abstract port type can be bound to multiple protocols. 34

♦ Conformance (Binding selection): An implementation MUST generate a WSDL binding according to 35

the rules of the binding denoted by the BindingType annotation (see 7.8), if present, otherwise the default 36

is the SOAP 1.1/HTTP binding (see 10). 37

October 7, 2005 JAX-WS 2.0 39

Chapter 3. Java to WSDL 1.1 Mapping

1 @WebFault(name="UnknownTickerFault", targetNamespace="...")
2 public class UnknownTicker extends Exception {
3 ...
4 public UnknownTicker(Sting ticker) { ... }
5 public UnknownTicker(Sting ticker, String message) { ... }
6 public UnknownTicker(Sting ticker, String message, Throwable cause) {
7 ... }
8 public String getTicker() { ... }
9 }

10
11 @XmlRootElement(name="UnknownTickerFault" targetNamespace="...")
12 public class UnknownTickerFault {
13 ...
14 public UnknownTickerBean() { ... }
15 public String getTicker() { ... }
16 public void setTicker(String ticker) { ... }
17 public String getMessage() { ... }
18 public void setMessage(String message) { ... }
19 }

Figure 3.4: Mapping of an exception to a bean for use with JAXB.

Each protocol binding extends a common extensible skeleton structure and there is one instance of each such 1

structure for each protocol binding. An example of a port type and associated binding skeleton structure is 2

shown in figure3.5. 3

The common skeleton structure is mapped from Java as described in the following subsections. 4

3.8.1 Interface 5

A Java SEI is mapped to a wsdl:binding element and zero or more wsdl:port extensibility elements. 6

The wsdl:binding element acts as a container for other WSDL elements that together form the WSDL de- 7

scription of the binding to a protocol of the corresponding wsdl:portType. The value of the name attribute 8

of the wsdl:binding is not significant, by convention it contains the qualified name of the corresponding 9

wsdl:portType suffixed with “Binding”. 10

The wsdl:port extensibility elements define the binding specific endpoint address for a given port, see 11

section 3.10. 12

3.8.2 Method and Parameters 13

Each method in a Java SEI is mapped to a wsdl:operation child element of the corresponding wsdl- 14

:binding. The value of the name attribute of the wsdl:operation element is the same as the corre- 15

sponding wsdl:operation element in the bound wsdl:portType. The wsdl:operation element has 16

wsdl:input, wsdl:output, and wsdl:fault child elements if they are present in the corresponding 17

wsdl:operation child element of the wsdl:portType being bound. 18

40 JAX-WS 2.0 October 7, 2005

3.9. SOAP HTTP Binding

1 <portType name="StockQuoteProvider">
2 <operation name="getPrice" parameterOrder="tickerSymbol">
3 <input message="tns:getPrice"/>
4 <output message="tns:getPriceResponse"/>
5 <fault message="tns:unknowntickerException"/>
6 </operation>
7 </portType>
8
9 <binding name="StockQuoteProviderBinding">

10 <!-- binding specific extensions possible here -->
11 <operation name="getPrice">
12 <!-- binding specific extensions possible here -->
13 <input message="tns:getPrice">
14 <!-- binding specific extensions possible here -->
15 </input>
16 <output message="tns:getPriceResponse">
17 <!-- binding specific extensions possible here -->
18 </output>
19 <fault message="tns:unknowntickerException">
20 <!-- binding specific extensions possible here -->
21 </fault>
22 </operation>
23 </binding>

Figure 3.5: WSDL portType and associated binding

3.9 SOAP HTTP Binding 1

This section describes the additional WSDL binding elements generated when mapping Java to WSDL 1.1 2

using the SOAP HTTP binding. 3

♦ Conformance (SOAP binding support): Implementations MUST be able to generate SOAP HTTP bind- 4

ings when mapping Java to WSDL 1.1. 5

Figure 3.6 shows an example of a SOAP HTTP binding. 6

3.9.1 Interface 7

A Java SEI is mapped to a soap:binding child element of the corresponding wsdl:binding element 8

plus a soap:address child element of any corresponding wsdl:port element (see section 3.10). 9

The value of the transport attribute of the soap:binding is http://schemas.xmlsoap.org/soap- 10

/http. The value of the style attribute of the soap:binding is either document or rpc. 11

♦ Conformance (SOAP binding style required): Implementations MUST include a style attribute on a 12

generated soap:binding. 13

3.9.2 Method and Parameters 14

Each method in a Java SEI is mapped to a soap:operation child element of the corresponding wsdl- 15

:operation. The value of the style attribute of the soap:operation is document or rpc. If not 16

October 7, 2005 JAX-WS 2.0 41

Chapter 3. Java to WSDL 1.1 Mapping

1 <binding name="StockQuoteProviderBinding">
2 <soap:binding
3 transport="http://schemas.xmlsoap.org/soap/http"
4 style="document"/>
5 <operation name="getPrice">
6 <soap:operation style="document|rpc"/>
7 <input message="tns:getPrice">
8 <soap:body use="literal"/>
9 </input>

10 <output message="tns:getPriceResponse">
11 <soap:body use="literal"/>
12 </output>
13 <fault message="tns:unknowntickerException">
14 <soap:fault use="literal"/>
15 </fault>
16 </operation>
17 </binding>

Figure 3.6: WSDL SOAP HTTP binding

specified, the value defaults to the value of the style attribute of the soap:binding. WS-I Basic Profile[8] 1

requires that all operations within a given SOAP HTTP binding instance have the same binding style. 2

The parameters of a Java method are mapped to soap:body or soap:header child elements of the 3

wsdl:input and wsdl:output elements for each wsdl:operation binding element. The value of the 4

use attribute of the soap:body is literal. Figure 3.7 shows an example using document style, figure3.8 5

shows the same example using rpc style. 6

3.10 Service and Ports 7

A Java service implementation class is mapped to a single wsdl:service element that is a child of a 8

wsdl:definitions element for the appropriate target namespace. The latter is mapped from the value of 9

the targetNamespace element of the WebService annotation, if non-empty value, otherwise from the 10

package of the Java service implementation class according to the rules in section 3.2. 11

In mapping a @WebService-annotated class (see 3.3) to a wsdl:service, the serviceName element 12

of the WebService annotation are used to derive the service name. The value of the name attribute of 13

the wsdl:service element is computed according to the JSR-181 [13] specification. It is given by the 14

serviceName element of the WebService annotation, if present with a non-default value, otherwise the 15

name of the implementation class with the “Service”suffix appended to it. 16

♦ Conformance (Service creation): Implementations MUST be able to map classes annotated with the javax-17

.jws.WebService annotation to WSDL wsdl:service elements. 18

A WSDL 1.1 service is a collection of related wsdl:port elements. A wsdl:port element describes a 19

port type bound to a particular protocol (a wsdl:binding) that is available at particular endpoint address. 20

Each desired port is represented by a wsdl:port child element of the single wsdl:service element 21

mapped from the Java package. JAX-WS 2.0 allows specifying one port of one binding type for each 22

service defined by the application. Implementations MAY support additional ports, as long as their names 23

do not conflict with the standard one. 24

42 JAX-WS 2.0 October 7, 2005

3.10. Service and Ports

1 <types>
2 <schema targetNamespace="...">
3 <xsd:element name="getPrice" type="tns:getPriceType"/>
4 <xsd:complexType name="getPriceType">
5 <xsd:sequence>
6 <xsd:element name="tickerSymbol" type="xsd:string"/>
7 </xsd:sequence>
8 </xsd:complexType>
9

10 <xsd:element name="getPriceResponse"
11 type="tns:getPriceResponseType"/>
12 <xsd:complexType name="getPriceResponseType">
13 <xsd:sequence>
14 <xsd:element name="return" type="xsd:float"/>
15 </xsd:sequence>
16 </xsd:complexType>
17 </schema>
18 </types>
19
20 <message name="getPrice">
21 <part name="getPrice"
22 element="tns:getPrice"/>
23 </message>
24
25 <message name="getPriceResponse">
26 <part name="getPriceResponse" element="tns:getPriceResponse"/>
27 </message>
28
29 <portType name="StockQuoteProvider">
30 <operation name="getPrice" parameterOrder="tickerSymbol">
31 <input message="tns:getPrice"/>
32 <output message="tns:getPriceResponse"/>
33 </operation>
34 </portType>
35
36 <binding name="StockQuoteProviderBinding">
37 <soap:binding
38 transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
39 <operation name="getPrice" parameterOrder="tickerSymbol">
40 <soap:operation/>
41 <input message="tns:getPrice">
42 <soap:body use="literal"/>
43 </input>
44 <output message="tns:getPriceResponse">
45 <soap:body use="literal"/>
46 </output>
47 </operation>
48 </binding>

Figure 3.7: WSDL definition using document style

October 7, 2005 JAX-WS 2.0 43

Chapter 3. Java to WSDL 1.1 Mapping

1 <types>
2 <schema targetNamespace="...">
3 <xsd:element name="getPrice" type="tns:getPriceType"/>
4 <xsd:complexType name="getPriceType">
5 <xsd:sequence>
6 <xsd:element form="unqualified" name="tickerSymbol"
7 type="xsd:string"/>
8 </xsd:sequence>
9 </xsd:complexType>

10
11 <xsd:element name="getPriceResponse"
12 type="tns:getPriceResponseType"/>
13 <xsd:complexType name="getPriceResponseType">
14 <xsd:sequence>
15 <xsd:element form="unqualified" name="return"
16 type="xsd:float"/>
17 </xsd:sequence>
18 </xsd:complexType>
19 </schema>
20 </types>
21
22 <message name="getPrice">
23 <part name="tickerSymbol" type="xsd:string"/>
24 </message>
25
26 <message name="getPriceResponse">
27 <part name="result" type="xsd:float"/>
28 </message>
29
30 <portType name="StockQuoteProvider">
31 <operation name="getPrice">
32 <input message="tns:getPrice"/>
33 <output message="tns:getPriceResponse"/>
34 </operation>
35 </portType>
36
37 <binding name="StockQuoteProviderBinding">
38 <soap:binding
39 transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
40 <operation name="getPrice">
41 <soap:operation/>
42 <input message="tns:getPrice">
43 <soap:body use="literal"/>
44 </input>
45 <output message="tns:getPriceResponse">
46 <soap:body use="literal"/>
47 </output>
48 </operation>
49 </binding>

Figure 3.8: WSDL definition using rpc style

44 JAX-WS 2.0 October 7, 2005

3.10. Service and Ports

♦ Conformance (Port selection): The portName element of the WebService annotation, if present, MUST 1

be used to derive the port name to use in WSDL. In the absence of a portName element, an implementation 2

MUST use the value of the name element of the WebService annotation, if present, suffixed with “Port”. 3

Otherwise, an implementation MUST use the simple name of the class annotated with WebService suffixed 4

with “Port”. 5

♦ Conformance (Port binding): The WSDL port defined for a service MUST refer to a binding of the type 6

indicated by the BindingType annotation on the service implementation class (see 3.8). 7

Binding specific child extension elements of the wsdl:port element define the endpoint address for a port. 8

E.g. see the soap:address element described in section 3.9.1. 9

October 7, 2005 JAX-WS 2.0 45

Chapter 3. Java to WSDL 1.1 Mapping

46 JAX-WS 2.0 October 7, 2005

Chapter 4 1

Client APIs 2

This chapter describes the standard APIs provided for client side use of JAX-WS. These APIs allow a client 3

to create proxies for remote service endpoints and dynamically construct operation invocations. 4

Conformance requirements in this chapter use the term ‘implementation’ to refer to a client side JAX-WS 5

runtime system. 6

4.1 javax.xml.ws.Service 7

Service is an abstraction that represents a WSDL service. A WSDL service is a collection of related 8

ports, each of which consists of a port type bound to a particular protocol and available at a particular 9

endpoint address. 10

Service instances are created as described in section 4.1.1. Service instances provide facilities to: 11

• Create an instance of a proxy via one of the getPort methods. See section 4.2.3 for information on 12

proxies. 13

• Create a Dispatch instance via the createDispatch method. See section 4.3 for information on 14

the Dispatch interface. 15

• Create a new port via the addPortmethod. Such ports only include binding and endpoint information 16

and are thus only suitable for creating Dispatch instances since these do not require WSDL port type 17

information. 18

• Configure per-service, per-port, and per-protocol message handlers using a handler resolver (see sec- 19

tion 9.2.1.1). 20

• Configure the java.util.concurrent.Executor to be used for asynchronous invocations (see 21

section 4.1.4). 22

♦ Conformance (Service completeness): A Service implementation MUST be capable of creating prox- 23

ies, Dispatch instances, and new ports. 24

All the service methods except the static create methods and the constructors delegate to javax.xml- 25

.ws.spi.ServiceDelegate, see section 6.3. 26

October 7, 2005 JAX-WS 2.0 47

Chapter 4. Client APIs

4.1.1 Service Usage 1

4.1.1.1 Dynamic case 2

In the dynamic case, when nothing is generated, a J2SE service client uses Service.create to create 3

Service instances, the following code illustrates this process. 4

1 URL wsdlLocation = new URL("http://example.org/my.wsdl"); 5

2 QName serviceName = new QName("http://example.org/sample", "MyService"); 6

3 Service s = Service.create(wsdlLocation, serviceName); 7

The following create methods may be used: 8

create(URL wsdlLocation, QName serviceName) Returns a service object for the specified WSDL 9

document and service name. 10

create(QName serviceName) Returns a service object for a service with the given name. No WSDL 11

document is attached to the service. 12

♦ Conformance (Service Creation Failure): If a create method fails to create a service object, it MUST 13

throw WebServiceException. The cause of that exception SHOULD be set to an exception that provides 14

more information on the cause of the error (e.g. an IOException). 15

4.1.1.2 Static case 16

When starting from a WSDL document, a concrete service implementation class MUST be generated as 17

defined in section 2.7. The generated implementation class will have two public constructors, one with no 18

arguments and one with two arguments, representing the wsdl location (a java.net.URL) and the service 19

name (a javax.xml.namespace.QName) respectively. 20

When using the no-argument constructor, the WSDL location and service name are implicitly taken from 21

the WebServiceClient annotation that decorates the generated class. 22

The following code snippet shows the generated constructors: 23

1 // Generated Service Class 24

2 25

3 @WebServiceClient(name="StockQuoteService", 26

4 targetNamespace="http://example.com/stocks", 27

5 wsdlLocation="http://example.com/stocks.wsdl") 28

6 public class StockQuoteService extends javax.xml.ws.Service { 29

7 public StockQuoteService() { 30

8 super(new URL("http://example.com/stocks.wsdl"), 31

9 new QName("http://example.com/stocks", 32

10 "StockQuoteService")); 33

11 } 34

12 35

13 public StockQuoteService(String wsdlLocation, QName serviceName) { 36

14 super(wsdlLocation, serviceName); 37

15 } 38

16 39

17 ... 40

18 } 41

48 JAX-WS 2.0 October 7, 2005

4.1. javax.xml.ws.Service

4.1.2 Provider and Service Delegate 1

Internally, the Service class delegates all of its functionality to a ServiceDelegate object, which is part 2

of the SPI used to allow pluggability of implementations. 3

For this to work, every Service object internally MUST hold a reference to a javax.xml.ws.spi- 4

.ServiceDelegate object (see 6.3) to which it delegates every non-static method call. The field used to 5

hold the reference MUST be private. 6

The delegate is set when a new Service instance is created, which must necessarily happen when the 7

protected, two-argument constructor defined on the Service class is called. The constructor MUST obtain 8

a Provider instance (see 6.2.2) and call its createServiceDelegate method, passing the two arguments 9

received from its caller and the class object for the instance being created (i.e. this.getClass()). 10

In order to ensure that the delegate is properly constructed, the static create method defined on the 11

Service class MUST call the protected constructor to create a new service instance, passing the same 12

arguments that it received from the application. 13

The following code snippet shows an implementation of the Service API that satisfies the requirements 14

above: 15

1 16

2 public class Service { 17

3 18

4 private ServiceDelegate delegate; 19

5 20

6 protected Service(java.net.URL wsdlDocumentLocation, 21

7 QName serviceName) { 22

8 delegate = Provider.provider() 23

9 .createServiceDelegate(wsdlDocumentLocation 24

10 serviceName, 25

11 this.getClass()); 26

12 } 27

13 28

14 public static Service create(java.net.URL wsdlDocumentLocation, 29

15 QName serviceName) { 30

16 return new Service(wsdlDocumentLocation, serviceName); 31

17 } 32

18 33

19 // begin delegated methods 34

20 35

21 public <T> T getPort(Class<T> serviceEndpointInterface) { 36

22 return delegate.getPort(serviceEndpointInterface); 37

23 } 38

24 39

25 ... 40

26 } 41

4.1.3 Handler Resolver 42

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that 43

may be used to extend the capabilities of a JAX-WS runtime system. Chapter 9 describes the handler 44

framework in detail. A Service instance provides access to a HandlerResolver via a pair of get- 45

HandlerResolver/setHandlerResolvermethods that may be used to configure a set of handlers on a 46

October 7, 2005 JAX-WS 2.0 49

Chapter 4. Client APIs

per-service, per-port or per-protocol binding basis. 1

When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver 2

currently registered with the service is used to create the required handler chain. Subsequent changes to the 3

handler resolver configured for a Service instance do not affect the handlers on previously created proxies, 4

or Dispatch instances. 5

4.1.4 Executor 6

Service instances can be configured with a java.util.concurrent.Executor. The executor will 7

then be used to invoke any asynchronous callbacks requested by the application. The setExecutor and 8

getExecutor methods of Service can be used to modify and retrieve the executor configured for a 9

service. 10

♦ Conformance (Use of Executor): If an executor object is successfully configured for use by a Service via 11

the setExecutor method, then subsequent asynchronous callbacks MUST be delivered using the speci- 12

fied executor. Calls that were outstanding at the time the setExecutor method was called MAY use the 13

previously set executor, if any. 14

♦ Conformance (Default Executor): Lacking an application-specified executor, an implementation MUST 15

use its own executor, a java.util.concurrent.ThreadPoolExecutor or analogous mechanism, to 16

deliver callbacks. An implementation MUST NOT use application-provided threads to deliver callbacks, 17

e.g. by ”borrowing” them when the application invokes a remote operation. 18

4.2 javax.xml.ws.BindingProvider 19

The BindingProvider interface represents a component that provides a protocol binding for use by 20

clients, it is implemented by proxies and is extended by the Dispatch interface. Figure 4.1 illustrates 21

the class relationships. 22

Figure 4.1: Binding Provider Class Relationships

The BindingProvider interface provides methods to obtain the Binding and to manipulate the binding 23

providers context. Further details on Binding can be found in section 6.1. The following subsection 24

describes the function and use of context with BindingProvider instances. 25

50 JAX-WS 2.0 October 7, 2005

4.2. javax.xml.ws.BindingProvider

4.2.1 Configuration 1

Additional metadata is often required to control information exchanges, this metadata forms the context of 2

an exchange. 3

A BindingProvider instance maintains separate contexts for the request and response phases of a mes- 4

sage exchange with a service: 5

Request The contents of the request context are used to initialize the message context (see section 9.4.1) 6

prior to invoking any handlers (see chapter 9) for the outbound message. Each property within the 7

request context is copied to the message context with a scope of HANDLER. 8

Response The contents of the message context are used to initialize the response context after invoking any 9

handlers for an inbound message. The response context is first emptied and then each property in the 10

message context that has a scope of APPLICATION is copied to the response context. 11

♦ Conformance (Message context decoupling): Modifications to the request context while previously in- 12

voked operations are in-progress MUST NOT affect the contents of the message context for the previously 13

invoked operations. 14

The request and response contexts are of type java.util.Map<String,Object> and are obtained using 15

the getRequestContext and getResponseContext methods of BindingProvider. 16

In some cases, data from the context may need to accompany information exchanges. When this is required, 17

protocol bindings or handlers (see chapter 9) are responsible for annotating outbound protocol data units 18

and extracting metadata from inbound protocol data units. 19

Note: An example of the latter usage: a handler in a SOAP binding might introduce a header into a SOAP 20

request message to carry metadata from the request context and might add metadata to the response context 21

from the contents of a header in a response SOAP message. 22

4.2.1.1 Standard Properties 23

Table 4.1 lists a set of standard properties that may be set on a BindingProvider instance and shows 24

which properties are optional for implementations to support. 25

Table 4.1: Standard BindingProvider properties.

Name Type Mandatory Description

javax.xml.ws.service.endpoint

.address String Y The address of the service endpoint as
a protocol specific URI. The URI
scheme must match the protocol
binding in use.

javax.xml.ws.security.auth

.username String Y Username for HTTP basic
authentication.

.password String Y Password for HTTP basic
authentication.

Continued on next page

October 7, 2005 JAX-WS 2.0 51

Chapter 4. Client APIs

Table 4.1 – continued from previous page
Name Type Mandatory Description

javax.xml.ws.session

.maintain Boolean Y Used by a client to indicate whether it
is prepared to participate in a service
endpoint initiated session. The default
value is false.

javax.xml.ws.soap.http.soapaction

.use Boolean N Controls whether the SOAPAction
HTTP header is used in SOAP/HTTP
requests. Default value is false.

.uri String N The value of the SOAPAction HTTP
header if the javax.xml.ws.soap-
.http.soapaction.use property is
set to true. Default value is an empty
string.

