Java™ API for XML-based RPC
JAX-RPC 1.1

Technical comments to: jsr-101-leads@sun.com

JSR-101
Java Community Process (JCP)

M aintenance Release

Version 1.1

JSR-101 Expert Group

Specification Lead: Roberto Chinnici (Sun Microsystems, Inc.)

S

< Sun

microsystems

Chapter JAX-RPC 1.1

Java(TM) API for XML-based Remote Procedure Call (JAX-RPC) Specification ("Specification")

Version: 1.1
Status: FCS, Maintenance Release
Release:October 14, 2003

Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under the Sun’s applicable intellectual property rights to
view, download, use and reproduce the Specification only for the purpose of internal evaluation, which
shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the
Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or patent rights it may have in the
Specification to create and/or distribute an Independent Implementation of the Specification that: (i) fully
implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/
authorized by the Specification or Specifications being implemented; and (iii) passes the TCK (including
satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing
license is expressly conditioned on your not acting outside its scope. No license is granted hereunder for
any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular “pass through”
requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to implementations of the Specification (and products
derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or
otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights;
nor (b) authorize your licensees to make any claims concerning their implementation’s compliance with
the Spec in question.

For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of the
Specification that neither derives from any of Sun’s source code or binary code materials nor, except with
an appropriate and separate license from Sun, includes any of Sun’s source code or binary code
materials; and “Licensor Name Space” shall mean the public class or interface declarations whose names

begin with “java”, “javax”, “com.sun” or their equivalents in any subsequent naming convention adopted by
Sun through the Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material
provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS 1IS” SUN MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE

JAX-RPC 1.1

OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any
commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN
MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will
be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, INNO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION,
EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
clean room implementation; and/or (i) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R.2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose related to the Specification and future versions, implementations, and test
suites thereof.

(LFI1#128132/Form ID#011801)

Contents

Introduction 11

1.1 Design Goals 11

1.2
1.3
1.4
1.5

111

Expert Group Goals 12

JSR-101 Expert Group 12
Acknowledgments 13

Status

13

Notational Conventions 13

JAX-RPC Usecase 14

2.1 Stock Quote Service 14

2.2

211
212
2.13
214

Service Endpoint Definition 14
Service Deployment 15
Service Description 16

Service Use 17

JAX-RPC Mechanisms 18

2.2.1
2.2.2

Service Client 19
Server Side 19

Requirements 21
WSDL/XML to Java Mapping 31

4.1 XML Names 31
4.2 XML to Java Type Mapping 31

4.3

421
4.2.2
423
424
4.2.5
4.2.6

Simple Types 32

Array 34

XML Struct and Complex Type 36
Enumeration 38

Simple Types Derived By Restriction 40
Simple Types Derived Using xsd:list 40

WSDL to Java Mapping 41

431
4.3.2
4.3.3
434
435
4.3.6
4.3.7
4.3.8

WSDL Document 41
Extensibility Elements 41
WSDL Port Type 41
WSDL Operation 42
Holder Classes 44
WSDL Fault 47

WSDL Binding 49
WSDL Port 49

Contents

5

6

439 WSDL Service 49
4.3.10 Service Interface 50
4.3.11 Generated Service 51
4.3.12 Name Collisions 52

5. Javato XML/WSDL Mapping 54

5.1

5.2

5.3

5.4

5.5

JAX-RPC Supported Java Types 54
5.1.1 Primitive Types 54

5.1.2 Java Array 55

5.1.3 Standard Java Classes 55

514 JAX-RPC Value Type 55
JAX-RPC Service Endpoint Interface 55
5.2.1 Service Specific Exception 56
5.2.2 Remote Reference Passing 56
5.2.3 Passby Copy 57

Java to XML Type Mapping 57

5.3.1 Java Primitive types 57

5.3.2 Standard Java Classes 58

5.3.3 Array of Bytes 58

5.3.4 Java Array 58

JAX-RPC Value Type 59

54.1 XML Mapping 60

5.4.2 Java Serialization Semantics 61
Java to WSDL Mapping 62

55.1 Java ldentifier 62

5.5.2 JavaPackage 62

5.5.3 Service Endpoint Interface 62
5.5.4 Inherited Service Endpoint interfaces 63
555 Methods 64

6. SOAPBinding 68

6.1
6.2
6.3
6.4

6.5
6.6

SOAP Binding in WSDL 68

Operation Style attribute 68

Encoded Representation 69

Literal Representation 69

6.4.1 Java Mapping of Literal Representation 69
6.4.2 SOAPElement 70

6.4.3 Example 72

SOAP Fault 74

SOAP Headerfault 75

7. SOAP Message With Attachments 76

7.1
7.2
7.3
7.4
7.5

SOAP Message with Attachments 76

Java Types 76

MIME Types 77

WSDL Requirements 77

Mapping between MIME types and Java types 78

8. JAX-RPC Core APIs 79

8.1

Server side APIs 79

JAX-RPC 1.1 Specification

10.