♦ Conformance (Required BindingProvider properties): An implementation MUST support all proper- 1

ties shown as mandatory in table 4.1. 2

Note that properties shown as mandatory are not required to be present in any particular context; however, 3

if present, they must be honored. 4

♦ Conformance (Optional BindingProvider properties): An implementation MAY support the proper- 5

ties shown as optional in table 4.1. 6

4.2.1.2 Additional Properties 7

♦ Conformance (Additional context properties): Implementations MAY support additional implementation 8

specific properties not listed in table4.1. Such properties MUST NOT use the javax.xml.ws prefix in their 9

names. 10

Implementation specific properties are discouraged as they limit application portability. Applications and 11

binding handlers can interact using application specific properties. 12

4.2.2 Asynchronous Operations 13

BindingProvider instances may provide asynchronous operation capabilities. When used, asynchronous 14

operation invocations are decoupled from the BindingProvider instance at invocation time such that 15

the response context is not updated when the operation completes. Instead a separate response context is 16

made available using the Response interface, see sections 2.3.4 and 4.3.3 for further details on the use of 17

asynchronous methods. 18

♦ Conformance (Asynchronous response context): The local response context of a BindingProvider in- 19

stance MUST NOT be updated on completion of an asynchronous operation, instead the response context 20

MUST be made available via a Response instance. 21

52 JAX-WS 2.0 October 7, 2005

4.2. javax.xml.ws.BindingProvider

When using callback-based asynchronous operations, an implementation MUST use the Executor set on 1

the service instance that was used to create the proxy or Dispatch instance being used. See 4.1.4 for more 2

information on configuring the Executor to be used. 3

4.2.3 Proxies 4

Proxies provide access to service endpoint interfaces at runtime without requiring static generation of a stub 5

class. See java.lang.reflect.Proxy for more information on dynamic proxies as supported by the 6

JDK. 7

♦ Conformance (Proxy support): An implementation MUST support proxies. 8

♦ Conformance (Implementing BindingProvider): An instance of a proxy MUST implement javax- 9

.xml.ws.BindingProvider. 10

A proxy is created using the getPort methods of a Service instance: 11

T getPort(Class<T> sei) Returns a proxy for the specified SEI, the Service instance is responsible 12

for selecting the port (protocol binding and endpoint address). 13

T getPort(QName port, Class<T> sei) Returns a proxy for the endpoint specified by port. Note 14

that the namespace component of port is the target namespace of the WSDL definitions document. 15

The serviceEndpointInterface parameter specifies the interface that will be implemented by the 16

proxy. The service endpoint interface provided by the client needs to conform to the WSDL to Java mapping 17

rules specified in chapter2 (WSDL 1.1). Creation of a proxy can fail if the interface doesn’t conform to the 18

mapping or if any WSDL related metadata is missing from the Service instance. 19

♦ Conformance (Service.getPort failure): If creation of a proxy fails, an implementation MUST throw 20

javax.xml.ws.WebServiceException. The cause of that exception SHOULD be set to an exception 21

that provides more information on the cause of the error (e.g. an IOException). 22

An implementation is not required to fully validate the service endpoint interface provided by the client 23

against the corresponding WSDL definitions and may choose to implement any validation it does require in 24

an implementation specific manner (e.g., lazy and eager validation are both acceptable). 25

4.2.3.1 Example 26

The following example shows the use of a proxy to invoke a method (getLastTradePrice) on a service 27

endpoint interface (com.example.StockQuoteProvider). Note that no statically generated stub class is 28

involved. 29

1 javax.xml.ws.Service service = ...; 30

2 com.example.StockQuoteProvider proxy = service.getPort(portName, 31

3 com.example.StockQuoteProvider.class) 32

4 javax.xml.ws.BindingProvider bp = (javax.xml.ws.BindingProvider)proxy; 33

5 Map<String,Object> context = bp.getRequestContext(); 34

6 context.setProperty("javax.xml.ws.session.maintain", Boolean.TRUE); 35

7 proxy.getLastTradePrice("ACME"); 36

Lines 1–3 show how the proxy is created. Lines 4–6 perform some configuration of the proxy. Lines 7 37

invokes a method on the proxy. 38

October 7, 2005 JAX-WS 2.0 53

Chapter 4. Client APIs

4.2.4 Exceptions 1

All methods of an SEI can throw javax.xml.ws.WebServiceException and zero or more service spe- 2

cific exceptions. 3

♦ Conformance (Remote Exceptions): If an error occurs during a remote operation invocation, an imple- 4

mention MUST throw a service specific exception if possible. If the error cannot be mapped to a service 5

specific exception, an implementation MUST throw a ProtocolException or one of its subclasses, as 6

appropriate for the binding in use. See section 6.4.1 for more details. 7

♦ Conformance (Other Exceptions): For all other errors, i.e. all those that don’t occur as part of a remote 8

invocation, an implementation MUST throw a WebServiceException whose cause is the original local 9

exception that was thrown, if any. 10

For instance, an error in the configuration of a proxy instance may result in a WebServiceException 11

whose cause is a java.lang.IllegalArgumentException thrown by some implementation code. 12

4.3 javax.xml.ws.Dispatch 13

XML Web Services use XML messages for communication between services and service clients. The higher 14

level JAX-WS APIs are designed to hide the details of converting between Java method invocations and the 15

corresponding XML messages, but in some cases operating at the XML message level is desirable. The 16

Dispatch interface provides support for this mode of interaction. 17

♦ Conformance (Dispatch support): Implementations MUST support the javax.xml.ws.Dispatch in- 18

terface. 19

Dispatch supports two usage modes, identified by the constants javax.xml.ws.Service.Mode.MESSAGE 20

and javax.xml.ws.Service.Mode.PAYLOAD respectively: 21

Message In this mode, client applications work directly with protocol-specific message structures. E.g., 22

when used with a SOAP protocol binding, a client application would work directly with a SOAP 23

message. 24

Message Payload In this mode, client applications work with the payload of messages rather than the 25

messages themselves. E.g., when used with a SOAP protocol binding, a client application would 26

work with the contents of the SOAP Body rather than the SOAP message as a whole. 27

Dispatch is a low level API that requires clients to construct messages or message payloads as XML and 28

requires an intimate knowledge of the desired message or payload structure. Dispatch is a generic class 29

that supports input and output of messages or message payloads of any type. Implementations are required 30

to support the following types of object: 31

javax.xml.transform.Source Use of Source objects allows clients to use XML generating and con- 32

suming APIs directly. Source objects may be used with any protocol binding in either message or 33

message payload mode. 34

54 JAX-WS 2.0 October 7, 2005

4.3. javax.xml.ws.Dispatch

JAXB Objects Use of JAXB allows clients to use JAXB objects generated from an XML Schema to cre- 1

ate and manipulate XML representations and to use these objects with JAX-WS without requiring 2

an intermediate XML serialization. JAXB objects may be used with any protocol binding in either 3

message or message payload mode. 4

javax.xml.soap.SOAPMessage Use of SOAPMessage objects allows clients to work with SOAP mes- 5

sages using the convenience features provided by the java.xml.soap package. SOAPMessage 6

objects may only be used with Dispatch instances that use the SOAP binding (see chapter 10) in 7

message mode. 8

javax.activation.DataSource Use of DataSource objects allows clients to work with MIME-typed 9

messages. DataSource objects may only be used with Dispatch instances that use the HTTP 10

binding (see chapter 11) in message mode. 11

4.3.1 Configuration 12

Dispatch instances are obtained using the createDispatch factory methods of a Service instance. The 13

mode parameter of createDispatch controls whether the new Dispatch instance is message or message 14

payload oriented. The type parameter controls the type of object used for messages or message payloads. 15

Dispatch instances are not thread safe. 16

Dispatch instances are not required to be dynamically configurable for different protocol bindings; the 17

WSDL binding from which the Dispatch instance is generated contains static information including the 18

protocol binding and service endpoint address. However, a Dispatch instance may support configuration of 19

certain aspects of its operation and provides methods (inherited from BindingProvider) to dynamically 20

query and change the values of properties in its request and response contexts – see section 4.2.1.1 for a list 21

of standard properties. 22

4.3.2 Operation Invocation 23

A Dispatch instance supports three invocation modes: 24

Synchronous request response (invoke methods) The method blocks until the remote operation com- 25

pletes and the results are returned. 26

Asynchronous request response (invokeAsync methods) The method returns immediately, any results 27

are provided either through a callback or via a polling object. 28

One-way (invokeOneWay methods) The method is logically non-blocking, subject to the capabilities of 29

the underlying protocol, no results are returned. 30

♦ Conformance (Failed Dispatch.invoke): When an operation is invoked using an invoke method, an 31

implementation MUST throw a WebServiceException if there is any error in the configuration of the 32

Dispatch instance or a ProtocolException if an error occurs during the remote operation invocation. 33

♦ Conformance (Failed Dispatch.invokeAsync): When an operation is invoked using an invokeAsync 34

method, an implementation MUST throw a WebServiceException if there is any error in the configura- 35

tion of the Dispatch instance. Errors that occur during the invocation are reported when the client attempts 36

to retrieve the results of the operation. 37

October 7, 2005 JAX-WS 2.0 55

Chapter 4. Client APIs

♦ Conformance (Failed Dispatch.invokeOneWay): When an operation is invoked using an invoke- 1

OneWay method, an implementation MUST throw a WebServiceException if there is any error in the 2

configuration of the Dispatch instance or if an error is detected1 during the remote operation invocation. 3

See section 10.4.1 for additional SOAP/HTTP requirements. 4

4.3.3 Asynchronous Response 5

Dispatch supports two forms of asynchronous invocation: 6

Polling The invokeAsync method returns a Response (see below) that may be polled using the methods 7

inherited from Future<T> to determine when the operation has completed and to retrieve the results. 8

Callback The client supplies an AsyncHandler (see below) and the runtime calls the handleResponse 9

method when the results of the operation are available. The invokeAsync method returns a wildcard 10

Future (Future<?>) that may be polled to determine when the operation has completed. The object 11

returned from Future<?>.get() has no standard type. Client code should not attempt to cast the 12

object to any particular type as this will result in non-portable behavior. 13

In both cases, errors that occur during the invocation are reported via an exception when the client attempts 14

to retrieve the results of the operation. 15

♦ Conformance (Reporting asynchronous errors): If the operation invocation fails, an implementation MUST 16

throw a java.util.concurrent.ExecutionException from the Response.get method. 17

The cause of an ExecutionException is the original exception raised. In the case of a Response instance 18

this can only be a WebServiceException or one of its subclasses. 19

The following interfaces are used to obtain the results of an operation invocation: 20

javax.xml.ws.Response A generic interface that is used to group the results of an invocation with 21

the response context. Response extends java.util.concurrent.Future<T> to provide asyn- 22

chronous result polling capabilities. 23

javax.xml.ws.AsyncHandler A generic interface that clients implement to receive results in an asyn- 24

chronous callback. It defines a single handleResponse method that has a Response object as its 25

argument. 26

4.3.4 Using JAXB 27

Service provides a createDispatch factory method for creating Dispatch instances that contain an 28

embedded JAXBContext. The context parameter contains the JAXBContext instance that the created 29

Dispatch instance will use to marshall and unmarshall messages or message payloads. 30

♦ Conformance (Marshalling failure): If an error occurs when using the supplied JAXBContext to mar- 31

shall a request or unmarshall a response, an implementation MUST throw a WebServiceExceptionwhose 32

cause is set to the original JAXBException. 33

1The invocation is logically non-blocking so detection of errors during operation invocation is dependent on the underlying
protocol in use. For SOAP/HTTP it is possible that certain HTTP level errors may be detected.

56 JAX-WS 2.0 October 7, 2005

4.3. javax.xml.ws.Dispatch

4.3.5 Examples 1

The following examples demonstrate use of Dispatch methods in the synchronous, asynchronous polling, 2

and asynchronous callback modes. For ease of reading, error handling has been omitted. 3

4.3.5.1 Synchronous, Payload-Oriented 4

1 Source reqMsg = ...; 5

2 Service service = ...; 6

3 Dispatch<Source> disp = service.createDispatch(portName, 7

4 Source.class, PAYLOAD); 8

5 Source resMsg = disp.invoke(reqMsg); 9

4.3.5.2 Synchronous, Message-Oriented 10

1 SOAPMessage soapReqMsg = ...; 11

2 Service service = ...; 12

3 Dispatch<SOAPMessage> disp = service.createDispatch(portName, 13

4 SOAPMessage.class, MESSAGE); 14

5 SOAPMessage soapResMsg = disp.invoke(soapReqMsg); 15

4.3.5.3 Synchronous, Payload-Oriented With JAXB Objects 16

1 JAXBContext jc = JAXBContext.newInstance("primer.po"); 17

2 Unmarshaller u = jc.createUnmarshaller(); 18

3 PurchaseOrder po = (PurchaseOrder)u.unmarshal(19

4 new FileInputStream("po.xml")); 20

5 Service service = ...; 21

6 Dispatch<Object> disp = service.createDispatch(portName, jc, PAYLOAD); 22

7 OrderConfirmation conf = (OrderConfirmation)disp.invoke(po); 23

In the above example PurchaseOrder and OrderConfirmation are interfaces pre-generated by JAXB 24

from the schema document ‘primer.po’. 25

4.3.5.4 Asynchronous, Polling, Message-Oriented 26

1 SOAPMessage soapReqMsg = ...; 27

2 Service service = ...; 28

3 Dispatch<SOAPMessage> disp = service.createDispatch(portName, 29

4 SOAPMessage.class, MESSAGE); 30

5 Response<SOAPMessage> res = disp.invokeAsync(soapReqMsg); 31

6 while (!res.isDone()) { 32

7 // do something while we wait 33

8 } 34

9 SOAPMessage soapResMsg = res.get(); 35

4.3.5.5 Asynchronous, Callback, Payload-Oriented 36

1 class MyHandler implements AsyncHandler<Source> { 37

October 7, 2005 JAX-WS 2.0 57

Chapter 4. Client APIs

2 ... 1

3 public void handleResponse(Response<Source> res) { 2

4 Source resMsg = res.get(); 3

5 // do something with the results 4

6 } 5

7 } 6

8 7

9 Source reqMsg = ...; 8

10 Service service = ...; 9

11 Dispatch<Source> disp = service.createDispatch(portName, 10

12 Source.class, PAYLOAD); 11

13 MyHandler handler = new MyHandler(); 12

14 disp.invokeAsync(reqMsg, handler); 13

4.4 Catalog Facility 14

JAX-WS mandates support for a standard catalog facility to be used when resolving any Web service docu- 15

ment that is part of the description of a Web service, specifically WSDL and XML Schema documents. 16

The facility in question is the OASIS XML Catalogs 1.1 specification [30]. It defines an entity catalog that 17

handles the following two cases: 18

• Mapping an external entity’s public identifier and/or system identifier to a URI reference. 19

• Mapping the URI reference of a resource to another URI reference. 20

Using the entity catalog, an application can package one or more description and/or schema documents in 21

jar files, avoiding costly remote accesses, or remap remote URIs to other, possibly local ones. Since the 22

catalog is an XML document, a deployer can easily alter it to suit the local environment, unbeknownst to 23

the application code. 24

The catalog is assembled by taking into account all accessible resources whose name is META-INF/jax- 25

-ws-catalog.xml. Each resource MUST be a valid entity catalog according to the XML Catalogs 1.1 26

specification. When running on the Java SE platform, the current context class loader MUST be used to 27

retrieve all the resources with the specified name. Relative URIs inside a catalog file are relative to the 28

location of the catalog that contains them. 29

♦ Conformance (Use of the Catalog): In the process of resolving a URI that points to a WSDL document 30

or any document reachable from it, a JAX-WS implementation MUST perform a URI resolution for it, as 31

prescribed by the XML Catalogs 1.1 specification, using the catalog defined above as its entity catalog. 32

In particular, every JAX-WS API argument or annotation element whose semantics is that of a WSDL 33

location URI MUST undergo URI resolution using the catalog facility described in this section. 34

Although defined in the client API chapter for reasons of ease of exposure, use of the catalog is in no way 35

restricted to client uses of WSDL location URIs. In particular, resolutions of URIs to WSDL and schema 36

documents that arise during the publishing of endpoint metadata (see 5.2.5) are subject to the requirements 37

in this section, resulting in catalog-based URI resolutions. 38

58 JAX-WS 2.0 October 7, 2005

Chapter 5 1

Service APIs 2

This chapter describes requirements on JAX-WS service implementations and standard APIs provided for 3

their use. 4

5.1 javax.xml.ws.Provider 5

JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped from 6

a WSDL port type, either directly or via the use of annotations. Section 3.4 describes the requirements that 7

a Java interface must meet to qualify as a JAX-WS SEI. Section 2.2 describes the mapping from a WSDL 8

port type to an equivalent Java SEI. 9

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between Java 10

objects and their XML representations for use in XML-based messages. However, in some cases it is 11

desirable for services to be able to operate at the XML message level. The Provider interface offers an 12

alternative to SEIs and may be implemented by services wishing to work at the XML message level. 13

♦ Conformance (Provider support required): An implementation MUST support Provider<Source> in 14

payload mode with all the predefined bindings. It MUST also support Provider<SOAPMessage> in 15

message mode in conjunction with the predefined SOAP bindings and Provider<javax.activation- 16

.DataSource> in message mode in conjunction with the predefined HTTP binding. 17

♦ Conformance (Provider default constructor): A Provider based service endpoint implementation MUST 18

provide a public default constructor. 19

A typed Provider interface is one in which the type parameter has been bound to a concrete class, e.g. 20

Provider<Source> or Provider<SOAPMessage>, as opposed to being left unbound, as in Provider<T>. 21

♦ Conformance (Provider implementation): A Provider based service endpoint implementation MUST 22

implement a typed Provider interface. 23

♦ Conformance (WebServiceProvider annotation): A Provider based service endpoint implementation 24

MUST carry a WebServiceProvider annotation (see 7.7). 25

Provider is a low level generic API that requires services to work with messages or message payloads and 26

hence requires an intimate knowledge of the desired message or payload structure. The generic nature of 27

Provider allows use with a variety of message object types. 28

October 7, 2005 JAX-WS 2.0 59

Chapter 5. Service APIs

5.1.1 Invocation 1

A Provider based service instance’s invoke method is called for each message received for the service. 2

5.1.1.1 Exceptions 3

The service runtime is required to catch exceptions thrown by a Provider instance. A Provider instance 4

may make use of the protocol specific exception handling mechanism as described in section 6.4.1. The 5

protocol binding is responsible for converting the exception into a protocol specific fault representation and 6

then invoking the handler chain and dispatching the fault message as appropriate. 7

5.1.2 Configuration 8

The ServiceMode annotation is used to configure the messaging mode of a Provider instance. Use of 9

@ServiceMode(value=MESSAGE) indicates that the provider instance wishes to receive and send entire 10

protocol messages (e.g. a SOAP message when using the SOAP binding); absence of the annotation or 11

use of @ServiceMode(value=PAYLOAD) indicates that the provider instance wishes to receive and send 12

message payloads only (e.g. the contents of a SOAP Body element when using the SOAP binding). 13

Provider instances MAY use the WebServiceContext facility (see 5.3) to access the message context and 14

other information about the request currently being served. 15

The JAX-WS runtime makes certain properties available to a Provider instance that can be used to deter- 16

mine its configuration. These properties are passed to the Provider instance each time it is invoked using 17

the MessageContext instance accessible from the WebServiceContext. 18

5.1.3 Examples 19

For brevity, error handling is omitted in the following examples. 20

Simple echo service, reply message is the same as the input message 21

1 @WebServiceProvider 22

2 @ServiceMode(value=Service.Mode.MESSAGE) 23

3 public class MyService implements Provider<SOAPMessage> { 24

4 public MyService() { 25

5 } 26

6 27

7 public SOAPMessage invoke(SOAPMessage request) { 28

8 return request; 29

9 } 30

10 } 31

Simple static reply, reply message contains a fixed acknowlegment element 32

1 @WebServiceProvider 33

2 @ServiceMode(value=Service.Mode.PAYLOAD) 34

3 public class MyService implements Provider<Source> { 35

4 public MyService() { 36

60 JAX-WS 2.0 October 7, 2005

5.2. javax.xml.ws.Endpoint

5 } 1

6 2

7 public Source invoke(Source request) { 3

8 Source requestPayload = request.getPayload(); 4

9 ... 5

10 String replyElement = new String("<n:ack xmlns:n=’...’/>"); 6

11 StreamSource reply = new StreamSource(new StringReader(replyElement)); 7

12 return reply; 8

13 } 9

14 } 10

Using JAXB to read the input message and set the reply 11

1 @WebServiceProvider 12

2 @ServiceMode(value=Service.Mode.PAYLOAD) 13

3 public class MyService implements Provider<Source> { 14

4 public MyService() { 15

5 } 16

6 17

7 public Source invoke(Source request) { 18

8 JAXBContent jc = JAXBContext.newInstance(...); 19

9 Unmarshaller u = jc.createUnmarshaller(); 20

10 Object requestObj = u.unmarshall(request); 21

11 ... 22

12 Acknowledgement reply = new Acknowledgement(...); 23

13 return new JAXBSource(jc, reply); 24

14 } 25

15 } 26

5.2 javax.xml.ws.Endpoint 27

The Endpoint class can be used to create and publish Web service endpoints. 28

An endpoint consists of an object that acts as the Web service implementation (called here implementor) 29

plus some configuration information, e.g. a Binding. Implementor and binding are set when the end- 30

point is created and cannot be modified later. Their values can be retrieved using the getImplementor 31

and getBinding methods respectively. Other configuration information may be set at any time after the 32

creation of an Endpoint but before its publication. 33

5.2.1 Endpoint Usage 34

Endpoints can be created using the following static methods on Endpoint: 35

create(Object implementor) Creates and returns an Endpoint for the specified implementor. If the 36

implementor specifies a binding using the javax.xml.ws.BindingType annotation it MUST be 37

used else a default binding of SOAP 1.1 / HTTP binding MUST be used. 38

create(URI bindingID, Object implementor) Creates and returns an Endpoint for the specified 39

binding and implementor. If the bindingID is null and no binding information is specified via the 40

javax.xml.ws.BindingType annotation then a default SOAP 1.1 / HTTP binding MUST be used. 41

October 7, 2005 JAX-WS 2.0 61

Chapter 5. Service APIs

publish(String address, Object implementor) Creates and publishes an Endpoint for the given 1

implementor. The binding is chosen by default based on the URL scheme of the provided address 2

(which must be a URL). If a suitable binding if found, the endpoint is created then published as if the 3

Endpoint.publish(String address) method had been called. The created Endpoint is then 4

returned as the value of the method. 5

These methods MUST delegate the creation of Endpoint to the javax.xml.ws.spi.Provider SPI class 6

(see 6.2) by calling the createEndpoint and createAndPublishEndpoint methods respectively. 7

An implementor object MUST be either an instance of a class annotated with the @WebService annotation 8

according to the rules in chapter 3 or an instance of a class annotated with the WebServiceProvider 9

annotation and implementing the Provider interface (see 5.1). 10

The publish(String,Object) method is provided as a shortcut for the common operation of creating 11

and publishing an Endpoint. The following code provides an example of its use: 12

1 // assume Test is an endpoint implementation class annotated with @WebService 13

2 Test test = new Test(); 14

3 Endpoint e = Endpoint.publish("http://localhost:8080/test", test); 15

♦ Conformance (Endpoint publish(String address, Object implementor) Method): The effect of invoking the 16

publishmethod on an EndpointMUST be the same as first invoking the createmethod with the binding 17

ID appropriate to the URL scheme used by the address, then invoking the publish(String address) 18

method on the resulting endpoint. 19

♦ Conformance (Default Endpoint Binding): If the URL scheme for the address argument of the Endpoint- 20

.publishmethod is ”http” or ”https” then an implementation MUST use the SOAP 1.1/HTTP binding (see 21

10) as the binding for the newly created endpoint. 22

♦ Conformance (Other Bindings): An implementation MAY support using the Endpoint.publishmethod 23

with addresses whose URL scheme is neither ”http” nor ”https”. 24

The success of the Endpoint.publishmethod is conditional to the presence of the appropriate permission 25

as described in section 5.2.3. 26

Endpoint implementors MAY use the WebServiceContext facility (see 5.3) to access the message context 27

and other information about the request currently being served. Injection of the WebServiceContext, if 28

requested, MUST happen the first time the endpoint is published. After any injections have been performed 29

and before any requests are dispatched to the implementor, the implementor method which carries a javax- 30

.annotation.PostConstruct annotation, if present, MUST be invoked. Such a method MUST satisfy 31

the requirements for lifecycle methods in JSR-250 [31]. 32

5.2.2 Publishing 33

An Endpoint is in one of three states: not published (the default), published or stopped. Published end- 34

points are active and capable of receiving incoming requests and dispatching them to their implementor. 35

Non published endpoints are inactive. Stopped endpoint were in the published until some time ago, then got 36

stopped. Stopped endpoints cannot be published again. Publication of an Endpoint can be achieved by 37

invoking one of the following methods: 38

publish(String address) Publishes the endpoint at the specified address (a URL). The address MUST 39

use a URL scheme compatible with the endpoint’s binding. 40

62 JAX-WS 2.0 October 7, 2005

5.2. javax.xml.ws.Endpoint

publish(Object serverContext) Publishes the endpoint using the specified server context. The 1

server context MUST contain address information for the resulting endpoint and it MUST be compat- 2

ible with the endpoint’s binding. 3

♦ Conformance (Publishing over HTTP): If the Binding for an Endpoint is a SOAP (see 10) or HTTP 4

(see 11) binding, then an implementation MUST support publishing the Endpoint to a URL whose scheme 5

is either ”http” or ”https”. 6

The WSDL contract for an endpoint is created dynamically based on the annotations on the implementor 7

class, the Binding in use and the set of metadata documents specified on the endpoint (see 5.2.4). 8

♦ Conformance (WSDL Publishing): An Endpoint that uses the SOAP 1.1/HTTP binding (see 10) MUST 9

make its contract available as a WSDL 1.1 document at the publishing address suffixed with ”?WSDL” or 10

”?wsdl”. 11

An Endpoint that uses any other binding defined in this specification in conjunction with the HTTP trans- 12

port SHOULD make its contract available using the same convention. It is RECOMMENDED that an 13

implementation provide a way to access the contract for an endpoint even when the latter is published over 14

a transport other than HTTP. 15

The success of the two Endpoint.publish methods described above is conditional to the presence of the 16

appropriate permission as described in section 5.2.3. 17

Applications that wish to modify the configuration information (e.g. the metadata) for an Endpoint must 18

make sure the latter is in the not-published state. Although the various setter methods on Endpoint must 19

always store their arguments so that they can be retrieved by a later invocation of a getter, the changes they 20

entail may not be reflected on the endpoint until the next time it is published. In other words, the effects of 21

configuration changes on a currently published endpoint are undefined. 22

The stop method can be used to stop publishing an endpoint. A stopped endpoint may not be restarted. It 23

is an error to invoke a publish method on a stopped endpoint. After the stop method returns, the runtime 24

MUST NOT dispatch any further invocations to the endpoint’s implementor. 25

An Endpoint will be typically invoked to serve concurrent requests, so its implementor should be written 26

so as to support multiple threads. The synchronized keyword may be used as usual to control access to 27

critical sections of code. For finer control over the threads used to dispatch incoming requests, an application 28

can directly set the executor to be used, as described in section 5.2.7. 29

5.2.2.1 Example 30

The following example shows the use of the publish(Object) method using a hypothetical HTTP server 31

API that includes the HttpServer and HttpContext classes. 32

1 // assume Test is an endpoint implementation class annotated with @WebService 33

2 Test test = new Test(); 34

3 HttpServer server = HttpServer.create(new InetSocketAddress(8080),10); 35

4 server.setExecutor(Executor.newFixedThreadPool(10)); 36

5 server.start(); 37

6 HttpContext context = server.createContext("/test"); 38

7 Endpoint endpoint = Endpoint.create(SOAPBinding.SOAP11HTTP_BINDING, test); 39

8 endpoint.publish(context); 40

Note that the specified server context uses its own executor mechanism. At runtime then, any other executor 41

set on the Endpoint instance would be ignored by the JAX-WS implementation. 42

October 7, 2005 JAX-WS 2.0 63

Chapter 5. Service APIs

5.2.3 Publishing Permission 1

For security reasons, administrators may want to restrict the ability of applications to publish Web ser- 2

vice endpoints. To this end, JAX-WS 2.0 defines a new permission class, javax.xml.ws.WebService- 3

Permission, and one named permission, publishEndpoint. 4

♦ Conformance (Checking publishEndpoint Permission): When any of the publish methods defined 5

by the Endpoint class are invoked, an implementation MUST check whether a SecurityManager is in- 6

stalled with the application. If it is, implementations MUST verify that the application has the WebServicePermission7

identified by the target name publishEndpoint before proceeding. If the permission is not granted, imple- 8

mentations MUST NOT publish the endpoint and they MUST throw a java.lang.SecurityException. 9

5.2.4 Endpoint Metadata 10

A set of metadata documents can be associated with an Endpoint by means of the setMetadata- 11

(List<Source>) method. By setting the metadata of an Endpoint, an application can bypass the auto- 12

matic generation of the endpoint’s contract and specify the desired contract directly. This way it is possible, 13

e.g., to make sure that the WSDL or XML Schema document that is published contains information that 14

cannot be represented using built-in Java annotations (see 7). 15

♦ Conformance (Required Metadata Types): An implementation MUST support WSDL 1.1 and XML Schema16

1.0 documents as metadata. 17

♦ Conformance (Unknown Metadata): An implementation MUST ignore metadata documents whose type 18

it does not recognize. 19

When specifying a list of documents as metadata, an application may need to establish references between 20

them. For instance, a WSDL document may import one or more XML Schema documents. In order to do 21

so, the application MUST use the systemId property of the javax.xml.transform.Source class by 22

setting its value to an absolute URI that uniquely identifies it among all supplied metadata documents, then 23

using the given URI in the appropriate construct (e.g. wsdl:import or xsd:import). 24

5.2.5 Endpoint Publishing and Metadata 25

This section details how metadata is used at publishing time to create a contract for the endpoint. 26

A WSDL document contains two different kinds of information: abstract information (i.e. portTypes and 27

any schema-related information) which affects the format of the messages and the data being exchanged, 28

and binding-related one (i.e. bindings and ports) which affects the choice of protocol and transport as well 29

as the on-the-wire format of the messages. Annotations (see 7) are provided to capture the former aspects 30

but not the latter. (The @SOAPBinding annotation is a bit of a hybrid, because it captures the signature- 31

related aspects of the soap:binding binding extension in WSDL 1.1.) At runtime, annotations must be 32

followed for all the abstract aspects of an interaction, but binding information has to come from somewhere 33

else. Although the choice of binding is made at the time an endpoint is created, this specification does not 34

attempt to capture all possible binding properties in its APIs, since the extensibility of WSDL would make it 35

a futile exercise. Rather, when an endpoint is published, a metadata document for it, if present, is consulted 36

to determine binding information, using the wsdl:service and wsdl:port qualified names as a key. 37

By default, an implementation MUST generate a contract for the endpoint based on the annotation on the 38

implementor class and the binding in use. The resulting contract MUST follow the rules in chapter 3 and the 39

64 JAX-WS 2.0 October 7, 2005

5.2. javax.xml.ws.Endpoint

JAXB specification [10]. Certain bindings, including standard ones, MAY specify that no contract must be 1

generated for them, typically because there is no recognized interoperable standard WSDL binding for them 2

at the time they were created. In this case, implementations MUST NOT generate a contract for endpoints 3

that use them. 4

Note: This requirement guarantees that future versions of this specification may mandate support for ad- 5

ditional WSDL binding in conjunction with the predefined binding identifiers without negatively affecting 6

existing applications. 7

The generated contract must reuse as much as possible the set of metadata documents provided by the ap- 8

plication. In order to simplify an implementors’ task, this specification requires that only a small number 9

of well-defined scenarios in which the application provides metadata documents be supported. Implemen- 10

tations MAY support other use cases, but they MUST follow the general rule that any application-provided 11

metadata element takes priority over an implementation-generated one, with the exception of the overriding 12

of a port address. For instance, if the application-provided metadata contains a definition for portType foo 13

that in no case should the JAX-WS implementation create its own foo portType to replace the one provided 14

by the application in the final contract for the endpoint. 15

The exception to using a metadata document as supplied by the application without any modifications is the 16

address of the wsdl:port for the endpoint, which MUST be overridden so as to match the address specified 17

as an argument to the publish method or the one implicit in a server context. 18

When publishing the main WSDL document for an endpoint, an implementation MUST ensure that all refer- 19

ences between documents are correct and resolvable. This may require remapping the metadata documents 20

to URLs different from those set as their systemId property. The renaming MUST be consistent, in that the 21

”imports” and ”includes” relationships existing between documents when the metadata was supplied to the 22

endpoint MUST be respected at publishing time. Moreover, the same metadata document SHOULD NOT 23

be published at multiple, different URLs. 24

When resolving URI references to other documents when processing metadata documents or any of the doc- 25

uments they may transitively reference, a JAX-WS implementation MUST use the catalog facility defined 26

in section 4.4, except when there is a metadata document whose system id matches the URI in question. In 27

other words, metadata documents have priority over catalog-based mappings. 28

The scenarios which are required to be supported are the following: 29

5.2.5.1 Application-specified Service 30

One of the metadata documents, say D, contains a definition for a WSDL service whose qualified name 31

, say S, matches that specified by the endpoint being published. In this case, a JAX-WS implementation 32

MUST use D as the service description. No further generation of contract-related artifacts may occur. 33

The implementation MUST also override the port address in D and the location and schemaLocation 34

attributes as detailed in the preceding paragraphs. It is an error if more than one metadata document contains 35

a definition for the sought-after service S. 36

5.2.5.2 Application-specified PortType 37

No metadata document contains a definition for the sought-after service S, but a metadata document, say 38

D, contains a definition for the WSDL portType whose qualified name, say P, matches that specified by the 39

endpoint being published. In this case, a JAX-WS implementation MUST create a new description for S, 40

including an appropriate WSDL binding element referencing portType P. The metadata document D MUST 41

October 7, 2005 JAX-WS 2.0 65

Chapter 5. Service APIs

Table 5.1: Standard Endpoint properties.
Name Type Description

javax.xml.ws.wsdl

.service QName Specifies the qualified name of the service.

.port QName Specifies the qualified name of the port.

be imported/included so that the published contract uses the definition of P provided by D. No schema gen- 1

eration occurs,as P is assumed to embed or import schema definitions for all the types/elements it requires. 2

Like in the previous case, the implementation MUST override any location and schemaLocation at- 3

tributes. It is an error if more than one metadata document contains a definition for the sought-after portType 4

P. 5

5.2.5.3 Application-specified Schema or No Metadata 6

No metadata document contains a definition for the sought-after service S and portType P. In this case, a 7

JAX-WS implementation MUST generate a complete WSDL for S. When it comes to generating a schema 8

for a certain target namespace, say T, the implementation MUST reuse the schema for T among the avail- 9

able metadata documents, if any. Like in the preceding case, the implementation MUST override any 10

schemaLocation attributes. It is an error if more than one schema documents specified as metadata for 11

the endpoint attempt to define components in a namespace T used by the endpoint. 12

Note: The three scenarios described above cover several applicative use cases. The first one represents an 13

application that has full control over all aspects of the contract. The JAX-WS runtime just uses what the 14

application provided, with a minimum of adjustments to ensure consistency. The second one corresponds 15

to an application that defines all abstract aspects of the WSDL, i.e. portType(s) and schema(s), leaving 16

up to the JAX-WS runtime to generate the concrete portions of the contract. Finally, the third case rep- 17

resents an application that uses one or more well-known schema(s), possibly taking advantage of lots of 18

facets/constraints that JAXB cannot capture, and wants to reuse it as-is, leaving all the WSDL-specific as- 19

pects of the contract up to the runtime. This use case also covers an application that does not specify any 20

metadata, leaving WSDL and schema generation up to the JAX-WS (and JAXB) implementation. 21

5.2.6 Endpoint Properties 22

An Endpoint has an associated set of properties that may be read and written using the getProperties 23

and setProperties methods respectively. 24

Table 5.1 lists the set of standard Endpoint properties. 25

When present, the WSDL-related properties override the values specified using the WebService and Web- 26

ServiceProvider annotations. This functionality is most useful with provider objects (see section 7.7), 27

since the latter are naturally more suited to a more dynamic usage. For instance, an application that publishes 28

a provider endpoint can decide at runtime which web service to impersonate by using a combination of 29

metadata documents and the properties described in this section. 30

5.2.7 Executor 31

Endpoint instances can be configured with a java.util.concurrent.Executor. The executor will 32

then be used to dispatch any incoming requests to the application. The setExecutor and getExecutor 33

66 JAX-WS 2.0 October 7, 2005

5.3. javax.xml.ws.WebServiceContext

methods of Endpoint can be used to modify and retrieve the executor configured for a service. 1

♦ Conformance (Use of Executor): If an executor object is successfully set on an Endpoint via the set- 2

Executor method, then an implementation MUST use it to dispatch incoming requests upon publication of 3

the Endpoint by means of the publish(String address) method. If publishing is carried out using 4

the publish(Object serverContext)) method, an implementation MAY use the specified executor or 5

another one specific to the server context being used. 6

♦ Conformance (Default Executor): If an executor has not been set on an Endpoint, an implementation 7

MUST use its own executor, a java.util.concurrent.ThreadPoolExecutor or analogous mecha- 8

nism, to dispatch incoming requests. 9

5.3 javax.xml.ws.WebServiceContext 10

The javax.xml.ws.WebServiceContext interface makes it possible for an endpoint implementation 11

object to access contextual information pertaining to the request being served. 12

The result of invoking any methods on the WebServiceContext of a component outside the invocation 13

of one of its web service methods is undefined. An implementation SHOULD throw a java.lang- 14

.IllegalStateException if it detects such a usage. 15

The WebServiceContext is treated as an injectable resource that can be set on an endpoint at the time 16

of its initialization. The WebServiceContext object will then use thread-local information to return 17

the correct information regardless of how many threads are concurrently being used to serve requests ad- 18

dressed to the same endpoint object. It is an error to attempt to request the injection of a resource of type 19

WebServiceContext on a component which does not constitute a Web service endpoint. 20

The following code shows a simple endpoint implementation class which requests the injection of its 21

WebServiceContext: 22

1 @WebService 23

2 public class Test { 24

3 @Resource 25

4 private WebServiceContext context; 26

5 27

6 public String reverse(String inputString) { ... } 28

7 } 29

The javax.annotation.Resource annotation defined by JSR-250 [31] is used to request injection of 30

the WebServiceContext. The following constraints apply to the annotation elements of a Resource 31

annotation used to inject a WebServiceContext: 32

• The type element MUST be either java.lang.Object (the default) or javax.xml.ws.Web- 33

ServiceContext. If the former, then the resource MUST be injected into a field or a method. In 34

this case, the type of field or the type of the JavaBeans property defined by the method MUST be 35

javax.xml.ws.WebServiceContext. 36

• The authenticationType, shareable elements, if they appear, MUST have their respective de- 37

fault values. 38

October 7, 2005 JAX-WS 2.0 67

Chapter 5. Service APIs

The above restriction on type guarantees that a resource type of WebServiceContext is either explicitely 1

stated or can be inferred from the annotated field/method declaration. Moreover, the field/method type must 2

be assignable from the type described by the annotation’s type element. 3

When running on the Java SE platform, the name and mappedName elements are ignored. As a consequence, 4

on Java SE there is no point in declaring a resource of type WebServiceContext on the endpoint class 5

itself (instead of one of its fields/methods), since it won’t be accessible at runtime via JNDI. When running 6

on the Java EE 5 platform, resources of type WebServiceContext are treated just like all other injectable 7

resources there and are subject to the constraints prescribed by the platform specification [32]. 8

Note: When using method-based injection, it is recommended that the method be declared as non-public, 9

otherwise it will be exposed as a web service operation. Alternatively, the method can be marked with the 10

@WebMethod(exclude=true) annotation to ensure it will not be part of the generated portType for the 11

service. 12

5.3.1 MessageContext 13

The message context made available to endpoint instances via the WebServiceContext acts as a restricted 14

window on to the MessageContext of the inbound message following handler execution (see chapter 9). 15

The restrictions are as follows: 16

• Only properties whose scope is APPLICATION are visible using a MessageContext obtained from 17

a WebServiceContext; the get method returns null for properties with HANDLER scope, the Set 18

returned by keySet only includes properties with APPLICATION scope. 19

• New properties set in the context are set in the underlying MessageContext with APPLICATION 20

scope. 21

• An attempt to set the value of property whose scope is HANDLER in the underlying MessageContext 22

results in an IllegalArgumentException being thrown. 23

• Only properties whose scope is APPLICATION can be removed using the context. An attempt to re- 24

move a property whose scope is HANDLER in the underlying MessageContext results in an Illegal- 25

ArgumentException being thrown. 26

• The Map.putAll method can be used to insert multiple properties at once. Each property is inserted 27

individually, each insert operation being carried out as if enclosed by a try/catch block that traps any 28

IllegalArgumentException. Consequently, putAll is not atomic: it silently ignores properties 29

whose scope is HANDLER and it never throws an IllegalArgumentException. 30

The MessageContext is used to store handlers information between request and response phases of a 31

message exchange pattern, restricting access to context properties in this way ensures that endpoint imple- 32

mentations can only access properties intended for their use. 33

68 JAX-WS 2.0 October 7, 2005

Chapter 6 1

Core APIs 2

This chapter describes the standard core APIs that may be used by both client and server side applications. 3

6.1 javax.xml.ws.Binding 4

The javax.xml.ws.Binding interface acts as a base interface for JAX-WS protocol bindings. Bindings 5

to specific protocols extend Binding and may add methods to configure specific aspects of that protocol 6

binding’s operation. Chapter 10 describes the JAX-WS SOAP binding; chapter 11 describes the JAX-WS 7

XML/HTTP binding. 8

Applications obtain a Binding instance from a BindingProvider (a proxy or Dispatch instance) or 9

from an Endpoint using the getBinding method (see sections 4.2, 5.2). 10

Binding provides methods to manipulate the handler chain configured on an instance (see section 9.2.1). 11

♦ Conformance (Read-only handler chains): An implementation MAY prevent changes to handler chains 12

configured by some other means (e.g. via a deployment descriptor) by throwing UnsupportedOperation- 13

Exception from the setHandlerChain method of Binding 14

6.2 javax.xml.ws.spi.Provider 15

Provider is an abstract service provider interface (SPI) factory class that provides various methods for the 16

creation of Endpoint instances and ServiceDelegate instances. These methods are designed for use by 17

other JAX-WS API classes, such as Service (see 4.1) and Endpoint (see 5.2) and are not intended to be 18

called directly by applications. 19

The Provider SPI allows an application to use a different JAX-WS implementation from the one bundled 20

with the platform without any code changes. 21

♦ Conformance (Concrete javax.xml.ws.spi.Provider required): An implementation MUST provide 22

a concrete class that extends javax.xml.ws.spi.Provider. Such a class MUST have a public construc- 23

tor which takes no arguments. 24

October 7, 2005 JAX-WS 2.0 69

Chapter 6. Core APIs

6.2.1 Configuration 1

The Provider implementation class is determined using the following algorithm. The steps listed below 2

are performed in sequence. At each step, at most one candidate implementation class name will be produced. 3

The implementation will then attempt to load the class with the given class name using the current context 4

class loader or, missing one, the java.lang.Class.forName(String)method. As soon as a step results 5

in an implementation class being successfully loaded, the algorithm terminates. 6

1. If a resource with the name of META-INF/services/javax.xml.ws.spi.Provider exists, then 7

its first line, if present, is used as the UTF-8 encoded name of the implementation class. 8

2. If the ${java.home}/lib/jaxws.properties file exists and it is readable by the java.util- 9

.Properties.load(InputStream) method and it contains an entry whose key is javax.xml- 10

.ws.spi.Provider, then the value of that entry is used as the name of the implementation class. 11

3. If a system property with the name javax.xml.ws.spi.Provider is defined, then its value is used 12

as the name of the implementation class. 13

4. Finally, a default implementation class name is used. 14

6.2.2 Creating Endpoint Objects 15

Endpoints can be created using the following methods on Provider: 16

createEndpoint(String bindingID, Object implementor) Creates and returns an Endpoint 17

for the specified binding and implementor. 18

createAndPublishEndpoint(String address, Object implementor) Creates and publishes an 19

Endpoint for the given implementor. The binding is chosen by default based on the URL scheme 20

of the provided address (which must be a URL). If a suitable binding if found, the endpoint is cre- 21

ated then published as if the Endpoint.publish(String address)method had been called. The 22

created Endpoint is then returned as the value of the method. 23

An implementor object MUST be either: 24

• an instance of a SEI-based endpoint class, i.e. a class annotated with the @WebService annotation 25

according to the rules in chapter 3, or 26

• an instance of a provider class, i.e. a class implementing the Provider interface and annotated with 27

the WebServiceProvider annotation according to the rules in 5.1. 28

The createAndPublishEndpoint(String,Object)method is provided as a shortcut for the common 29

operation of creating and publishing an Endpoint. It corresponds to the static publish method defined on 30

the Endpoint class, see 5.2.1. 31

♦ Conformance (Provider createAndPublishEndpoint Method): The effect of invoking the createAnd- 32

PublishEndpoint method on a Provider MUST be the same as first invoking the createEndpoint 33

method with the binding ID appropriate to the URL scheme used by the address, then invoking the publish- 34

(String address) method on the resulting endpoint. 35

70 JAX-WS 2.0 October 7, 2005

6.3. javax.xml.ws.spi.ServiceDelegate

6.2.3 Creating ServiceDelegate Objects 1

javax.xml.ws.spi.ServiceDelegate 6.3 can be created using the following method on Provider: 2

createServiceDelegate(URL wsdlDocumentLocation, QName serviceName, Class serviceClass)3

Creates and returns a ServiceDelegate for the specified service. When starting from WSDL the 4

serviceClass will be the generated service class as described in section 2.7. In the dynamic case where 5

there is no service class generated it will be javax.xml.ws.Service. The serviceClass is used by 6

the ServiceDelegate to get access to the annotations. 7

6.3 javax.xml.ws.spi.ServiceDelegate 8

The javax.xml.ws.spi.ServiceDelegate class is an abstract class that implementations MUST pro- 9

vide. This is the class that javax.xml.ws.Service 4.1 class delegates all methods, except the static 10

create methods to. ServiceDelegate is defined as an abstract class for future extensibility purpose. 11