11.

12.

13.

8.2 Client side APIs 79
8.2.1 Generated Stub Class 79
8.2.2 Stub Configuration 81
8.2.3 Dynamic Proxy 83
8.2.4 DIl Call Interface 83
8.2.5 Abstract ServiceFactory 89
8.2.6 ServiceException 90
8.2.7 JAXRPCException 90
8.2.8 Additional Classes 90

Service Client Programming Model 91

9.1 Requirements 91

9.2 J2EE based Service Client Programming Model 91
9.2.1 Component Provider 92
9.2.2 Deployment Descriptor 93
9.2.3 Deployer 93

9.3 J2SE based Service Client Programming Model 93

Service Endpoint Model 94

10.1 Service Developer 94
10.1.1 JAX-RPC Service Endpoint Lifecycle 94
10.1.2 Servlet based Endpoint 96
10.1.3 ServletEndpointContext 96

10.2 Packaging and Deployment Model 97

Service Context 98

11.1 Context Definition 98
11.2 Programming Model 99
11.2.1 Implicit Service Context 99
11.2.2 Explicit Service Context 99
11.3 Processing of Service Context 100

SOAP Message Handlers 101

12.1 JAX-RPC Handler APIs 101
12.1.1 Handler 102
12.1.2 SOAP Message Handler 103
12.1.3 GenericHandler 103
12.1.4 HandlerChain 103
12.1.5 Handlerinfo 104
12.1.6 MessageContext 104
12.1.7 SOAPMessageContext 105
12.2 Handler Model 105
12.2.1 Configuration 105
12.2.2 Processing Model 105
12.3 Configuration 109
12.3.1 Handler Configuration APIs 109
12.3.2 Deployment Model 109
12.4 Handler Lifecycle 110

JAX-RPC Runtime Services 112

Contents

8

14.

15.

16.
17.
18.
19.

13.1 Security 112
13.1.1 HTTP Basic Authentication 112
13.1.2 SSL Mutual Authentication 113
13.1.3 SOAP Security Extensions 113
13.2 Session Management 113

Interoperability 115

14.1 Interoperability Scenario 115
14.2 Interoperability Goals 116
14.3 Interoperability Requirements 116
14.3.1 SOAP based Interoperability 117
14.3.2 SOAP Encoding and XML Schema Support 117
14.3.3 Transport 117
14.3.4 WSDL Requirements 117
14.3.5 Processing of SOAP Headers 118
14.3.6 Mapping of Remote Exceptions 118
14.3.7 Security 119
14.3.8 Transaction 119
14.4 Interoperability Requirements: WS-1 Basic Profile Version 1.0
14.4.1 Requirements On Java-to-WSDL Tools 119
14.4.2 Requirements on WSDL-to-Java Tools 120
14.4.3 Requirements On JAX-RPC Runtime Systems 120

Extensible Type Mapping 122

15.1 Design Goals 122
15.2 Type Mapping Framework 123
15.3 API Specification 125
15.3.1 TypeMappingRegistry 125
15.3.2 TypeMapping 127
15.3.3 Serializer 127
15.3.4 Deserializer 128
15.4 Example: Serialization Framework 130

Futures 131

References 132

Appendix: XML Schema Support 133
Appendix: Serialization Framework 143

19.1 Serialization 143
19.1.1 Serializers 144
19.1.2 SOAPSerializationContext 144
19.1.3 SOAPSerializer Interface 146
19.1.4 Primitive Serializers 149

19.2 Deserialization 149
19.2.1 Deserializers 150
19.2.2 SOAPDeserializationContext 150
19.2.3 The deserialize Method 152
19.2.4 Instance Builders 155
19.2.,5 Deserializing Trailing Blocks 156

JAX-RPC 1.1 Specification

119

20.

21.

19.2.6 Primitive Deserializers 156
19.3 XMLWriter 157
19.4 XMLReader 158

Appendix: Mapping of XML Names 161

20.1 Mapping 161

Appendix: Change Log 164

21.1 Changes for the JAX-RPC 1.1 Maintenance Release 164

Contents

9

10 JAX-RPC 1.1 Specification

Introduction

JAX-RPC 1.1

Introduction

The RPC (Remote Procedure Call) mechanism enables a remote procedure call from a
client to be communicated to a remote server. An example use of an RPC mechanism is
in a distributed client/server model. A server defines a service as a collection of
procedures that are callable by remote clients. A client calls procedures to access service
defined by the server.