♦ Conformance (Concrete javax.xml.ws.spi.ServiceDelegate required): An implementation MUST 12

provide a concrete class that extends javax.xml.ws.spi.ServiceDelegate. 13

6.4 Exceptions 14

The following standard exceptions are defined by JAX-WS. 15

javax.xml.ws.WebServiceException A runtime exception that is thrown by methods in JAX-WS 16

APIs when errors occur during local processing. 17

javax.xml.ws.ProtocolException A base class for exceptions related to a specific protocol binding. 18

Subclasses are used to communicate protocol level fault information to clients and may be used by a 19

service implementation to control the protocol specific fault representation. 20

javax.xml.ws.soap.SOAPFaultException A subclass of ProtocolException, may be used to 21

carry SOAP specific information. 22

javax.xml.ws.http.HTTPException A subclass of ProtocolException, may be used to carry HTTP 23

specific information. 24

Editors Note 6.1 A future version of this specification may introduce a new exception class to distinguish 25

errors due to client misconfiguration or inappropriate parameters being passed to an API from errors that 26

were generated locally on the sender node as part of the invocation process (e.g. a broken connection or 27

an unresolvable server name). Currently, both kinds of errors are mapped to WebServiceException, but the 28

latter kind would be more usefully mapped to its own exception type, much like ProtocolException is. 29

6.4.1 Protocol Specific Exception Handling 30

♦ Conformance (Protocol specific fault generation): When throwing an exception as the result of a pro- 31

tocol level fault, an implementation MUST ensure that the exception is an instance of the appropriate 32

ProtocolException subclass. For SOAP the appropriate ProtocolException subclass is SOAP- 33

FaultException, for XML/HTTP is is HTTPException. 34

October 7, 2005 JAX-WS 2.0 71

Chapter 6. Core APIs

♦ Conformance (Protocol specific fault consumption): When an implementation catches an exception thrown 1

by a service endpoint implementation and the cause of that exception is an instance of the appropriate 2

ProtocolException subclass for the protocol in use, an implementation MUST reflect the information 3

contained in the ProtocolException subclass within the generated protocol level fault. 4

6.4.1.1 Client Side Example 5

1 try { 6

2 response = dispatch.invoke(request); 7

3 } 8

4 catch (SOAPFaultException e) { 9

5 QName soapFaultCode = soapFault.getFault().getFaultCodeAsQName(); 10

6 ... 11

7 } 12

6.4.1.2 Server Side Example 13

1 public void endpointOperation() { 14

2 ... 15

3 if (someProblem) { 16

4 SOAPFault fault = soapBinding.getSOAPFactory().createFault(17

5 faultcode, faultstring, faultactor, detail); 18

6 throw new SOAPFaultException(fault); 19

7 } 20

8 ... 21

9 } 22

6.4.2 One-way Operations 23

♦ Conformance (One-way operations): When sending a one-way message, implementations MUST throw 24

a WebServiceException if any error is detected when sending the message. 25

72 JAX-WS 2.0 October 7, 2005

Chapter 7 1

Annotations 2

This chapter describes the annotations used by JAX-WS. 3

For simplicity, when describing an annotation we use the term “property” in lieu of the more correct “an- 4

notation elements”. Also, for each property we list the default value, which is the default as it appears in 5

the declaration of the annotation type. Often properties have logical defaults which are computed based on 6

contextual information and, for this reason, cannot be captured using the annotation element default facility 7

built into the language. In this case, the text describes what the logical default is and how it is computed. 8

JAX-WS 2.0 uses annotations extensively. For an annotation to be correct, besides being syntactically 9

correct, e.g. placed on a program element of the appropriate type, it must obey a set of constraints detailed 10

in this specification. For annotations defined by JSR-181, the annotation in question must also obey the 11

constraints in the relevant specification (see [13]). 12

♦ Conformance (Correctness of annotations): An implementation MUST check at runtime that the annota- 13

tions pertaining to a method being invoked, either on the client or on the server, as well as any containing 14

program elements (i.e. classes, packages) is in conformance with the specification for that annotation 15

♦ Conformance (Handling incorrect annotations): If an incorrect or inconsistent annotation is detected: 16

• In a client setting, an implementation MUST NOT invoke the remote operation being invoked, if any. 17

Instead, it MUST throw a WebServiceException, setting its cause to an exception approximating 18

the cause of the error (e.g. an IllegalArgumentException or a ClassNotFoundException). 19

• In a server setting, annotation, an implementation MUST NOT dispatch to an endpoint implementa- 20

tion object. Rather, it MUST generate a fault appropriate to the binding in use. 21

An implementation may check for correctness in a lazy way, at the time a method is invoked or a request 22

is about to be dispatched to an endpoint, or more aggressively, e.g. when creating a proxy. In a container 23

environment, an implementation may perform any correctness checks at deployment time. 24

7.1 javax.xml.ws.ServiceMode 25

The ServiceMode annotation is used to specify the mode for a provider class, i.e. whether a provider wants 26

to have access to protocol message payloads (e.g. a SOAP body) or the entire protocol messages (e.g. a 27

SOAP envelope). 28

October 7, 2005 JAX-WS 2.0 73

Chapter 7. Annotations

Table 7.1: ServiceMode properties.

Property Description Default
value The service mode, one of

javax.xml.ws.Service.Mode. MESSAGE or
javax.xml.ws.Service.Mode.PAYLOAD.
MESSAGE means that the whole protocol
message will be handed to the provider
instance, PAYLOAD that only the payload of
the protocol message will be handed to the
provider instance.

javax.xml.ws-
.Service.Mode-
.PAYLOAD

The ServiceMode annotation type is marked @Inherited, so the annotation will be inherited from the 1

superclass. 2

7.2 javax.xml.ws.WebFault 3

The WebFault annotation is used when mapping WSDL faults to Java exceptions, see section 2.5. It is used 4

to capture the name of the fault element used when marshalling the JAXB type generated from the global 5

element referenced by the WSDL fault message. It can also be used to customize the mapping of service 6

specific exceptions to WSDL faults. 7

Table 7.2: WebFault properties.

Property Description Default
name The local name of the element ””
targetNamespace The namespace name of the element ””
faultBean The name of the fault bean class ””

Since the default value for the name property of this annotation is not a valid XML element local name, an 8

actual value must be specified in all cases. 9

7.3 javax.xml.ws.RequestWrapper 10

The RequestWrapper annotation is applied to the methods of an SEI. It is used to capture the JAXB 11

generated request wrapper bean and the element name and namespace for marshalling / unmarshalling the 12

bean. The default value of localName element is the operationName as defined in WebMethod anno- 13

tation and the default value for the targetNamespace element is the target namespace of the SEI. When 14

starting from Java, this annotation is used to resolve overloading conflicts in document literal mode. Only 15

the className element is required in this case. 16

Table 7.3: RequestWrapper properties.

Property Description Default
localName The local name of the element ””
targetNamespace The namespace name of the element ””
className The name of the wrapper class ””

74 JAX-WS 2.0 October 7, 2005

7.6. javax.xml.ws.WebEndpoint

7.4 javax.xml.ws.ResponseWrapper 1

The ResponseWrapper annotation is applied to the methods of an SEI. It is used to capture the JAXB 2

generated response wrapper bean and the element name and namespace for marshalling / unmarshalling the 3

bean. The default value of the localName element is the operationName as defined in the WebMethod 4

appended with ”Response” and the default value of the targetNamespace element is the target namespace 5

of the SEI. When starting from Java, this annotation is used to resolve overloading conflicts in document 6

literal mode. Only the className element is required in this case. 7

Table 7.4: ResponseWrapper properties.

Property Description Default
localName The local name of the element ””
targetNamespace The namespace name of the element ””
className The name of the wrapper class ””

7.5 javax.xml.ws.WebServiceClient 8

The WebServiceClient annotation is specified on a generated service class (see 2.7). It is used to asso- 9

ciate a class with a specific Web service, identify by a URL to a WSDL document and the qualified name of 10

a wsdl:service element. 11

Table 7.5: WebServiceClient properties.

Property Description Default
name The local name of the service ””
targetNamespace The namespace name of the service ””
wsdlLocation The URL for the WSDL description of the

service
””

When resolving the URI specified as the wsdlLocation element or any document it may transitively 12

reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4. 13

7.6 javax.xml.ws.WebEndpoint 14

The WebEndpoint annotation is specified on the getPortName() methods of a generated service class 15

(see 2.7). It is used to associate a get method with a specific wsdl:port, identified by its local name (a 16

NCName). 17

Table 7.6: WebEndpoint properties.

Property Description Default
name The local name of the port ””

October 7, 2005 JAX-WS 2.0 75

Chapter 7. Annotations

7.6.1 Example 1

The following shows a WSDL extract and the resulting generated service class. 2

1 <!-- WSDL extract --> 3

2 <wsdl:service name="StockQuoteService"> 4

3 <wsdl:port name="StockQuoteHTTPPort" binding="StockQuoteHTTPBinding"/> 5

4 <wsdl:port name="StockQuoteSMTPPort" binding="StockQuoteSMTPBinding"/> 6

5 </wsdl:service> 7

6 8

7 // Generated Service Interface 9

8 @WebServiceClient(name="StockQuoteService", 10

9 targetNamespace="...", 11

10 wsdlLocation="...") 12

11 public class StockQuoteService extends javax.xml.ws.Service { 13

12 public StockQuoteService() { 14

13 super(wsdlLocation_fromAnnotation, serviceName_fromAnnotation); 15

14 } 16

15 17

16 public StockQuoteService(String wsdlLocation, QName serviceName) { 18

17 19

18 } 20

19 @WebEndpoint(name="StockQuoteHTTPPort") 21

20 public StockQuoteProvider getStockQuoteHTTPPort() { 22

21 return (StockQuoteProvider)super.gePort(portName, StockQuoteProvider.class);23

22 } 24

23 25

24 @WebEndpoint(name="StockQuoteSMTPPort") 26

25 public StockQuoteProvider getStockQuoteSMTPPort() { 27

26 return (StockQuoteProvider)super.getPort(portName, StockQuoteProvider.class);28

27 } 29

28 } 30

7.7 javax.xml.ws.WebServiceProvider 31

The WebServiceProvider annotation is specified on classes that implement a strongly typed javax- 32

.xml.ws.Provider. It is used to declare that a class that satisfies the requirements for a provider (see 33

5.1) does indeed define a Web service endpoint, much like the WebService annotation does for SEI-based 34

endpoints. 35

Table 7.7: WebServiceProvider properties.

Property Description Default
wsdlLocation The URL for the WSDL description ””
serviceName The name of the service ””
portName The name of the port ””
targetNamespace The target namespace for the service ””

When resolving the URL specified as the wsdlLocation element or any document it may transitively 36

reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4. 37

76 JAX-WS 2.0 October 7, 2005

7.9. javax.xml.ws.WebServiceRef

7.8 javax.xml.ws.BindingType 1

The BindingType annotation is applied to an endpoint implementation class. It specifies the binding to 2

use when publishing an endpoint of this type. 3

Table 7.8: BindingType properties.

Property Description Default
value The binding ID (a URI) ””

The default binding for an endpoint is the SOAP 1.1/HTTP one (see chapter 10). 4

7.9 javax.xml.ws.WebServiceRef 5

The WebServiceRef annotation is used to declare a reference to a Web service. It follows the resource 6

pattern exemplified by the javax.annotation.Resource annotation in JSR-250 [31]. 7

The WebServiceRef annotation is required to be honored when running on the Java EE 5 platform, where 8

it is subject to the common resource injection rules described by the platform specification [32]. 9

Table 7.9: WebServiceRef properties.

Property Description Default
name The name identifying the Web service

reference.
””

wsdlLocation A URL pointing to the location of the WSDL
document for the service being referred to.

””

type The resource type as a Java class object Object.class

value The service type as a Java class object Object.class

mappedName A product specific name that this resource
should be mapped to.

””

The name of the resource, as defined by the name element (or defaulted) is a name that is local to the 10

application component using the resource. (It’s a name in the JNDI java:comp/env namespace.) Many 11

application servers provide a way to map these local names to names of resources known to the application 12

server. This mappedName is often a global JNDI name, but may be a name of any form. Application servers 13

are not required to support any particular form or type of mapped name, nor the ability to use mapped 14

names. A mapped name is product-dependent and often installation-dependent. No use of a mapped name 15

is portable. 16

There are two uses to the WebServiceRef annotation: 17

1. To define a reference whose type is a generated service interface. In this case, the type and value 18

element will both refer to the generated service interface type. Moreover, if the reference type can be 19

inferred by the field/method declaration the annotation is applied to, the type and value elements 20

MAY have the default value (Object.class, that is). If the type cannot be inferred, then at least the 21

type element MUST be present with a non-default value. 22

October 7, 2005 JAX-WS 2.0 77

Chapter 7. Annotations

2. To define a reference whose type is a SEI. In this case, the type element MAY be present with its 1

default value if the type of the reference can be inferred from the annotated field/method declaration, 2

but the value element MUST always be present and refer to a generated service interface type (a 3

subtype of javax.xml.ws.Service). 4

The wsdlLocation element, if present, overrides the WSDL location information specified in the WebService5

annotation of the referenced generated service interface. 6

When resolving the URI specified as the wsdlLocation element or any document it may transitively 7

reference, a JAX-WS implementation MUST use the catalog facility defined in section 4.4. 8

7.9.1 Example 9

The following shows both uses of the WebServiceRef annotation. 10

1 11

2 // Generated Service Interface 12

3 13

4 @WebServiceClient(name="StockQuoteService", 14

5 targetNamespace="...", 15

6 wsdlLocation="...") 16

7 public interface StockQuoteService extends javax.xml.ws.Service { 17

8 @WebEndpoint(name="StockQuoteHTTPPort") 18

9 StockQuoteProvider getStockQuoteHTTPPort(); 19

10 20

11 @WebEndpoint(name="StockQuoteSMTPPort") 21

12 StockQuoteProvider getStockQuoteSMTPPort(); 22

13 } 23

14 24

15 // Generated SEI 25

16 26

17 @WebService(name="StockQuoteProvider", 27

18 targetNamespace="...") 28

19 public interface StockQuoteProvider { 29

20 Double getStockQuote(String ticker); 30

21 } 31

22 32

23 // Sample client code 33

24 34

25 @Stateless 35

26 public ClientComponent { 36

27 37

28 // WebServiceRef using the generated service interface type 38

29 @WebServiceRef 39

30 public StockQuoteService stockQuoteService; 40

31 41

32 // WebServiceRef using the SEI type 42

33 @WebServiceRef(StockQuoteService.class) 43

34 private StockQuoteProvider stockQuoteProvider; 44

35 45

36 // other methods go here... 46

37 } 47

78 JAX-WS 2.0 October 7, 2005

7.10. Annotations Defined by JSR-181

7.10 Annotations Defined by JSR-181 1

In addition to the annotations defined in the preceding sections, JAX-WS 2.0 uses several annotations defined 2

by JSR-181. 3

♦ Conformance (JSR-181 conformance): A JAX-WS 2.0 implementation MUST be conformant to the JAX- 4

WS profile of JSR-181 1.1 [13]. 5

As a convenience to the reader, the following sections reproduce the definition of the JSR-181 annotations 6

applicable to JAX-WS. 7

7.10.1 javax.jws.WebService 8

1 @Target({TYPE}) 9

2 public @interface WebService { 10

3 String name() default ""; 11

4 String targetNamespace() default ""; 12

5 String serviceName() default ""; 13

6 String wsdlLocation() default ""; 14

7 String endpointInterface() default ""; 15

8 String portName() default ""; 16

9 }; 17

Consistently with the URI resolution process in JAX-WS, when resolving the URI specified as the wsdlLocation18

element or any document it may transitively reference, a JAX-WS implementation MUST use the catalog 19

facility defined in section4.4. 20

7.10.2 javax.jws.WebMethod 21

1 @Target({METHOD}) 22

2 public @interface WebMethod { 23

3 String operationName() default ""; 24

4 String action() default "" ; 25

5 boolean exclude() default false; 26

6 }; 27

7.10.3 javax.jws.OneWay 28

1 @Target({METHOD}) 29

2 public @interface Oneway { 30

3 }; 31

7.10.4 javax.jws.WebParam 32

1 @Target({PARAMETER}) 33

2 public @interface WebParam { 34

3 public enum Mode { IN, OUT, INOUT }; 35

4 36

5 String name() default ""; 37

October 7, 2005 JAX-WS 2.0 79

Chapter 7. Annotations

6 String targetNamespace() default ""; 1

7 Mode mode() default Mode.IN; 2

8 boolean header() default false; 3

9 String partName() default ""; 4

10 }; 5

7.10.5 javax.jws.WebResult 6

1 @Target({METHOD}) 7

2 public @interface WebResult { 8

3 String name() default "return"; 9

4 String targetNamespace() default ""; 10

5 boolean header() default false; 11

6 String partName() default ""; 12

7 }; 13

7.10.6 javax.jws.SOAPBinding 14

1 @Target({TYPE, METHOD}) 15

2 public @interface SOAPBinding { 16

3 public enum Style { DOCUMENT, RPC } 17

4 18

5 public enum Use { LITERAL, ENCODED } 19

6 20

7 public enum ParameterStyle { BARE, WRAPPED } 21

8 22

9 Style style() default Style.DOCUMENT; 23

10 Use use() default Use.LITERAL; 24

11 ParameterStyle parameterStyle() default ParameterStyle.WRAPPED; 25

12 } 26

7.10.7 javax.jws.HandlerChain 27

1 @Target({TYPE}) 28

2 public @interface HandlerChain { 29

3 String file(); 30

4 String name() default ""; 31

5 } 32

80 JAX-WS 2.0 October 7, 2005

Chapter 8 1

Customizations 2

This chapter describes a standard customization facility that can be used to customize the WSDL 1.1 to Java 3

binding defined in section2. 4

8.1 Binding Language 5

JAX-WS 2.0 defines an XML-based language that can be used to specify customizations to the WSDL 1.1 6

to Java binding. In order to maintain consistency with JAXB, we call it a binding language. Similarly, 7

customizations will hereafter be referred to as binding declarations. 8

All XML elements defined in this section belong to the http://java.sun.com/xml/ns/jaxws names- 9

pace. For clarity, the rest of this section uses qualified element names exclusively. Wherever it appears, the 10

jaxws prefix is assumed to be bound to the http://java.sun.com/xml/ns/jaxws namespace name. 11

The binding language is extensible. Extensions are expressed using elements and/or attributes whose names- 12

pace name is different from the one used by this specification. 13

♦ Conformance (Standard binding declarations): The http://java.sun.com/xml/ns/jaxws names- 14

pace is reserved for standard JAX-WS binding declarations. Implementations MUST support all standard 15

JAX-WS binding declarations. Implementation-specific binding declaration extensions MUST NOT use the 16

http://java.sun.com/xml/ns/jaxws namespace. 17

♦ Conformance (Binding language extensibility): Implementations MUST ignore unknown elements and 18

attributes appearing inside a binding declaration whose namespace name is not the one specified in the 19

standard, i.e. http://java.sun.com/xml/ns/jaxws. 20

8.2 Binding Declaration Container 21

There are two ways to specify binding declarations. In the first approach, all binding declarations pertaining 22

to a given WSDL document are grouped together in a standalone document, called an external binding 23

file (see 8.4). The second approach consists in embeddeding binding declarations directly inside a WSDL 24

document (see 8.3). 25

In either case, the jaxws:bindings element is used as a container for JAX-WS binding declarations. It 26

contains a (possibly empty) list of binding declarations, in any order. 27

October 7, 2005 JAX-WS 2.0 81

Chapter 8. Customizations

1 <jaxws:bindings wsdlLocation="xs:anyURI"?
2 node="xs:string"?
3 version="string"?>
4 ...binding declarations...
5 </jaxws:bindings>

Figure 8.1: Syntax of the binding declaration container

Semantics 1

@wsdlLocation A URI pointing to a WSDL file establishing the scope of the contents of this binding 2

declaration. It MUST NOT be present if the jaxws:bindings element is used as an extension 3

inside a WSDL document or one of its ancestor jaxws:bindings elements already contains this 4

attribute. 5

@node An XPath expression pointing to the element in the WSDL file in scope that this binding declaration 6

is attached to. It MUST NOT be present if the jaxws:bindings appears inside a WSDL document. 7

@version A version identifier. It MUST NOT appear on jaxws:bindings elements which have any 8

jaxws:bindings ancestors (i.e. on non top-level binding declarations). 9

For the JAX-WS 2.0 specification, the version identifier, if present, MUST be "2.0". If the @version 10

attribute is absent, it will implicitly be assumed to be 2.0. 11

8.3 Embedded Binding Declarations 12

An embedded binding declaration is specified by using the jaxws:bindings element as a WSDL exten- 13

sion. Embedded binding declarations MAY appear on any of the elements in the WSDL 1.1 namespace that 14

accept extension elements, per the schema for the WSDL 1.1 namespace as amended by the WS-I Basic 15

Profile 1.1[17]. 16

A binding declaration embedded in a WSDL document can only affect the WSDL element it extends. When 17

a jaxws:bindings element is used as a WSDL extension, it MUST NOT have a node attribute. Moreover, 18

it MUST NOT have an element whose qualified name is jaxws:bindings amongs its children. 19

8.3.1 Example 20

Figure 8.2 shows a WSDL document containing binding declaration extensions. For JAXB annotations, it 21

assumes that the prefix jaxb is bound to the namespace name http://java.sun.com/xml/ns/jaxb. 22

8.4 External Binding File 23

The jaxws:bindings element MAY appear as the root element of a XML document. Such a document is 24

called an external binding file. 25

An external binding file specifies bindings for a given WSDL document. The WSDL document in question 26

is identified via the mandatory wsdlLocation attribute on the root jaxws:bindings element in the 27

document. 28

82 JAX-WS 2.0 October 7, 2005

8.4. External Binding File

1 <wsdl:definitions targetNamespace="..." xmlns:tns=..." xmlns:stns="...">
2 <wsdl:types>
3 <xs:schema targetNamespace="http://example.org/bar">
4 <xs:annotation>
5 <xs:appinfo>
6 <jaxb:bindings>
7 ...some JAXB binding declarations...
8 </jaxb:bindings>
9 </xs:appinfo>

10 </xs:annotation>
11 <xs:element name="setLastTradePrice">
12 <xs:complexType>
13 <xs:sequence>
14 <xs:element name="tickerSymbol" type="xs:string"/>
15 <xs:element name="lastTradePrice" type="xs:float"/>
16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19 <xs:element name="setLastTradePriceResponse">
20 <xs:complexType>
21 <xs:sequence/>
22 </xs:complexType>
23 </xs:element>
24 </xs:schema>
25 </wsdl:types>
26
27 <wsdl:message name="setLastTradePrice">
28 <wsdl:part name="setPrice" element="stns:setLastTradePrice"/>
29 </wsdl:message>
30
31 <wsdl:message name="setLastTradePriceResponse">
32 <wsdl:part name="setPriceResponse" type="stns:setLastTradePriceResponse"/>
33 </wsdl:message>
34
35 <wsdl:portType name="StockQuoteUpdater">
36 <wsdl:operation name="setLastTradePrice">
37 <wsdl:input message="tns:setLastTradePrice"/>
38 <wsdl:output message="tns:setLastTradePriceResponse"/>
39 <jaxws:bindings>
40 <jaxws:method name="updatePrice"/>
41 </jaxws:bindings>
42 </wsdl:operation>
43 <jaxws:bindings>
44 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
45 </jaxws:bindings>
46 </wsdl:portType>
47
48 <jaxws:bindings>
49 <jaxws:package name="com.acme.foo"/>
50 ...additional binding declarations...
51 </jaxws:bindings>
52 </wsdl:definitions>

Figure 8.2: Sample WSDL document with embedded binding declarations

October 7, 2005 JAX-WS 2.0 83

Chapter 8. Customizations

In an external binding file, jaxws:bindings elements MAY appear as non-root elements, e.g. as a child 1

or descendant of the root jaxws:bindings element. In this case, they MUST carry a node attribute iden- 2

tifying the element in the WSDL document they annotate. The root jaxws:bindings element implicitly 3

contains a node attribute whose value is //, i.e. selecting the root element in the document. An XPath ex- 4

pression on a non-root jaxws:bindings element selects zero or more nodes from the set of nodes selected 5

by its parent jaxws:bindings element. 6

External binding files are semantically equivalent to embedded binding declarations (see 8.3). When a 7

JAX-WS implementation processes a WSDL document for which there is an external binding file, it MUST 8

operate as if all binding declarations specified in the external binding file were instead specified as embedded 9

declarations on the nodes in the in the WSDL document they target. It is an error if, upon embedding the 10

binding declarations defined in one or more external binding files, the resulting WSDL document contains 11

conflicting binding declarations. 12

♦ Conformance (Multiple binding files): Implementations MUST support specifying any number of exter- 13

nal JAX-WS and JAXB binding files for processing in conjunction with at least one WSDL document. 14

Please refer to section 8.5 for more information on processing JAXB binding declarations. 15

8.4.1 Example 16

Figures 8.3 and 8.4 show an example external binding file and WSDL document respectively that express 17

the same set of binding declarations as the WSDL document in 8.3.1. 18

1 <jaxws:bindings wsdlLocation="http://example.org/foo.wsdl">
2 <jaxws:package name="com.acme.foo"/>
3 <jaxws:bindings
4 node="wsdl:types/xs:schema[targetNamespace=’http://example.org/bar’]">
5 <jaxb:bindings>
6 ...some JAXB binding declarations...
7 </jaxb:bindings>
8 </jaxws:bindings>
9 <jaxws:bindings node="wsdl:portType[@name=’StockQuoteUpdater’]">

10 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
11 <jaxws:bindings node="wsdl:operation[@name=’setLastTradePrice’]">
12 <jaxws:method name="updatePrice"/>
13 </jaxws:bindings>
14 </jaxws:bindings>
15 ...additional binding declarations....
16 </jaxws:bindings>

Figure 8.3: Sample external binding file for WSDL in figure8.4

8.5 Using JAXB Binding Declarations 19

It is possible to use JAXB binding declarations in conjunction with JAX-WS. 20

The JAXB 2.0 bindings element, henceforth referred to as jaxb:bindings, MAY appear as an annotation 21

inside a schema document embedded in a WSDL document, i.e. as a descendant of a xs:schema element 22

whose parent is the wsdl:types element. It affects the data binding as specified by JAXB 2.0. 23

84 JAX-WS 2.0 October 7, 2005

8.5. Using JAXB Binding Declarations

1 <wsdl:definitions targetNamespace="..." xmlns:tns="..." xmlns:stns="...">
2 <wsdl:types>
3 <xs:schema targetNamespace="http://example.org/bar">
4 <xs:element name="setLastTradePrice">
5 <xs:complexType>
6 <xs:sequence>
7 <xs:element name="tickerSymbol" type="xs:string"/>
8 <xs:element name="lastTradePrice" type="xs:float"/>
9 </xs:sequence>

10 </xs:complexType>
11 </xs:element>
12 <xs:element name="setLastTradePriceResponse">
13 <xs:complexType>
14 <xs:sequence/>
15 </xs:complexType>
16 </xs:element>
17 </xs:schema>
18 </wsdl:types>
19
20 <wsdl:message name="setLastTradePrice">
21 <wsdl:part name="setPrice" element="stns:setLastTradePrice"/>
22 </wsdl:message>
23
24 <wsdl:message name="setLastTradePriceResponse">
25 <wsdl:part name="setPriceResponse"
26 type="stns:setLastTradePriceResponse"/>
27 </wsdl:message>
28
29 <wsdl:portType name="StockQuoteUpdater">
30 <wsdl:operation name="setLastTradePrice">
31 <wsdl:input message="tns:setLastTradePrice"/>
32 <wsdl:output message="tns:setLastTradePriceResponse"/>
33 </wsdl:operation>
34 </wsdl:portType>
35 </wsdl:definitions>

Figure 8.4: WSDL document referred to by external binding file in figure8.3

October 7, 2005 JAX-WS 2.0 85

Chapter 8. Customizations

Additionally, jaxb:bindingsMAY appear inside a JAX-WS external binding file as a child of a jaxws:- 1

bindings element whose node attribute points to a xs:schema element inside a WSDL document. When 2

the schema is processed, the outcome MUST be as if the jaxb:bindings element was inlined inside the 3

schema document as an annotation on the schema component. 4

While processing a JAXB binding declaration (i.e. a jaxb:bindings element) for a schema document 5

embedded inside a WSDL document, all XPath expressions that appear inside it MUST be interpreted as if 6

the containing xs:schema element was the root of a standalone schema document. 7

Editors Note 8.1 This last requirement ensures that JAXB processors don’t have to be extended to incor- 8

porate knowledge of WSDL. In particular, it becomes possible to take a JAXB binding file and embed it in a 9

JAX-WS binding file as-is, without fixing up all its XPath expressions, even in the case that the XML Schema 10

the JAXB binding file refers to was embedded in a WSDL. 11

8.6 Scoping of Bindings 12

Binding declarations are scoped according to the parent-child hierarchy in the WSDL document. For in- 13

stance, when determining the value of the jaxws:enableWrapperStyle customization parameter for a 14

portType operation, binding declarations MUST be processed in the following order, according to the el- 15

ement they pertain to: (1) the portType operation in question, (2) its parent portType, (3) the definitions 16

element. 17

Tools MUST NOT ignore binding declarations. It is an error if upon applying all the customizations in 18

effect for a given WSDL document, any of the generated Java source code artifacts does not contain legal 19

Java syntax. In particular, it is an error to use any reserved keywords as the name of a Java field, method, 20

type or package. 21

8.7 Standard Binding Declarations 22

The following sections detail the predefined binding declarations, classified according to the WSDL ele- 23

ment they’re allowed on. All these declarations reside in the http://java.sun.com/xml/ns/jaxws 24

namespace. 25

8.7.1 Definitions 26

The following binding declarations MAY appear in the context of a WSDL document, either as an exten- 27

sion to the wsdl:definitions element or in an external binding file at a place where there is a WSDL 28

document in scope. 29

1 <jaxws:package name="xs:string">? 30

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 31

3 </jaxws:package> 32

4 33

5 <jaxws:enableWrapperStyle>? 34

6 xs:boolean 35

7 </jaxws:enableWrapperStyle> 36

8 37

9 <jaxws:enableAsyncMapping>? 38

10 xs:boolean 39

86 JAX-WS 2.0 October 7, 2005

8.7. Standard Binding Declarations

11 </jaxws:enableAsyncMapping> 1

12 2

13 <jaxws:enableMIMEContent>? 3

14 xs:boolean 4

15 </jaxws:enableMIMEContent> 5

Semantics 6

package/@name Name of the Java package for the targetNamespace of the parent wsdl:definitions 7

element. 8

package/javadoc/text() Package-level javadoc string. 9

enableWrapperStyle If present with a boolean value of true (resp. false), wrapper style is enabled 10

(resp. disabled) by default for all operations. 11

enableAsyncMapping If present with a boolean value of true (resp. false), asynchronous mappings are 12

enabled (resp. disbled) by default for all operations. 13

enableMIMEContent If present with a boolean value of true (resp. false), use of the mime:content 14

information is enabled (resp. disabled) by default for all operations. 15

The enableWrapperStyle declaration only affects operations that qualify for the wrapper style per the 16

JAX-WS specification. By default, this declaration is true, i.e. wrapper style processing is turned on 17

by default for all qualified operations, and must be disabled by using a jaxws:enableWrapperStyle 18

declaration with a value of false in the appropriate scope. 19

8.7.2 PortType 20

The following binding declarations MAY appear in the context of a WSDL portType, either as an extension 21

to the wsdl:portType element or with a node attribute pointing at one. 22

1 <jaxws:class name="xs:string">? 23

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 24

3 </jaxws:class> 25

4 26

5 <jaxws:enableWrapperStyle>? 27

6 xs:boolean 28

7 </jaxws:enableWrapperStyle> 29

8 30

9 <jaxws:enableAsyncMapping>xs:boolean</jaxws:enableAsyncMapping>? 31

Semantics 32

class/@name Fully qualified name of the generated service endpoint interface corresponding to the parent 33

wsdl:portType. 34

class/javadoc/text() Class-level javadoc string. 35

enableWrapperStyle If present with a boolean value of true (resp. false), wrapper style is enabled 36

(resp. disabled) by default for all operations in this wsdl:portType. 37

October 7, 2005 JAX-WS 2.0 87

Chapter 8. Customizations

enableAsyncMapping If present with a boolean value of true (resp. false), asynchronous mappings are 1

enabled (resp. disabled) by default for all operations in this wsdl:portType. 2

8.7.3 PortType Operation 3

The following binding declarations MAY appear in the context of a WSDL portType operation, either as an 4

extension to the wsdl:portType/wsdl:operation element or with a node attribute pointing at one. 5

1 <jaxws:method name="xs:string">? 6

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 7

3 </jaxws:method> 8

4 9

5 <jaxws:enableWrapperStyle>? 10

6 xs:boolean 11

7 </jaxws:enableWrapperStyle> 12

8 13

9 <jaxws:enableAsyncMapping>? 14

10 xs:boolean 15

11 </jaxws:enableAsyncMapping> 16

12 17

13 <jaxws:parameter part="xs:string" 18

14 childElementName="xs:QName"? 19

15 name="xs:string"/>* 20

Semantics 21

method/@name Name of the Java method corresponding to this wsdl:operation. 22

method/javadoc/text() Method-level javadoc string. 23

enableWrapperStyle If present with a boolean value of true (resp. false), wrapper style is enabled 24

(resp. disabled) by default for this wsdl:operation. 25

enableAsyncMapping If present with a boolean value of true, asynchronous mappings are enabled by 26

default for this wsdl:operation. 27

parameter/@part A XPath expression identifying a wsdl:part child of a wsdl:message. 28

parameter/@childElementName The qualified name of a child element information item of the global 29

type definition or global element declaration referred to by the wsdl:part identified by the previous 30

attribute. 31

parameter/@name The name of the Java formal parameter corresponding to the parameter identified by 32

the previous two attributes. 33

It is an error if two parameters that do not correspond to the same Java formal parameter are assigned the 34

same name, or if a part/element that corresponds to the Java method return value is assigned a name. 35

88 JAX-WS 2.0 October 7, 2005

8.7. Standard Binding Declarations

8.7.4 PortType Fault Message 1

The following binding declarations MAY appear in the context of a WSDL portType operation’s fault mes- 2

sage, either as an extension to the wsdl:portType/wsdl:operation/wsdl:fault element or with a 3

node attribute pointing at one. 4

1 <jaxws:class name="xs:string">? 5

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 6

3 </jaxws:class> 7

Semantics 8

class/@name The name of the generated exception class for this fault. 9

class/javadoc/text() Class-level javadoc string. 10

It is an error if faults that refer to the same wsdl:message element are mapped to exception classes with 11

different names. 12

8.7.5 Binding 13

The following binding declarations MAY appear in the context of a WSDL binding, either as an extension 14

to the wsdl:binding element or with a node attribute pointing at one. 15

1 <jaxws:enableMIMEContent>? 16

2 xs:boolean 17

3 </jaxws:enableMIMEContent> 18

Semantics 19

enableMIMEContent If present with a boolean value of true (resp. false), use of the mime:content 20

information is enabled (resp. disabled) for all operations in this binding. 21

8.7.6 Binding Operation 22

The following binding declarations MAY appear in the context of a WSDL binding operation, either as an 23

extension to the wsdl:binding/wsdl:operation element or with a node attribute pointing at one. 24

1 <jaxws:enableMIMEContent>? 25

2 xs:boolean 26

3 </jaxws:enableMIMEContent> 27

4 28

5 <jaxws:parameter part="xs:string" 29

6 childElementName="xs:QName"? 30

7 name="xs:string"/>* 31

8 32

9 <jaxws:exception part="xs:string">* 33

10 <jaxws:class name="xs:string">? 34

October 7, 2005 JAX-WS 2.0 89

Chapter 8. Customizations

11 <jaxws:javadoc>xs:string</jaxws:javadoc>? 1

12 </jaxws:class> 2

13 </jaxws:exception> 3

Semantics 4

enableMIMEContent If present with a boolean value of true (resp. false), use of the mime:content 5

information is enabled (resp. disabled) for this operation. 6

parameter/@part A XPath expression identifying a wsdl:part child of a wsdl:message. 7

parameter/@childElementName The qualified name of a child element information item of the global 8

type definition or global element declaration referred to by the wsdl:part identified by the previous 9

attribute. 10

parameter/@name The name of the Java formal parameter corresponding to the parameter identified by the 11

previous two attributes. The parameter in question MUST correspond to a soap:header extension. 12

8.7.7 Service 13

The following binding declarations MAY appear in the context of a WSDL service, either as an extension 14

to the wsdl:service element or with a node attribute pointing at one. 15

1 <jaxws:class name="xs:string">? 16

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 17

3 </jaxws:class> 18

Semantics 19

class/@name The name of the generated service interface. 20

class/javadoc/text() Class-level javadoc string. 21

8.7.8 Port 22

The following binding declarations MAY appear in the context of a WSDL service, either as an extension 23

to the wsdl:port element or with a node attribute pointing at one. 24

1 <jaxws:method name="xs:string">? 25

2 <jaxws:javadoc>xs:string</jaxws:javadoc>? 26

3 </jaxws:method> 27

4 28

5 <jaxws:provider/>? 29

Semantics 30

method/@name The name of the generated port getter method. 31

method/javadoc/text() Method-level javadoc string. 32

90 JAX-WS 2.0 October 7, 2005

8.7. Standard Binding Declarations

provider This binding declaration specifies that the annotated port will be used with the javax.xml.ws- 1

.Provider interface. 2

A port annotated with a jaxws:provider binding declaration is treated specially. No service endpoint in- 3

terface will be generated for it, since the application code will use in its lieu the javax.xml.ws.Provider 4

interface. Additionally, the port getter method on the generated service interface will be omitted. 5

Editors Note 8.2 Omitting a getXYZPort() method is necessary for consistency, because if it existed it would 6

specify the non-existing SEI type as its return type. 7

October 7, 2005 JAX-WS 2.0 91

Chapter 8. Customizations

92 JAX-WS 2.0 October 7, 2005

Chapter 9 1

Handler Framework 2

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that 3

may be used to extend the capabilities of a JAX-WS runtime system. This chapter describes the handler 4

framework in detail. 5

♦ Conformance (Handler framework support): An implementation MUST support the handler framework. 6

9.1 Architecture 7

The handler framework is implemented by a JAX-WS protocol binding in both client and server side run- 8

times. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol bind- 9

ings to bind their abstract functionality to specific protocols (see figure9.1). Protocol bindings can extend 10

the handler framework to provide protocol specific functionality; chapter 10 describes the JAX-WS SOAP 11

binding that extends the handler framework with SOAP specific functionality. 12

Figure 9.1: Handler architecture

Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers 13

within a handler chain are invoked each time a message is sent or received. Inbound messages are processed 14

by handlers prior to binding provider processing. Outbound messages are processed by handlers after any 15

binding provider processing. 16

Handlers are invoked with a message context that provides methods to access and modify inbound and 17

outbound messages and to manage a set of properties. Message context properties may be used to facilitate 18

October 7, 2005 JAX-WS 2.0 93

Chapter 9. Handler Framework

communication between individual handlers and between handlers and client and service implementations. 1

Different types of handlers are invoked with different types of message context. 2

9.1.1 Types of Handler 3

JAX-WS 2.0 defines two types of handler: 4

Logical Handlers that only operate on message context properties and message payloads. Logical handlers 5

are protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers 6

are handlers that implement javax.xml.ws.handler.LogicalHandler. 7

Protocol Handlers that operate on message context properties and protocol specific messages. Protocol 8

handlers are specific to a particular protocol and may access and change protocol specific aspects of a 9

message. Protocol handlers are handlers that implement any interface derived from javax.xml.ws- 10

.handler.Handler except javax.xml.ws.handler.LogicalHandler. 11

Figure 9.2 shows the class hierarchy for handlers. 12

Figure 9.2: Handler class hierarchy

Handlers for protocols other than SOAP are expected to implement a protocol-specific interface that extends 13

javax.xml.ws.handler.Handler. 14

9.1.2 Binding Responsibilities 15

The following subsections describe the responsibilities of the protocol binding when hosting a handler chain. 16

9.1.2.1 Handler and Message Context Management 17

The binding is responsible for instantiation, invocation, and destruction of handlers according to the rules 18

specified in section 9.3. The binding is responsible for instantiation and management of message contexts 19

according to the rules specified in section9.4 20

♦ Conformance (Logical handler support): All binding implementations MUST support logical handlers 21

(see section 9.1.1) being deployed in their handler chains. 22

♦ Conformance (Other handler support): Binding implementations MAY support other handler types (see 23

section 9.1.1) being deployed in their handler chains. 24

94 JAX-WS 2.0 October 7, 2005

9.2. Configuration

♦ Conformance (Incompatible handlers): An implementation MUST throw WebServiceExceptionwhen, 1

at the time a binding provider is created, the handler chain returned by the configured HandlerResolver 2

contains an incompatible handler. 3

♦ Conformance (Incompatible handlers): Implementations MUST throw a WebServiceExceptionwhen 4

attempting to configure an incompatible handler using the Binding.setHandlerChainmethod. 5

9.1.2.2 Message Dispatch 6

The binding is responsible for dispatch of both outbound and inbound messages after handler processing. 7

Outbound messages are dispatched using whatever means the protocol binding uses for communication. 8

Inbound messages are dispatched to the binding provider. JAX-WS defines no standard interface between 9

binding providers and their binding. 10

9.1.2.3 Exception Handling 11

The binding is responsible for catching runtime exceptions thrown by handlers and respecting any resulting 12

message direction and message type change as described in section 9.3.2. 13

Outbound exceptions1 are converted to protocol fault messages and dispatched using whatever means the 14

protocol binding uses for communication. Specific protocol bindings describe the mechanism for their 15

particular protocol, section 10.2.2 describes the mechanism for the SOAP 1.1 binding. Inbound exceptions 16

are passed to the binding provider. 17

9.2 Configuration 18

Handler chains may be configured either programmatically or using deployment metadata. The following 19

subsections describe each form of configuration. 20

9.2.1 Programmatic Configuration 21

JAX-WS only defines APIs for programmatic configuration of client side handler chains – server side han- 22

dler chains are expected to be configured using deployment metadata. 23

9.2.1.1 javax.xml.ws.handler.HandlerResolver 24

A Service instance maintains a handler resolver that is used when creating proxies or Dispatch in- 25

stances, known collectively as binding providers. During the creation of a binding provider, the handler 26

resolver currently registered with a service is used to create a handler chain, which in turn is then used to 27

configure the binding provider. A Service instance provides access to a handlerResolver property, 28

via the Service.getHandlerResolver and Service.setHandlerResolvermethods. A Handler- 29

Resolver implements a single method, getHandlerChain, which has one argument, a PortInfo object. 30

The JAX-WS runtime uses the PortInfo argument to pass the HandlerResolver of the service, port and 31

1Outbound exceptions are exceptions thrown by a handler that result in the message direction being set to outbound according
to the rules in section 9.3.2.

October 7, 2005 JAX-WS 2.0 95

Chapter 9. Handler Framework

binding in use. The HandlerResolvermay use any of this information to decide which handlers to use in 1

constructing the requested handler chain. 2

When a Service instance is used to create an instance of a binding provider then the created instance is 3

configured with the handler chain created by the HandlerResolver instance registered on the Service 4

instance at that point in time. 5

♦ Conformance (Handler chain snapshot): Changing the handler resolver configured for a Service in- 6

stance MUST NOT affect the handlers on previously created proxies, or Dispatch instances. 7

9.2.1.2 Handler Ordering 8

The handler chain for a binding is constructed by starting with the handler chain as returned by the Handler- 9

Resolver for the service in use and sorting its elements so that all logical handlers precede all protocol 10

handlers. In performing this operation, the order of handlers of any given type (logical or protocol) in the 11

original chain is maintained. Figure 9.3 illustrates this. 12

Figure 9.3: Handler ordering, Ln and Pn represent logical and protocol handlers respectively.

Section 9.3.2 describes how the handler order relates to the order of handler execution for inbound and 13

outbound messages. 14

9.2.1.3 javax.jws.HandlerChain annotation 15

The javax.jws.HandlerChain annotation defined by JSR-181 [13] may be used to specify in a declara- 16

tive way the handler chain to use for a service. 17

When used in conunction with JAX-WS, the name element of the HandlerChain annotation, if present, 18

MUST have the default value (the empty string). 19

In addition to appearing on a endpoint implementation class or a SEI, as specified by JSR-181, the handlerChain20

annotation MAY appear on a generated service class. In this case, it affects all the proxies and Dispatch 21

instances created using any of the ports on the service. 22

96 JAX-WS 2.0 October 7, 2005

9.3. Processing Model

♦ Conformance (HandlerChain annotation): An implementation MUST support using the HandlerChain 1

annotation on an endpoint implementation class, including a provider, on an endpoint interface and on a 2

generated service class. 3

On the client, the HandlerChain annotation can be seen as a shorthand way of defining and installing a 4

handler resolver (see 9.2.1.1). 5

♦ Conformance (Handler resolver for a HandlerChain annotation): For a generated service class (see 2.7) 6

which is annotated with a HandlerChain annotation, the default handler resolver MUST return handler 7

chains consistent with the contents of the handler chain descriptor referenced by the HandlerChain anno- 8

tation. 9

Figure 9.4 shows an endpoint implementation class annotated with a HandlerChain annotation. 10

1 @WebService
2 @HandlerChain(file="sample_chain.xml")
3 public class MyService {
4 ...
5 }

Figure 9.4: Use of the HandlerChain annotation

9.2.1.4 javax.xml.ws.Binding 11

The Binding interface is an abstraction of a JAX-WS protocol binding (see section 6.1 for more details). As 12

described above, the handler chain initially configured on an instance is a snapshot of the applicable handlers 13

configured on the Service instance at the time of creation. Binding provides methods to manipulate the 14

initially configured handler chain for a specific instance. 15

♦ Conformance (Binding handler manipulation): Changing the handler chain on a Binding instance MUST 16

NOT cause any change to the handler chains configured on the Service instance used to create the 17

Binding instance. 18

9.2.2 Deployment Model 19

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14] 20

“Implementing Enterprise Web Services”. 21

9.3 Processing Model 22

This section describes the processing model for handlers within the handler framework. 23

9.3.1 Handler Lifecycle 24

In some cases, a JAX-WS implementation must instantiate handler classes directly, e.g. in a container 25

environment or when using the HandlerChain annotation. When doing so, an implementation must invoke 26

the handler lifecycle methods as prescribed in this section. 27

October 7, 2005 JAX-WS 2.0 97

Chapter 9. Handler Framework

If an application does its own instantiation of handlers, e.g. using a handler resolver, then the burden of 1

calling any handler lifecycle methods falls on the application itself. This should not be seen as inconsistent, 2

because handlers are logically part of the application, so their contract will be known to the application 3

developer. 4

The JAX-WS runtime system manages the lifecycle of handlers by invoking any methods of the handler 5

class annotated as lifecycle methods before and after dispatching requests to the handler itself. 6

The JAX-WS runtime system is responsible for loading the handler class and instantiating the corresponding 7

handler object according to the instruction contained in the applicable handler configuration file or deploy- 8

ment descriptor. 9

The lifecycle of a handler instance begins when the JAX-WS runtime system creates a new instance of the 10

handler class. 11

The runtime MUST then carry out any injections requested by the handler, typically via the javax- 12

.annotation.Resource annotation. After all the injections have been carried out, including in the case 13

where no injections were requested, the runtime MUST invoke the method carrying a javax.annotation- 14

.PostConstruct annotation, if present. Such a method MUST satisfy the requirements in JSR-250 [31] 15

for lifecycle methods (i.e. it has a void return type and takes zero arguments). The handler instance is then 16

ready for use. 17

♦ Conformance (Handler initialization): After injection has been completed, an implementation MUST 18

call the lifecycle method annotated with PostConstruct, if present, prior to invoking any other method 19

on a handler instance. 20

Once the handler instance is created and initialized it is placed into the Ready state. While in the Ready 21

state the JAX-WS runtime system may invoke other handler methods as required. 22

The lifecycle of a handler instance ends when the JAX-WS runtime system stops using the handler for 23

processing inbound or outbound messages. After taking the handler offline, a JAX-WS implementation 24

SHOULD invoke the lifecycle method which carries a javax.annotation.PreDestroy annotation, if 25

present, so as to permit the handler to clean up its resources. Such a method MUST satisfy the requirements 26

in JSR-250 [31] for lifecycle methods 27

An implementation can only release handlers after the instance they are attached to, be it a proxy, a 28

Dispatch object, an endpoint or some other component, e.g. a EJB object, is released. Consequently, 29

in non-container environments, it is impossible to call the PreDestroy method in a reliable way, and han- 30

dler instance cleanup must be left to finalizer methods and regular garbage collection. 31

♦ Conformance (Handler destruction): In a managed environment, prior to releasing a handler instance, an 32

implementation MUST call the lifecycle method annotated with PreDestroy method, if present, on any 33

Handler instances which it instantiated. 34

The handler instance must release its resources and perform cleanup in the implementation of the PreDestroy 35

lifecycle method. After invocation of the PreDestroy method(s), the handler instance will be made avail- 36

able for garbage collection. 37

9.3.2 Handler Execution 38

As described in section 9.2.1.2, a set of handlers is managed by a binding as an ordered list called a handler 39

chain. Unless modified by the actions of a handler (see below) normal processing involves each handler in 40

98 JAX-WS 2.0 October 7, 2005

9.3. Processing Model

the chain being invoked in turn. Each handler is passed a message context (see section 9.4) whose contents 1

may be manipulated by the handler. 2

For outbound messages handler processing starts with the first handler in the chain and proceeds in the same 3

order as the handler chain. For inbound messages the order of processing is reversed: processing starts with 4

the last handler in the chain and proceeds in the reverse order of the handler chain. E.g., consider a handler 5

chain that consists of six handlers H1 . . . H6 in that order: for outbound messages handler H1 would be 6

invoked first followed by H2, H3, . . . , and finally handler H6; for inbound messages H6 would be invoked 7

first followed by H5, H4, . . . , and finally H1. 8

In the following discussion the terms next handler and previous handler are used. These terms are relative 9

to the direction of the message, table 9.1 summarizes their meaning. 10

Message Direction Term Handler
Inbound Next Hi−1

Previous Hi+1

Outbound Next Hi+1

Previous Hi−1

Table 9.1: Next and previous handlers for handler Hi.

Handlers may change the direction of messages and the order of handler processing by throwing an exception 11

or by returning false from handleMessage or handleFault. The following subsections describe each 12

handler method and the changes to handler chain processing they may cause. 13

9.3.2.1 handleMessage 14

This method is called for normal message processing. Following completion of its work the handle- 15

Message implementation can do one of the following: 16

Return true This indicates that normal message processing should continue. The runtime invokes handle- 17

Message on the next handler or dispatches the message (see section 9.1.2.2) if there are no further 18

handlers. 19

Return false This indicates that normal message processing should cease. Subsequent actions depend 20

on whether the message exchange pattern (MEP) in use requires a response to the message currently 21

being processed2 or not: 22

Response The message direction is reversed, the runtime invokes handleMessage on the next3
23

handler or dispatches the message (see section 9.1.2.2) if there are no further handlers. 24

No response Normal message processing stops, close is called on each previously invoked handler 25

in the chain, the message is dispatched (see section 9.1.2.2). 26

Throw ProtocolException or a subclass This indicates that normal message processing should cease. 27

Subsequent actions depend on whether the MEP in use requires a response to the message currently 28

being processed or not: 29

2For a request-response MEP, if the message direction is reversed during processing of a request message then the message
becomes a response message. Subsequent handler processing takes this change into account.

3Next in this context means the next handler taking into account the message direction reversal

October 7, 2005 JAX-WS 2.0 99

Chapter 9. Handler Framework

Response Normal message processing stops, fault message processing starts. The message direction 1

is reversed, if the message is not already a fault message then it is replaced with a fault message4, 2

and the runtime invokes handleFault on the next4 handler or dispatches the message (see 3

section 9.1.2.2) if there are no further handlers. 4

No response Normal message processing stops, close is called on each previously invoked handler 5

in the chain, the exception is dispatched (see section 9.1.2.3). 6

Throw any other runtime exception This indicates that normal message processing should cease. Subse- 7

quent actions depend on whether the MEP in use includes a response to the message currently being 8

processed or not: 9

Response Normal message processing stops, close is called on each previously invoked handler in 10

the chain, the message direction is reversed, and the exception is dispatched (see section 9.1.2.3). 11

No response Normal message processing stops, close is called on each previously invoked handler 12

in the chain, the exception is dispatched (see section 9.1.2.3). 13

9.3.2.2 handleFault 14

Called for fault message processing, following completion of its work the handleFault implementation 15

can do one of the following: 16

Return true This indicates that fault message processing should continue. The runtime invokes handle- 17

Fault on the next handler or dispatches the fault message (see section 9.1.2.2) if there are no further 18

handlers. 19

Return false This indicates that fault message processing should cease. Fault message processing stops, 20

close is called on each previously invoked handler in the chain, the fault message is dispatched (see 21

section 9.1.2.2). 22

Throw ProtocolException or a subclass This indicates that fault message processing should cease. 23

Fault message processing stops, close is called on each previously invoked handler in the chain, 24

the exception is dispatched (see section 9.1.2.3). 25

Throw any other runtime exception This indicates that fault message processing should cease. Fault mes- 26

sage processing stops, close is called on each previously invoked handler in the chain, the exception 27

is dispatched (see section 9.1.2.3). 28

9.3.2.3 close 29

A handler’s close method is called at the conclusion of a message exchange pattern (MEP). It is called 30

just prior to the binding dispatching the final message, fault or exception of the MEP and may be used to 31

clean up per-MEP resources allocated by a handler. The close method is only called on handlers that were 32

previously invoked via either handleMessage or handleFault 33

♦ Conformance (Invoking close): At the conclusion of an MEP, an implementation MUST call the close 34

method of each handler that was previously invoked during that MEP via either handleMessage or handle- 35

Fault. 36

♦ Conformance (Order of close invocations): Handlers are invoked in the reverse order that they appear 37

in the handler chain. 38

4The handler may have already converted the message to a fault message, in which case no change is made.

100 JAX-WS 2.0 October 7, 2005

9.4. Message Context

9.3.3 Handler Implementation Considerations 1

Handler instances may be pooled by a JAX-WS runtime system. All instances of a specific handler are 2

considered equivalent by a JAX-WS runtime system and any instance may be chosen to handle a particular 3

message. Different handler instances may be used to handle each message of an MEP. Different threads 4

may be used for each handler in a handler chain, for each message in an MEP or any combination of the 5

two. Handlers should not rely on thread local state to share information. Handlers should instead use the 6

message context, see section 9.4. 7

9.4 Message Context 8

Handlers are invoked with a message context that provides methods to access and modify inbound and 9

outbound messages and to manage a set of properties. 10

Different types of handler are invoked with different types of message context. Sections 9.4.1 and 9.4.2 11

describe MessageContext and LogicalMessageContext respectively. In addition, JAX-WS bindings 12

may define a message context subtype for their particular protocol binding that provides access to protocol 13

specific features. Section10.3 describes the message context subtype for the JAX-WS SOAP binding. 14

9.4.1 javax.xml.ws.handler.MessageContext 15

MessageContext is the super interface for all JAX-WS message contexts. It extends Map<String,- 16

Object> with additional methods and constants to manage a set of properties that enable handlers in a 17

handler chain to share processing related state. For example, a handler may use the put method to insert 18

a property in the message context that one or more other handlers in the handler chain may subsequently 19

obtain via the get method. 20

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers for 21

an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a property in the message 22

context, that property will also be available to any protocol handlers in the chain during the execution of an 23

MEP instance. APPLICATION scoped properties are also made available to client applications (see section 24

4.2.1) and service endpoint implementations. The defaultscope for a property is HANDLER. 25

♦ Conformance (Message context property scope): Properties in a message context MUST be shared across 26

all handler invocations for a particular instance of an MEP on any particular endpoint. 27

9.4.1.1 Standard Message Context Properties 28

Table 9.2 lists the set of standard MessageContext properties. 29

The standard properties form a set of metadata that describes the context of a particular message. The 30

property values may be manipulated by client applications, service endpoint implementations, the JAX-WS 31

runtime or handlers deployed in a protocol binding. A JAX-WS runtime is expected to implement support 32

for those properties shown as mandatory and may implement support for those properties shown as optional. 33

Table 9.3 lists the standard MessageContext properties specific to the HTTP protocol. These properties 34

are only required to be present when using an HTTP-based binding. 35

Table 9.4 lists those properties that are specific to endpoints running inside a servlet container. These prop- 36

erties are only required to be present in the message context of an endpoint that is deployed inside a servlet 37

October 7, 2005 JAX-WS 2.0 101

Chapter 9. Handler Framework

Table 9.2: Standard MessageContext properties.
Name Type Mandatory Description

javax.xml.ws.handler.message

.outbound Boolean Y Specifies the message direction: true
for outbound messages, false for in-
bound messages.

javax.xml.ws.binding

.attachments Map<String,DataHandler> Y A map of attachments to a mes-
sage. The key is a unique identifier
for the attachment. The value is a
DataHandler for the attachment data.
Bindings describe how to carry attach-
ments with messages.

javax.xml.ws.wsdl

.description URI N A resolvable URI that may be used to
obtain access to the WSDL for the end-
point.

.service QName N The name of the service being invoked
in the WSDL.

.port QName N The name of the port over which the
current message was received in the
WSDL.

.interface QName N The name of the interface (WSDL 2.0)
or port type (WSDL 1.1) to which the
current message belongs.

.operation QName N The name of the WSDL operation to
which the current message belongs.
For WSDL 2.0 this is the operation
component designator. For WSDL 1.1
the namespace is the target namespace
of the WSDL definitions element.

container and uses an HTTP-based binding. 1

9.4.2 javax.xml.ws.handler.LogicalMessageContext 2

Logical handlers (see section 9.1.1) are passed a message context of type LogicalMessageContextwhen 3

invoked. LogicalMessageContext extends MessageContext with methods to obtain and modify the 4

message payload, it does not provide access to the protocol specific aspects of a message. A protocol binding 5

defines what component of a message are available via a logical message context. E.g., the SOAP binding, 6

see section 10.1.1.2, defines that a logical handler deployed in a SOAP binding can access the contents of 7

the SOAP body but not the SOAP headers whereas the XML/HTTP binding described in chapter 11 defines 8

that a logical handler can access the entire XML payload of a message. 9

The getSource()method of LogicalMessageContextMUST return null whenever the message doesn’t 10

contain an actual payload. A case in which this might happen is when, on the server, the endpoint imple- 11

mentation has thrown an exception and the protocol in use does not define a notion of payload for faults 12

102 JAX-WS 2.0 October 7, 2005

9.4. Message Context

Table 9.3: Standard HTTP MessageContext properties.
Name Type Mandatory Description

javax.xml.ws.http.request

.headers Map<String,List<String>> Y A map of the HTTP headers for the re-
quest message. The key is the header
name. The value is a list of values for
that header.

.method String Y The HTTP method for the request mes-
sage.

javax.xml.ws.http.response

.headers Map<String,List<String>> Y A map of the HTTP headers for the re-
sponse message. The key is the header
name. The value is a list of values for
that header.

.code Integer Y The HTTP response status code.

Table 9.4: Standard Servlet Container-Specific MessageContext properties.
Name Type Mandatory Description

javax.xml.ws.servlet

.context javax.servlet.ServletContext Y The ServletContext ob-
ject belonging to the web
application that contains the
endpoint.

.request javax.servlet.http.HttpServletRequest Y The HttpServletRequest
object associated with the re-
quest currently being served.

.response javax.servlet.http.HttpServletResponse Y The
HttpServletResponse

object associated with the
request currently being
served.

.session javax.servlet.http.HttpSession Y The HttpSession associ-
ated with the request cur-
rently being served.

October 7, 2005 JAX-WS 2.0 103

Chapter 9. Handler Framework

(e.g. the HTTP binding defined in chapter11). 1

9.4.3 Relationship to Application Contexts 2

Client side binding providers have methods to access contexts for outbound and inbound messages. As 3

described in section 4.2.1 these contexts are used to initialize a message context at the start of a message 4

exchange and to obtain application scoped properties from a message context at the end of a message ex- 5

change. 6

As described in chapter 5, service endpoint implementations may require injection of a context from which 7

they can access the message context for each inbound message and manipulate the corresponding application- 8

scoped properties. 9

Handlers may manipulate the values and scope of properties within the message context as desired. E.g., 10

a handler in a client-side SOAP binding might introduce a header into a SOAP request message to carry 11

metadata from a property that originated in a BindingProvider request context; a handler in a server-side 12

SOAP binding might add application scoped properties to the message context from the contents of a header 13

in a request SOAP message that is then made available in the context available (via injection) to a service 14

endpoint implementation. 15

104 JAX-WS 2.0 October 7, 2005

Chapter 10 1

SOAP Binding 2

This chapter describes the JAX-WS SOAP binding and its extensions to the handler framework (described 3

in chapter 9) for SOAP message processing. 4

10.1 Configuration 5

A SOAP binding instance requires SOAP specific configuration in addition to that described in section9.2. 6

The additional information can be configured either programmatically or using deployment metadata. The 7

following subsections describe each form of configuration. 8

10.1.1 Programmatic Configuration 9

JAX-WS defines APIs for programmatic configuration of client-side SOAP bindings. Server side bindings 10

can be configured programmatically when using the Endpoint API (see5.2), but are otherwise expected to 11

be configured using annotations or deployment metadata. 12

10.1.1.1 SOAP Roles 13

SOAP 1.1[2] and SOAP 1.2[3, 4] use different terminology for the same concept: a SOAP 1.1 actor is 14

equivalent to a SOAP 1.2 role. This specification uses the SOAP 1.2 terminology. 15

An ultimate SOAP receiver always plays the following roles: 16

Next In SOAP 1.1, the next role is identified by the URI http://schemas.xmlsoap.org/soap/actor/next. In 17

SOAP 1.2, the next role is identified by the URI http://www.w3.org/2003/05/soap-envelope/role/next. 18

Ultimate receiver In SOAP 1.1 the ultimate receiver role is identified by omission of the actor attribute 19

from a SOAP header. In SOAP 1.2 the ultimate receiver role is identified by the URI http://www.w3- 20

.org/2003/05/soap-envelope/role/ultimateReceiver or by omission of the role attribute from a SOAP 21

header. 22

♦ Conformance (SOAP required roles): An implementation of the SOAP binding MUST act in the follow- 23

ing roles: next and ultimate receiver. 24

October 7, 2005 JAX-WS 2.0 105

Chapter 10. SOAP Binding

A SOAP 1.2 endpoint never plays the following role: 1

None In SOAP 1.2, the none role is identified by the URI http://www.w3.org/2003/05/soap-envelope/role- 2

/none. 3

♦ Conformance (SOAP required roles): An implementation of the SOAP binding MUST NOT act in the 4

none role. 5

The javax.xml.ws.SOAPBinding interface is an abstraction of the JAX-WS SOAP binding. It extends 6

javax.xml.ws.Binding with methods to configure additional SOAP roles played by the endpoint. 7

♦ Conformance (Default role visibility): An implementation MUST include the required next and ultimate 8

receiver roles in the Set returned from SOAPBinding.getRoles. 9

♦ Conformance (Default role persistence): An implementation MUST add the required next and ultimate 10

receiver roles to the roles configured with SOAPBinding.setRoles. 11

♦ Conformance (None role error): An implementation MUST throw WebServiceException if a client 12

attempts to configure the binding to play the none role via SOAPBinding.setRoles. 13

10.1.1.2 SOAP Handlers 14

The handler chain for a SOAP binding is configured as described in section 9.2.1. The handler chain may 15

contain handlers of the following types: 16

Logical Logical handlers are handlers that implement javax.xml.ws.handler.LogicalHandler ei- 17

ther directly or indirectly. Logical handlers have access to the content of the SOAP body via the 18

logical message context. 19

SOAP SOAP handlers are handlers that implement javax.xml.ws.handler.soap.SOAPHandler. 20

♦ Conformance (Incompatible handlers): An implementation MUST throw WebServiceExceptionwhen, 21

at the time a binding provider is created, the handler chain returned by the configured HandlerResolver 22

contains an incompatible handler. 23

♦ Conformance (Incompatible handlers): Implementations MUST throw a WebServiceExceptionwhen 24

attempting to configure an incompatible handler using Binding.setHandlerChain. 25

♦ Conformance (Logical handler access): An implementation MUST allow access to the contents of the 26

SOAP body via a logical message context. 27

10.1.1.3 SOAP Headers 28

The SOAP headers understood by a handler are obtained using the getHeadersmethod of SOAPHandler. 29

10.1.2 Deployment Model 30

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14] 31

“Implementing Enterprise Web Services”. 32

106 JAX-WS 2.0 October 7, 2005

10.2. Processing Model

10.2 Processing Model 1

The SOAP binding implements the general handler framework processing model described in section 9.3 2

but extends it to include SOAP specific processing as described in the following subsections. 3

10.2.1 SOAP mustUnderstand Processing 4

The SOAP protocol binding performs the following additional processing on inbound SOAP messages prior 5

to the start of normal handler invocation processing (see section 9.3.2). Refer to the SOAP specification[2, 3, 6

4] for a normative description of the SOAP processing model. This section is not intended to supercede any 7

requirement stated within the SOAP specification, but rather to outline how the configuration information 8

described above is combined to satisfy the SOAP requirements: 9

1. Obtain the set of SOAP roles for the current binding instance. This is returned by SOAPBinding- 10

.getRoles. 11

2. Obtain the set of Handlers deployed on the current binding instance. This is obtained via Binding- 12

.getHandlerChain. 13

3. Identify the set of header qualified names (QNames) that the binding instance understands. This is the 14

set of all header QNames that satisfy at least one of the following conditions: 15

(a) that are mapped to method parameters in the service endpoint interface; 16

(b) are members of SOAPHandler.getHeaders() for each SOAPHandler in the set obtained in 17

step 2; 18

(c) are directly supported by the binding instance. 19

4. Identify the set of must understand headers in the inbound message that are targeted at this node. This 20

is the set of all headers with a mustUnderstand attribute whose value is 1 or true and an actor 21

or role attribute whose value is in the set obtained in step 1. 22

5. For each header in the set obtained in step 4, the header is understood if its QName is in the set 23

identified in step3. 24

6. If every header in the set obtained in step 4 is understood, then the node understands how to process 25

the message. Otherwise the node does not understand how to process the message. 26

7. If the node does not understand how to process the message, then neither handlers nor the endpoint 27

are invoked and instead the binding generates a SOAP must understand exception. Subsequent actions 28

depend on whether the message exchange pattern (MEP) in use requires a response to the message 29

currently being processed or not: 30

Response The message direction is reversed and the binding dispatches the SOAP must understand 31

exception (see section 10.2.2). 32

No response The binding dispatches the SOAP must understand exception (see section 10.2.2). 33

10.2.2 Exception Handling 34

The following subsections describe SOAP specific requirements for handling exceptions thrown by handlers 35

and service endpoint implementations. 36

October 7, 2005 JAX-WS 2.0 107

Chapter 10. SOAP Binding

10.2.2.1 Handler Exceptions 1

A binding is responsible for catching runtime exceptions thrown by handlers and following the processing 2

model described in section 9.3.2. A binding is responsible for converting the exception to a fault message 3

subject to further handler processing if the following criteria are met: 4

1. A handler throws a ProtocolException from handleMessage 5

2. The MEP in use includes a response to the message being processed 6

3. The current message is not already a fault message (the handler might have undertaken the work prior 7

to throwing the exception). 8

If the above criteria are met then the exception is converted to a SOAP fault message as follows: 9

• If the exception is an instance of SOAPFaultException then the fields of the contained SAAJ 10

SOAPFault are serialized to a new SOAP fault message, see section 10.2.2.3. The current message 11

is replaced by the new SOAP fault message. 12

• If the exception is of any other type then a new SOAP fault message is created to reflect a server class 13

of error for SOAP 1.1[2] or a receiver class of error for SOAP 1.2[3]. 14

• Handler processing is resumed as described in section 9.3.2. 15

If the criteria for converting the exception to a fault message subject to further handler processing are not 16

met then the exception is handled as follows depending on the current message direction: 17

Outbound A new SOAP fault message is created to reflect a server class of error for SOAP 1.1[2] or a 18

receiver class of error for SOAP 1.2[3] and the message is dispatched. 19

Inbound The exception is passed to the binding provider. 20

10.2.2.2 Service Endpoint Exceptions 21

Service endpoints can throw service specific exceptions or runtime exceptions. In both cases they can 22

provide protocol specific information using the cause mechanism, see section 6.4.1. 23

A server side implementation of the SOAP binding is responsible for catching exceptions thrown by a service 24

endpoint implementation and, if the message exchange pattern in use includes a response to the message that 25

caused the exception, converting such exceptions to SOAP fault messages and invoking the handleFault 26

method on handlers for the fault message as described in section 9.3.2. 27

Section 10.2.2.3 describes the rules for mapping an exception to a SOAP fault. 28

10.2.2.3 Mapping Exceptions to SOAP Faults 29

When mapping an exception to a SOAP fault, the fields of the fault message are populated according to the 30

following rules of precedence: 31

• faultcode (Subcode in SOAP 1.2, Code set to env:Receiver) 32

108 JAX-WS 2.0 October 7, 2005

10.3. SOAP Message Context

1. SOAPFaultException.getFault().getFaultCodeAsQName()1
1

2. env:Server (Subcode omitted for SOAP 1.2). 2

• faultstring (Reason/Text 3

1. SOAPFaultException.getFault().getFaultString()1
4

2. Exception.getMessage() 5

3. Exception.toString() 6

• faultactor (Role in SOAP 1.2) 7

1. SOAPFaultException.getFault().getFaultActor()1
8

2. Empty 9

• detail (Detail in SOAP 1.2) 10

1. Serialized service specific exception (see WrapperException.getFaultInfo() in section 2.5) 11

2. SOAPFaultException.getFault().getDetail()1
12

10.3 SOAP Message Context 13

SOAP handlers are passed a SOAPMessageContext when invoked. SOAPMessageContext extends 14

MessageContext with methods to obtain and modify the SOAP message payload. 15

10.4 SOAP Transport and Transfer Bindings 16

SOAP[2, 4] can be bound to multiple transport or transfer protocols. This section describes requirements 17

pertaining to the supported protocols for use with SOAP. 18

10.4.1 HTTP 19

♦ Conformance (SOAP 1.1 HTTP Binding Support): An implementation MUST support the HTTP bind- 20

ing of SOAP 1.1[2] and SOAP With Attachments[33] as clarified by the WS-I Basic Profile[17], WS-I 21

Simple SOAP Binding Profile[28] and WS-I Attachment Profile[29]. 22

♦ Conformance (SOAP 1.2 HTTP Binding Support): An implementation MUST support the HTTP bind- 23

ing of SOAP 1.2[4]. 24

10.4.1.1 MTOM 25

♦ Conformance (SOAP MTOM Support): An implementation MUST support MTOM[26]1. 26

1If the exception is a SOAPFaultException or has a cause that is a SOAPFaultException.
1JAX-WS inherits the JAXB support for the SOAP MTOM[26]/XOP[27] mechanism for optimizing transmission of binary data

types, see section 2.4.

October 7, 2005 JAX-WS 2.0 109

Chapter 10. SOAP Binding

SOAPBinding defines a property (in the JavaBeans sense) called MTOMEnabled that can be used to control 1

the use of MTOM. The getMTOMEnabled method is used to query the current value of the property. The 2

setMTOMEnabled method is used to change the value of the property so as to enable or disable the use of 3

MTOM. 4

♦ Conformance (MTOM on Predefined Bindings): Predefined SOAPBinding instances, i.e. those corre- 5

sponding to the IDs javax.xml.ws.soap.SOAPBinding.SOAP11HTTP BINDING and javax.xml.ws- 6

.soap.SOAPBinding.SOAP12HTTP BINDING MUST support enabling/disabling MTOM support using 7

the setMTOMenabled method. 8

♦ Conformance (MTOM on Other SOAP Bindings): Other bindings that extend SOAPBindingMAY NOT 9

support changing the value of the MTOMEnabled property. In this case, if an application attempts to change 10

its value, an implementation MUST throw a WebServiceException. 11

10.4.1.2 One-way Operations 12

HTTP interactions are request-response in nature. When using HTTP as the transfer protocol for a one-way 13

SOAP message, implementations wait for the HTTP response even though there is no SOAP message in the 14

HTTP response entity body. 15

♦ Conformance (One-way operations): When invoking one-way operations, an implementation of the SOAP- 16

/HTTP binding MUST block until the HTTP response is received or an error occurs. 17

Note that completion of the HTTP request simply means that the transmission of the request is complete, 18

not that the request was accepted or processed. 19

10.4.1.3 Security 20

Section 4.2.1.1 defines two standard context properties (javax.xml.ws.security.auth.username and 21

javax.xml.ws.security.auth.password) that may be used to configure authentication information. 22

♦ Conformance (HTTP basic authentication support): An implementation of the SOAP/HTTP binding MUST 23

support HTTP basic authentication. 24

♦ Conformance (Authentication properties): A client side implementation MUST support use of the the 25

standard properties javax.xml.ws.security.auth.usernameand javax.xml.ws.security.auth- 26

.password to configure HTTP basic authentication. 27

10.4.1.4 Session Management 28

Section 4.2.1.1 defines a standard context property (javax.xml.ws.session.maintain) that may be 29

used to control whether a client side runtime will join a session initiated by a service. 30

A SOAP/HTTP binding implementation can use three HTTP mechanisms for session management: 31

Cookies To initiate a session a service includes a cookie in a message sent to a client. The client stores the 32

cookie and returns it in subsequest messages to the service. 33

URL rewriting To initiate a session a service directs a client to a new URL for subsequent interactions. 34

The new URL contains an encoded session identifier. 35

110 JAX-WS 2.0 October 7, 2005

10.4. SOAP Transport and Transfer Bindings

SSL The SSL session ID is used to track a session. 1

R1120 in WS-I Basic Profile 1.1[17] allows a service to use HTTP cookies. However, R1121 recommends 2

that a service should not rely on use of cookies for state management. 3

♦ Conformance (URL rewriting support): An implementation MUST support use of HTTP URL rewriting 4

for state management. 5

♦ Conformance (Cookie support): An implementation SHOULD support use of HTTP cookies for state 6

management. 7

♦ Conformance (SSL session support): An implementation MAY support use of SSL session based state 8

management. 9

October 7, 2005 JAX-WS 2.0 111

Chapter 10. SOAP Binding

112 JAX-WS 2.0 October 7, 2005

Chapter 11 1

HTTP Binding 2

This chapter describes the JAX-WS XML/HTTP binding. The JAX-WS XML/HTTP binding provides 3

“raw” XML over HTTP messaging capabilities as used in many Web services today. 4

11.1 Configuration 5

An XML/HTTP binding instance allows HTTP-specific configuration in addition to that described in section 6

9.2. The additional information can be configured either programmatically or using deployment metadata. 7

The following subsections describe each form of configuration. 8

11.1.1 Programmatic Configuration 9

JAX-WS only defines APIs for programmatic configuration of client side XML/HTTP bindings – server 10

side bindings are expected to be configured using deployment metadata. 11

11.1.1.1 HTTP Handlers 12

The handler chain for an XML/HTTP binding is configured as described in section 9.2.1. The handler chain 13

may contain handlers of the following types: 14

Logical Logical handlers are handlers that implement javax.xml.ws.handler.LogicalHandler ei- 15

ther directly or indirectly. Logical handlers have access to the entire XML message via the logical 16

message context. 17

♦ Conformance (Incompatible handlers): An implementation MUST throw WebServiceExceptionwhen, 18

at the time a binding provider is created, the handler chain returned by the configured HandlerResolver 19

contains an incompatible handler. 20

♦ Conformance (Incompatible handlers): Implementations MUST throw a WebServiceExceptionwhen 21

attempting to configure an incompatible handler using Binding.setHandlerChain. 22

♦ Conformance (Logical handler access): An implementation MUST allow access to the entire XML mes- 23

sage via a logical message context. 24

October 7, 2005 JAX-WS 2.0 113

Chapter 11. HTTP Binding

11.1.2 Deployment Model 1

JAX-WS defines no standard deployment model for handlers. Such a model is provided by JSR 109[14] 2

“Implementing Enterprise Web Services”. 3

11.2 Processing Model 4

The XML/HTTP binding implements the general handler framework processing model described in section 5

9.3. 6

11.2.1 Exception Handling 7

The following subsections describe HTTP specific requirements for handling exceptions thrown by handlers 8

and service endpoint implementations. 9

11.2.1.1 Handler Exceptions 10

A binding is responsible for catching runtime exceptions thrown by handlers and following the processing 11

model described in section 9.3.2. A binding is responsible for converting the exception to a fault message 12

subject to further handler processing if the following criteria are met: 13

1. A handler throws a ProtocolException from handleMessage 14

2. The MEP in use includes a response to the message being processed 15

3. The current message is not already a fault message (the handler might have undertaken the work prior 16

to throwing the exception). 17

If the above criteria are met then the exception is converted to a HTTP response message as follows: 18

• If the exception is an instance of HTTPException then the HTTP response code is set according to 19

the value of the statusCode property. Any current XML message content is removed. 20

• If the exception is of any other type then the HTTP status code is set to 500 to reflect a server class of 21

error and any current XML message content is removed. 22

• Handler processing is resumed as described in section 9.3.2. 23

If the criteria for converting the exception to a fault message subject to further handler processing are not 24

met then the exception is handled as follows depending on the current message direction: 25

Outbound The HTTP status code is set to 500 to reflect a server class of error, any current XML message 26

content is removed and the message is dispatched. 27

Inbound The exception is passed to the binding provider. 28

114 JAX-WS 2.0 October 7, 2005

11.3. HTTP Support

11.2.1.2 Service Endpoint Exceptions 1

Service endpoints can throw service specific exceptions or runtime exceptions. In both cases they can 2

provide protocol specific information using the cause mechanism, see section 6.4.1. 3

A server side implementation of the XML/HTTP binding is responsible for catching exceptions thrown by 4

a service endpoint implementation and, if the message exchange pattern in use includes a response to the 5

message that caused the exception, converting such exceptions to HTTP response messages and invoking 6

the handleFault method on handlers for the response message as described in section 9.3.2. 7

Section 11.2.1.3 describes the rules for mapping an exception to a HTTP status code. 8

11.2.1.3 Mapping Exceptions to a HTTP Status Code 9

When mapping an exception to a HTTP status code, the status code of the HTTP fault message is populated 10

according to the following rules of precedence: 11

1. HTTPException.getStatusCode()1
12

2. 500. 13

11.3 HTTP Support 14

11.3.1 One-way Operations 15

HTTP interactions are request-response in nature. When used for one-way messages, implementations wait 16

for the HTTP response even though there is no XML message in the HTTP response entity body. 17

♦ Conformance (One-way operations): When invoking one-way operations, an implementation of the XML- 18

/HTTP binding MUST block until the HTTP response is received or an error occurs. 19

Note that completion of the HTTP request simply means that the transmission of the request is complete, 20

not that the request was accepted or processed. 21

11.3.2 Security 22

Section 4.2.1.1 defines two standard context properties (javax.xml.ws.security.auth.username and 23

javax.xml.ws.security.auth.password) that may be used to configure authentication information. 24

♦ Conformance (HTTP basic authentication support): An implementation of the XML/HTTP binding MUST 25

support HTTP basic authentication. 26

♦ Conformance (Authentication properties): A client side implementation MUST support use of the the 27

standard properties javax.xml.ws.security.auth.usernameand javax.xml.ws.security.auth- 28

.password to configure HTTP basic authentication. 29

1If the exception is a HTTPException or has a cause that is a HTTPException.

October 7, 2005 JAX-WS 2.0 115

Chapter 11. HTTP Binding

11.3.3 Session Management 1

Section 4.2.1.1 defines a standard context property (javax.xml.ws.session.maintain) that may be 2

used to control whether a client side runtime will join a session initiated by a service. 3

A XML/HTTP binding implementation can use three HTTP mechanisms for session management: 4

Cookies To initiate a session a service includes a cookie in a message sent to a client. The client stores the 5

cokkie and returns it in subsequest messages to the service. 6

URL rewriting To initiate a session a service directs a client to a new URL for subsequent interactions. 7

The new URL contains an encoded session identifier. 8

SSL The SSL session ID is used to track a session. 9

♦ Conformance (URL rewriting support): An implementation MUST support use of HTTP URL rewriting 10

for state management. 11

♦ Conformance (Cookie support): An implementation SHOULD support use of HTTP cookies for state 12

management. 13

♦ Conformance (SSL session support): An implementation MAY support use of SSL session based state 14

management. 15

116 JAX-WS 2.0 October 7, 2005

Appendix A 1

Conformance Requirements 2

2.1 WSDL 1.1 support . 9 3

2.2 Customization required . 9 4

2.3 Annotations on generated classes . 9 5

2.4 Definitions mapping. 9 6

2.5 WSDL and XML Schema import directives . 10 7

2.6 Optional WSDL extensions . 10 8

2.7 SEI naming . 10 9

2.8 javax.jws.WebService required . 10 10

2.9 Method naming . 11 11

2.10 javax.jws.WebMethod required . 11 12

2.11 Transmission primitive support . 11 13

2.12 Using javax.jws.OneWay . 11 14

2.13 Using javax.jws.SOAPBinding . 11 15

2.14 Using javax.jws.WebParam . 11 16

2.15 Using javax.jws.WebResult . 11 17

2.16 Non-wrapped parameter naming . 12 18

2.17 Default mapping mode . 12 19

2.18 Disabling wrapper style . 13 20

2.19 Wrapped parameter naming . 13 21

2.20 Parameter name clash . 13 22

2.21 Use of Holder . 15 23

2.22 Asynchronous mapping required . 16 24

2.23 Asynchronous mapping option . 16 25

2.24 Asynchronous method naming . 16 26

October 7, 2005 JAX-WS 2.0 117

Appendix A. Conformance Requirements

2.25 Asynchronous parameter naming . 16 1

2.26 Failed method invocation . 17 2

2.27 Response bean naming . 17 3

2.28 Asynchronous fault reporting . 18 4

2.29 Asychronous fault cause . 18 5

2.30 JAXB class mapping . 20 6

2.31 JAXB customization use . 20 7

2.32 JAXB customization clash . 20 8

2.33 javax.xml.ws.WebFault required . 20 9

2.34 Exception naming . 21 10

2.35 Fault equivalence . 21 11

2.36 Fault equivalence . 21 12

2.37 Required WSDL extensions . 23 13

2.38 Unbound message parts . 23 14

2.39 Duplicate headers in binding . 23 15

2.40 Duplicate headers in message . 23 16

2.41 Use of MIME type information . 24 17

2.42 MIME type mismatch . 24 18

2.43 MIME part identification . 26 19

2.44 Service superclass required . 26 20

2.45 Service class naming . 26 21

2.46 javax.xml.ws.WebServiceClient required . 26 22

2.47 . 26 23

2.48 . 26 24

2.49 Failed getPort Method . 27 25

2.50 javax.xml.ws.WebEndpoint required . 27 26

3.1 WSDL 1.1 support . 29 27

3.2 Standard annotations . 29 28

3.3 Java identifier mapping . 29 29

3.4 Method name disambiguation . 29 30

3.5 Package name mapping . 30 31

3.6 WSDL and XML Schema import directives . 30 32

3.7 Class mapping . 30 33

3.8 portType naming . 31 34

118 JAX-WS 2.0 October 7, 2005

3.9 Inheritance flattening . 31 1

3.10 Inherited interface mapping . 31 2

3.11 Operation naming . 31 3

3.12 One-way mapping . 32 4

3.13 One-way mapping errors . 32 5

3.14 Parameter classification . 35 6

3.15 Parameter naming . 35 7

3.16 Result naming . 35 8

3.17 Header mapping of parameters and results . 35 9

3.18 Default wrapper bean names . 36 10

3.19 Default wrapper bean package . 36 11

3.20 Wrapper element names . 36 12

3.21 Wrapper bean name clash . 36 13

3.22 Exception naming . 39 14

3.23 Fault bean name clash . 39 15

3.24 Binding selection . 39 16

3.25 SOAP binding support . 41 17

3.26 SOAP binding style required . 41 18

3.27 Service creation . 42 19

3.28 Port selection . 45 20

3.29 Port binding . 45 21

4.1 Service completeness . 47 22

4.2 Service Creation Failure . 48 23

4.3 Use of Executor . 50 24

4.4 Default Executor . 50 25

4.5 Message context decoupling . 51 26

4.6 Required BindingProvider properties . 52 27

4.7 Optional BindingProvider properties . 52 28

4.8 Additional context properties . 52 29

4.9 Asynchronous response context . 52 30

4.10 Proxy support . 53 31

4.11 Implementing BindingProvider . 53 32

4.12 Service.getPort failure . 53 33

4.13 Remote Exceptions . 54 34

October 7, 2005 JAX-WS 2.0 119

Appendix A. Conformance Requirements

4.14 Other Exceptions . 54 1

4.15 Dispatch support . 54 2

4.16 Failed Dispatch.invoke . 55 3

4.17 Failed Dispatch.invokeAsync . 55 4

4.18 Failed Dispatch.invokeOneWay . 56 5

4.19 Reporting asynchronous errors . 56 6

4.20 Marshalling failure . 56 7

4.21 Use of the Catalog . 58 8

5.1 Provider support required . 59 9

5.2 Provider default constructor . 59 10

5.3 Provider implementation . 59 11

5.4 WebServiceProvider annotation . 59 12

5.5 Endpoint publish(String address, Object implementor) Method 62 13

5.6 Default Endpoint Binding . 62 14

5.7 Other Bindings . 62 15

5.8 Publishing over HTTP . 63 16

5.9 WSDL Publishing . 63 17

5.10 Checking publishEndpoint Permission . 64 18

5.11 Required Metadata Types . 64 19

5.12 Unknown Metadata . 64 20

5.13 Use of Executor . 67 21

5.14 Default Executor . 67 22

6.1 Read-only handler chains . 69 23

6.2 Concrete javax.xml.ws.spi.Provider required . 69 24

6.3 Provider createAndPublishEndpoint Method . 70 25

6.4 Concrete javax.xml.ws.spi.ServiceDelegate required 71 26

6.5 Protocol specific fault generation . 71 27

6.6 Protocol specific fault consumption . 72 28

6.7 One-way operations . 72 29

7.1 Correctness of annotations . 73 30

7.2 Handling incorrect annotations . 73 31

7.3 JSR-181 conformance . 79 32

8.1 Standard binding declarations . 81 33

8.2 Binding language extensibility . 81 34

120 JAX-WS 2.0 October 7, 2005

8.3 Multiple binding files . 84 1

9.1 Handler framework support . 93 2

9.2 Logical handler support . 94 3

9.3 Other handler support . 94 4

9.4 Incompatible handlers . 95 5

9.5 Incompatible handlers . 95 6

9.6 Handler chain snapshot . 96 7

9.7 HandlerChain annotation . 97 8

9.8 Handler resolver for a HandlerChain annotation . 97 9

9.9 Binding handler manipulation . 97 10

9.10 Handler initialization . 98 11

9.11 Handler destruction . 98 12

9.12 Invoking close . 100 13

9.13 Order of close invocations . 100 14

9.14 Message context property scope . 101 15

10.1 SOAP required roles . 105 16

10.2 SOAP required roles . 106 17

10.3 Default role visibility . 106 18

10.4 Default role persistence . 106 19

10.5 None role error . 106 20

10.6 Incompatible handlers . 106 21

10.7 Incompatible handlers . 106 22

10.8 Logical handler access . 106 23

10.9 SOAP 1.1 HTTP Binding Support . 109 24

10.10SOAP 1.2 HTTP Binding Support . 109 25

10.11SOAP MTOM Support . 109 26

10.12MTOM on Predefined Bindings . 110 27

10.13MTOM on Other SOAP Bindings . 110 28

10.14One-way operations . 110 29

10.15HTTP basic authentication support . 110 30

10.16Authentication properties . 110 31

10.17URL rewriting support . 111 32

10.18Cookie support . 111 33

10.19SSL session support . 111 34

October 7, 2005 JAX-WS 2.0 121

Appendix A. Conformance Requirements

11.1 Incompatible handlers . 113 1

11.2 Incompatible handlers . 113 2

11.3 Logical handler access . 113 3

11.4 One-way operations . 115 4

11.5 HTTP basic authentication support . 115 5

11.6 Authentication properties . 115 6

11.7 URL rewriting support . 116 7

11.8 Cookie support . 116 8

11.9 SSL session support . 116 9

122 JAX-WS 2.0 October 7, 2005

Appendix B 1

Change Log 2

B.1 Changes since Public Draft 3

• Changed endpoint publishing so that endpoints cannot be stopped and published againt multiple times 4

(section 5.2.2). 5

• Clarified that request and response beans do not contain properties corresponding to header parameters 6

(section 3.6.2.1). 7

• Clarified that criteria for bare style take only parts bound to the body into account (section 3.6.2.2). 8

• Add a create(Object implementor) to Endpoint to create an Endpoint. 9

• Clarified the use of INOUT param with two different MIME bindings in the input and output mes- 10

sages. 11

• Use of WebParam and WebResult partName. 12

• Replaced the init/destroy methods of handlers with the PostConstruct and PreDestroy annotations 13

from JSR-250 (section 9.3.1). 14

• Replaced the BeginService/EndService annotations with PostConstruct and PreDestroy from JSR-250 15

in endpoint implementors (section 5.2.1). 16

• Added WebParam.header WebResult.header usage (section 3.6) and updated WSDL SOAP HTTP 17

Binding section (3.9.2). 18

• Removed requirements to support additional SOAP headers mapping. 19

• Added support for DataSource as a message format for Provider and clarified the requirement for the 20

other supported types (section 5.1). Same thing for Dispatch (section 4.3). 21

• Clarified that LogicalMessageContext.getSource() may return null when there is no payload associ- 22

ated with the message (section 9.4.2). 23

• Clarified that parts bound to mime:content are treated as unlisted from the point of view of applying 24

the wrapper style rules (section 2.6.3). 25

• Removed the ParameterIndex annotation (chapters 3 and 7). 26

• Clarified naming rules for generated wrapper elements and their type (section 3.6.2.1). 27

October 7, 2005 JAX-WS 2.0 123

Appendix B. Change Log

• Clarified that holders should never be used for the return type of a method (section 2.3.3). 1

• Added effect of the BindingType annotation on the generated WSDL service (sections 3.8 and 3.10). 2

• Added condition that the wrapper elements be non-nillable to wrapper style (section 2.3.1.2). 3

• Clarified use of targetNamespace from WebService in an implementation class and an SEI based on 4

181 changes. 5

• Updated the usage of WebMethod exclude element from Java to WSDL mapping. 6

• Changed the algorithm for the default target namespace from java to WSDL (section 3.2). 7

• Added requirement that a provider’s constructor be public (section 5.1). 8

• Fixed some inconsistencies caused by the removal of RemoteException (e.g. in section 4.2.4). 9

• Added service delegate requirements to chapter 4. 10

• Added zero-argument public constructor requirement to the implementation-specific Provider SPI 11

class (section 6.2). 12

• Updated use of SOAPBinding on a per method basis in the document style case and removed editor’s 13

note about SOAPBinding not being allowed on methods (section 2.3.1 and 3.6.2) . 14

• Added portName element to @WebServiceProvider annotation. 15

• Added requirement on correctness of annotation to the beginning of chapter 7. 16

• Added requirement for conformance to the JAX-WS profile in JSR-181 (section 7.11). 17

• Clarified invocation of Handler.destroy (section 9.3.1). 18

• Added use of HandlerChain annotation (section 9.2.1.3). 19

• Updated 181 annotations (section 7.11). 20

• Added catalog facility (section 4.2.5) and clarified that it is required to be used when processing 21

endpoint metadata at publishing time (section 5.2.5) and annotations (chapter 7). 22

• Added WebServiceRef annotation (section 7.10). 23

• Added restrictions on metadata at the time an endpoint is published (section 5.2.7). 24

• Replaced HandlerRegistry with HandlerResolver (sections 4.2.1, 9.2.1.1, 10.1.1.2, 11.1.1.1). Fixed 25

handler ordering section accordingly (section 9.2.1.2). 26

• Clarified that endpoint properties override the values defined using the WebServiceProvider annota- 27

tion (section 5.2.8). 28

• Removed mapping of headerfaults (sections 2.6.2.2 and 8.7.6). 29

• Split standard message context properties into multiple tables and added servlet-specific properties 30

(section 9.4.1.1). 31

• Added WebServiceContext (section 5.3); refactored message context section in chapter 5 so that it 32

applies to all kinds of endpoints. 33

124 JAX-WS 2.0 October 7, 2005

B.2. Changes Since Early Draft 3

• Added WebServicePermission (section 5.2.5). 1

• Added conformance requirement for one-way operations (section 6.2.2). 2

• Added BindingType annotation (section 7.9). 3

• Added requirement the provider endpoint implementation class carry a WebServiceProvider annota- 4

tion (section 5.1). 5

• Fixed RequestWrapper and ResponseWrapper description to use that they can be applied to the meth- 6

ods of an SEI (sections 7.4 and 7.5). 7

• Fixed package name for javax.xml.ws.Provider and updated section with WebServiceProvider anno- 8

tation (section 5.1). 9

• Added WebServiceProvider annotation in javax.xml.ws package (section 7.8). 10

• Changed Factory pattern to use javax.xml.ws.spi.Provider 11

• Removed javax.xml.ws.EndpointFactory (section 5.2). 12

• Removed javax.xml.ws.Servicefactory (section 4.1). 13

• Removed definition of message-level security annotations (section 7.1), their use (sections 4.2.2 and 14

6.1.1) and the corresponding message context property (in section 9.4). 15

• Removed WSDL 2.0 mapping (appendices A and B). 16

B.2 Changes Since Early Draft 3 17

• Added requirements on mapping @WebService-annotated Java classes to WSDL. 18

• Removed references to the RMI classes that JAX-RPC 1.1 used to denote remoteness, since their role 19

is now taken by annotations: java.rmi.Remote and java.rmi.RemoteException. 20

• Added 5.2 on the new Endpoint API. 21

• Added the following new annotation types: @RequestWrapper, @ResponseWrapper, @WebService- 22

Client, @WebEndpoint. 23

• Added the createService(Class serviceInterface) method to ServiceFactory. 24

• Renamed the Service.createPort method to Service.addPort. 25

• Added MTOMEnabled property to SOAPBinding. 26

• Removed the HTTP method getter/setter from HTTPBinding and replaced them with a new message 27

context property called javax.xml.ws.http.request.method. 28

• In section 10.2.1 clarified that SOAP headers directly supported by a binding must be treated as 29

understood when processing mustUnderstand attributes. 30

• Added getStackTrace to the list of getters defined on java.lang.Throwable with must not be mapped 31

to fault bean properties. 32

October 7, 2005 JAX-WS 2.0 125

Appendix B. Change Log

• In section 4.2.1.1, removed the requirement that an exception be thrown if the application attempts 1

to set an unknown or unsupported property on a binding provider, since there are no stub-specific 2

properties any more, only those in the request context. 3

• Changed the client API chapter to reflect the annotation-based runtime. In particular, the distinc- 4

tion between generated stubs and dynamic proxies disappeared, and the spec now simply talks about 5

proxies. 6

• Changed JAX-RPC to JAX-WS, javax.xml.rpc.xxx to javax.xml.ws.xxx. Reflected resulting changes 7

made to APIs. 8

• Added new context properties to provide access to HTTP headers and status code. 9

• Added new XML/HTTP Binding, see chapter 11. 10

B.3 Changes Since Early Draft 2 11

• Renamed ”element” attribute of the jaxws:parameter annotation to ”childParameterName” for clarity, 12

see sections 8.7.3 and 8.7.6. 13

• Added javax.xml.ws.ServiceMode annotation type, see section 7.1. 14

• Fixed example of external binding file to use a schema annotation, see section 8.4. 15

• Modified Dispatch so it can be used with multiple message types and either message payloads or 16

entire messages, see section 4.3. 17

• Modified Provider so it can be used with multiple message types and either message payloads or entire 18

messages, see section 5.1. 19

• Added new annotation for generated exceptions, see section 7.2. 20

• Added default Java package name to WSDL targetNamespace mapping algorithm, see section 3.2. 21

• Added ordering to properties in request and response beans for doc/lit/wrapped, see section 3.6.2.1. 22

• Clarified that SEI method should throw JAX-RPC exception with a cause of any runtime exception 23

thrown during local processing, see section 4.2.4. 24

• Removed requirement that SEIs MUST NOT have constants, see section 3.4. 25

• Updated document bare mapping to clarify that @WebParam and @WebResult can be used to cus- 26

tomize the generated global element names, see section 3.6.2.2. 27

B.4 Changes Since Early Draft 1 28

• Added chapter 5 Service APIs. 29

• Added chapter ?? WSDL 2.0 to Java Mapping. 30

• Added chapter ?? Java to WSDL 2.0 Mapping. 31

• Added mapping from Java to wsdl:service and wsdl:port, see sections 3.8.1, 3.9.1 and 3.10. 32

126 JAX-WS 2.0 October 7, 2005

B.4. Changes Since Early Draft 1

• Fixed section 2.4 to allow use of JAXB interface based mapping. 1

• Added support for document/literal/bare mapping in Java to WSDL mapping, see section 3.6. 2

• Added conformance requirement to describe the expected behaviour when two or more faults refer to 3

the same global element, see section 2.5. 4

• Added resolution to issue regarding binding of duplicate headers, see section 2.6.2.1. 5

• Added use of JAXB ns URI to Java package name mapping, see section 2.1. 6

• Added use of JAXB package name to ns URI mapping, see section 3.2. 7

• Introduced new typographic convention to clearly mark non-normative notes. 8

• Removed references to J2EE and JNDI usage from ServiceFactory description, see section ??. 9

• Clarified relationship between TypeMappingRegistry and JAXB. 10

• Emphasized control nature of context properties, added lifecycle subsection. 11

• Clarified fixed binding requirement for proxies. 12

• Added section for SOAP proocol bindings 10.4. The HTTP subsection of this now contains much of 13

the mterial from the JAX-RPC 1.1 ‘Runtime Services’ chapter. 14

• Clarified that async methods are added to the regular sync SEI when async mapping is enabled rather 15

than to a separate async-only SEI, see section 2.3.4. 16

• Added support for WSDL MIME binding, see section 2.6.3. 17

• Clarified that fault mapping should only generate a single exception for each equivalent set of faults, 18

see section 2.5. 19

• Added property for message attachments. 20

• Removed element references to anonymous type as valid for wrapper style mapping (this doesn’t 21

prevent substitution as orignally thought), see section 2.3.1.2. 22

• Removed implementation specific methods from generated service interfaces, see section 2.7. 23

• Clarified behaviour under fault condition for asynchronous operation mapping, see section 2.3.4.5. 24

• Clarified that additional parts mapped using soapbind:header cannot be mapped to a method return 25

type, see section 2.3.2. 26

• Added new section to clarify mapping from exception to SOAP fault, see 10.2.2.3. 27

• Clarified meaning of other in the handler processing section, see9.3.2. 28

• Added a section to clarify Stub use of RemoteException and JAXRPCException, see 4.2.4. 29

• Added new Core API chapter and rearranged sections into Core, Client and Server API chapters. 30

• Changes for context refactoring, removed message context properties that previously held request/response31

contexts on client side, added description of rules for moving between jaxws context and message 32

context boundaries. 33

October 7, 2005 JAX-WS 2.0 127

Appendix B. Change Log

• Removed requirement for Response.get to throw JAXRPCException, now throws standard java.util- 1

.concurrent.ExecutionException instead. 2

• Added security API information, see sections ?? and ??. 3

• Clarrified SOAP mustUnderstand processing, see section10.2.1. Made it clear that the handler rather 4

than the HandlerInfo is authoritative wrt which protocol elements (e.g. SOAP headers) it processes. 5

• Updated exception mapping for Java to WSDL since JAXB does not envision mapping exception 6

classes directly, see section 3.7. 7

128 JAX-WS 2.0 October 7, 2005

Bibliography 1

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Language 2

(XML) 1.0 (Second Edition). Recommendation, W3C, October 2000. See 3

http://www.w3.org/TR/2000/REC-xml-20001006. 4

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Nielsen, 5

Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP) 1.1. Note, W3C, May 2000. 6

See http://www.w3.org/TR/SOAP/. 7

[3] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen. 8

SOAP Version 1.2 Part 1: Messaging Framework. Recommendation, W3C, June 2003. See 9

http://www.w3.org/TR/2003/REC-soap12-part1-20030624. 10

[4] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik Frystyk Nielsen. 11

SOAP Version 1.2 Part 2: Adjuncts. Recommendation, W3C, June 2003. See 12

http://www.w3.org/TR/2003/REC-soap12-part2-20030624. 13

[5] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services 14

Description Language (WSDL) 1.1. Note, W3C, March 2001. See 15

http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 16

[6] Rahul Sharma. The Java API for XML Based RPC (JAX-RPC) 1.0. JSR, JCP, June 2002. See 17

http://jcp.org/en/jsr/detail?id=101. 18

[7] Roberto Chinnici. The Java API for XML Based RPC (JAX-RPC) 1.1. Maintenance JSR, JCP, 19

August 2003. See http://jcp.org/en/jsr/detail?id=101. 20

[8] Keith Ballinger, David Ehnebuske, Martin Gudgin, Mark Nottingham, and Prasad Yendluri. Basic 21

Profile Version 1.0. Final Material, WS-I, April 2004. See 22

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html. 23

[9] Joseph Fialli and Sekhar Vajjhala. The Java Architecture for XML Binding (JAXB). JSR, JCP, 24

January 2003. See http://jcp.org/en/jsr/detail?id=31. 25

[10] Joseph Fialli and Sekhar Vajjhala. The Java Architecture for XML Binding (JAXB) 2.0. JSR, JCP, 26

August 2003. See http://jcp.org/en/jsr/detail?id=222. 27

[11] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer, and Sanjiva 28

Weerawarana. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. 29

Working Draft, W3C, August 2004. See http://www.w3.org/TR/2004/WD-wsdl20-20040803. 30

[12] Joshua Bloch. A Metadata Facility for the Java Programming Language. JSR, JCP, August 2003. See 31

http://jcp.org/en/jsr/detail?id=175. 32

October 7, 2005 JAX-WS 2.0 129

BIBLIOGRAPHY

[13] Jim Trezzo. Web Services Metadata for the Java Platform. JSR, JCP, August 2003. See 1

http://jcp.org/en/jsr/detail?id=181. 2

[14] Jim Knutson and Heather Kreger. Web Services for J2EE. JSR, JCP, September 2002. See 3

http://jcp.org/en/jsr/detail?id=109. 4

[15] Nataraj Nagaratnam. Web Services Message Security APIs. JSR, JCP, April 2002. See 5

http://jcp.org/en/jsr/detail?id=183. 6

[16] Farrukh Najmi. Java API for XML Registries 1.0 (JAXR). JSR, JCP, June 2002. See 7

http://www.jcp.org/en/jsr/detail?id=93. 8

[17] Keith Ballinger, David Ehnebuske, Chris Ferris, Martin Gudgin, Canyang Kevin Liu, Mark 9

Nottingham, Jorgen Thelin, and Prasad Yendluri. Basic Profile Version 1.1. Final Material, WS-I, 10

August 2004. See http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html. 11

[18] Martin Gudgin, Amy Lewis, and Jeffrey Schlimmer. Web Services Description Language (WSDL) 12

Version 2.0 Part 2: Predefined Extensions. Working Draft, W3C, August 2004. See 13

http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803. 14

[19] Hugo Haas, Philippe Le Hégaret, Jean-Jacques Moreau, David Orchard, Jeffrey Schlimmer, and 15

Sanjiva Weerawarana. Web Services Description Language (WSDL) Version 2.0 Part 3: Bindings. 16

Working Draft, W3C, August 2004. See 17

http://www.w3.org/TR/2004/WD-wsdl20-bindings-20040803. 18

[20] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: Uniform Resource Identifiers (URI): 19

Generic Syntax. RFC, IETF, March 1997. See http://www.ietf.org/rfc/rfc2396.txt. 20

[21] S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF, 21

March 1997. See http://www.ietf.org/rfc/rfc2119.txt. 22

[22] John Cowan and Richard Tobin. XML Information Set. Recommendation, W3C, October 2001. See 23

http://www.w3.org/TR/2001/REC-xml-infoset-20011024/. 24

[23] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML Schema Part 1: 25

Structures. Recommendation, W3C, May 2001. See 26

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/. 27

[24] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Recommendation, W3C, May 28

2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. 29

[25] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification - second 30

edition. Book, Sun Microsystems, Inc, 2000. 31

http://java.sun.com/docs/books/jls/second edition/html/j.title.doc.html. 32

[26] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herve Ruellan. SOAP Message 33

Transmission Optimization Mechanism. Recommendation, W3C, January 2005. 34

http://www.w3.org/TR/soap12-mtom/. 35

[27] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herve Ruellan. XML-binary Optimized 36

Packaging. Recommendation, W3C, January 2005. http://www.w3.org/TR/xop10/. 37

[28] Mark Nottingham. Simple SOAP Binding Profile Version 1.0. Working Group Draft, WS-I, August 38

2004. See http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0-2004-08-24.html. 39

130 JAX-WS 2.0 October 7, 2005

BIBLIOGRAPHY

[29] Chris Ferris, Anish Karmarkar, and Canyang Kevin Liu. Attachments Profile Version 1.0. Final 1

Material, WS-I, August 2004. See 2

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html. 3

[30] Norm Walsh. XML Catalogs 1.1. OASIS Committee Specification, OASIS, July 2005. See 4

http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html. 5

[31] Rajiv Mordani. Common Annotations for the Java Platform. JSR, JCP, July 2005. See 6

http://jcp.org/en/jsr/detail?id=250. 7

[32] Bill Shannon. Java Platform Enterprise Edition 5 Specification. JSR, JCP, August 2005. See 8

http://jcp.org/en/jsr/detail?id=244. 9

[33] John Barton, Satish Thatte, and Henrik Frystyk Nielsen. SOAP Messages With Attachments. Note, 10

W3C, December 2000. http://www.w3.org/TR/SOAP-attachments. 11

October 7, 2005 JAX-WS 2.0 131

	1 Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Requirements
	1.3.1 Relationship To JAXB
	1.3.2 Standardized WSDL Mapping
	1.3.3 Customizable WSDL Mapping
	1.3.4 Standardized Protocol Bindings
	1.3.5 Standardized Transport Bindings
	1.3.6 Standardized Handler Framework
	1.3.7 Versioning and Evolution
	1.3.8 Standardized Synchronous and Asynchronous Invocation
	1.3.9 Session Management

	1.4 Use Cases
	1.4.1 Handler Framework

	1.5 Conventions
	1.6 Expert Group Members
	1.7 Acknowledgements

	2 WSDL 1.1 to Java Mapping
	2.1 Definitions
	2.1.1 Extensibility

	2.2 Port Type
	2.3 Operation
	2.3.1 Message and Part
	2.3.2 Parameter Order and Return Type
	2.3.3 Holder Class
	2.3.4 Asynchrony

	2.4 Types
	2.5 Fault
	2.5.1 Example

	2.6 Binding
	2.6.1 General Considerations
	2.6.2 SOAP Binding
	2.6.3 MIME Binding

	2.7 Service and Port
	2.7.1 Example

	2.8 XML Names
	2.8.1 Name Collisions

	3 Java to WSDL 1.1 Mapping
	3.1 Java Names
	3.1.1 Name Collisions

	3.2 Package
	3.3 Class
	3.4 Interface
	3.4.1 Inheritance

	3.5 Method
	3.5.1 One Way Operations

	3.6 Method Parameters and Return Type
	3.6.1 Parameter and Return Type Classification
	3.6.2 Use of JAXB

	3.7 Service Specific Exception
	3.8 Bindings
	3.8.1 Interface
	3.8.2 Method and Parameters

	3.9 SOAP HTTP Binding
	3.9.1 Interface
	3.9.2 Method and Parameters

	3.10 Service and Ports

	4 Client APIs
	4.1 javax.xml.ws.Service
	4.1.1 Service Usage
	4.1.2 Provider and Service Delegate
	4.1.3 Handler Resolver
	4.1.4 Executor

	4.2 javax.xml.ws.BindingProvider
	4.2.1 Configuration
	4.2.2 Asynchronous Operations
	4.2.3 Proxies
	4.2.4 Exceptions

	4.3 javax.xml.ws.Dispatch
	4.3.1 Configuration
	4.3.2 Operation Invocation
	4.3.3 Asynchronous Response
	4.3.4 Using JAXB
	4.3.5 Examples

	4.4 Catalog Facility

	5 Service APIs
	5.1 javax.xml.ws.Provider
	5.1.1 Invocation
	5.1.2 Configuration
	5.1.3 Examples

	5.2 javax.xml.ws.Endpoint
	5.2.1 Endpoint Usage
	5.2.2 Publishing
	5.2.3 Publishing Permission
	5.2.4 Endpoint Metadata
	5.2.5 Endpoint Publishing and Metadata
	5.2.6 Endpoint Properties
	5.2.7 Executor

	5.3 javax.xml.ws.WebServiceContext
	5.3.1 MessageContext

	6 Core APIs
	6.1 javax.xml.ws.Binding
	6.2 javax.xml.ws.spi.Provider
	6.2.1 Configuration
	6.2.2 Creating Endpoint Objects
	6.2.3 Creating ServiceDelegate Objects

	6.3 javax.xml.ws.spi.ServiceDelegate
	6.4 Exceptions
	6.4.1 Protocol Specific Exception Handling
	6.4.2 One-way Operations

	7 Annotations
	7.1 javax.xml.ws.ServiceMode
	7.2 javax.xml.ws.WebFault
	7.3 javax.xml.ws.RequestWrapper
	7.4 javax.xml.ws.ResponseWrapper
	7.5 javax.xml.ws.WebServiceClient
	7.6 javax.xml.ws.WebEndpoint
	7.6.1 Example

	7.7 javax.xml.ws.WebServiceProvider
	7.8 javax.xml.ws.BindingType
	7.9 javax.xml.ws.WebServiceRef
	7.9.1 Example

	7.10 Annotations Defined by JSR-181
	7.10.1 javax.jws.WebService
	7.10.2 javax.jws.WebMethod
	7.10.3 javax.jws.OneWay
	7.10.4 javax.jws.WebParam
	7.10.5 javax.jws.WebResult
	7.10.6 javax.jws.SOAPBinding
	7.10.7 javax.jws.HandlerChain

	8 Customizations
	8.1 Binding Language
	8.2 Binding Declaration Container
	8.3 Embedded Binding Declarations
	8.3.1 Example

	8.4 External Binding File
	8.4.1 Example

	8.5 Using JAXB Binding Declarations
	8.6 Scoping of Bindings
	8.7 Standard Binding Declarations
	8.7.1 Definitions
	8.7.2 PortType
	8.7.3 PortType Operation
	8.7.4 PortType Fault Message
	8.7.5 Binding
	8.7.6 Binding Operation
	8.7.7 Service
	8.7.8 Port

	9 Handler Framework
	9.1 Architecture
	9.1.1 Types of Handler
	9.1.2 Binding Responsibilities

	9.2 Configuration
	9.2.1 Programmatic Configuration
	9.2.2 Deployment Model

	9.3 Processing Model
	9.3.1 Handler Lifecycle
	9.3.2 Handler Execution
	9.3.3 Handler Implementation Considerations

	9.4 Message Context
	9.4.1 javax.xml.ws.handler.MessageContext
	9.4.2 javax.xml.ws.handler.LogicalMessageContext
	9.4.3 Relationship to Application Contexts

	10 SOAP Binding
	10.1 Configuration
	10.1.1 Programmatic Configuration
	10.1.2 Deployment Model

	10.2 Processing Model
	10.2.1 SOAP mustUnderstand Processing
	10.2.2 Exception Handling

	10.3 SOAP Message Context
	10.4 SOAP Transport and Transfer Bindings
	10.4.1 HTTP

	11 HTTP Binding
	11.1 Configuration
	11.1.1 Programmatic Configuration
	11.1.2 Deployment Model

	11.2 Processing Model
	11.2.1 Exception Handling

	11.3 HTTP Support
	11.3.1 One-way Operations
	11.3.2 Security
	11.3.3 Session Management

	A Conformance Requirements
	B Change Log
	B.1 Changes since Public Draft
	B.2 Changes Since Early Draft 3
	B.3 Changes Since Early Draft 2
	B.4 Changes Since Early Draft 1

	Bibliography