In XML based RPC, a remote procedure call is represented using an XML based
protocol. SOAP 1.1 specification [3] defines an XML based protocol for exchange of
information in a decentralized, distributed environment. SOAP defines a convention for
representation of remote procedure calls and responses. This is in addition to the
definition of the SOAP envelope and encoding rules.

An XML based RPC server application can define, describe and export a web service as
an RPC based service. WSDL (Web Service Description Language) [7] specifies an
XML format for describing a service as a set of endpoints operating on messages. An
abstract description of such service can be bound to an XML based protocol and
underlying transport. A service client can use an RPC based service.

This document specifies Java APIs for XML based RPC (JAX-RPC). This document is
the formal specification for JSR-101 [http://jcp.org/jsr/detail/101.jsp], which
is being worked on under the Java Community Process [http://j cp. org].

1.1

Design Goals

The goals of this JSR are as follows:
» Specify APIs for supporting XML based RPC for the Java platform

+ Define base level protocol bindings and to not limit other protocol bindings that can
be supported with the JAX-RPC programming model.

» Define APIs that are simple to use for development of Java applications that define or
use JAX-RPC based services. Simplicity of JAX-RPC APIs is an important element
in making the JAX-RPC model easy to understand, implement, maintain and evolve.
Part of the simplicity goal will be to follow the standard Java application
programming model and concepts as part of the JAX-RPC API specification.

» Support interoperability across heterogeneous platforms and environments. This
specification will specify requirements for interoperability as applied to the scope of
JAX-RPC.

* Specify conformance and interoperability requirements that are testable for an
implementation of the JAX-RPC specification.

-1

Chapter Introduction

1.1.1

1.2

JAX-RPC 1.1

Keep the design of JAX-RPC APIs and mechanisms extensible and modular. This
will enable support for future versions of various XML specifications, including

XMLP [5]

Expert Group Goals

The goals of simplicity and faster time to market imply that some important features are
considered out of scope for the 1.1 version of JAX-RPC specification. However, the
JAX-RPC 1.1 specification recognizes that these out of scope features may be

implemented by a JAX-RPC implementation.

Proposed out of scope features for the 1.1 version of the JAX-RPC specification include:

Design of portable stubs and skeletons

Standard representation of transaction and security context

Service registration and discovery

Objects by reference

These features may be addressed by future versions of the JAX-RPC specification.

JSR-101 Expert Group

ATG: Mark Stewart

BEA: Manoj Cheenath

Cisco Systems: Krishna Sankar
EDS: Wagqar Sadiq

Fujitsu: Kazunori Iwasa

HP: Pankaj Kumar

IBM: Russell Butek, Jim Knutson
Idoox: Miroslav Simek

IONA: Dan Kulp

InterX: Miles Sabin

iPlanet: Shailesh Bavadekar
Macromedia: Glen Daniels
Netdecisions: Steve Jones
Nortel: Pierre Gauthier

Novell: Bjarne Rasmussen

Oracle: Jeff Mischkinsky, Umit Yalcinalp

Pramati: Amit Khanna

Software AG: Dietmar Gaertner

Sun Microsystems: Roberto Chinnici [Maintenance lead]

WebGain: Steve Marx
WebMethods: Prasad Yendluri
Matt Kuntz

James Strachan

Chapter Introduction JAX-RPC 1.1

+ Shawn Bayern

1.3 Acknowledgments

Art Frechette, Phil Goodwin, Arun Gupta, Marc Hadley, Graham Hamilton, Mark
Hapner, Doug Kohlert, Eduardo Pelegri-Llopart, Bill Shannon and Sankar Vyakaranam
(all from Sun Microsystems) have provided invaluable technical input to the JAX-RPC
1.1 specification.

As the specification lead for JAX-RPC 1.0, Rahul Sharma was extremely influential in
determining the direction that this technology took.

1.4 Status

This document is a maintenance review draft for the maintenance release of JSR-101
under the Java Community process.

1.5 Notational Conventions
+ Diagrams follow the standard UML notation

» Code snippets are not shown in complete form. Refer to the Java docs for complete
and detailed description.

» Examples are illustrative (non-prescriptive)

Chapter JAX-RPC Usecase JAX-RPC 1.1

2

JAX-RPC Usecase

2.1

2.1.1

This chapter describes use cases for the JAX-RPC model in a non-prescriptive manner.
Later chapters of this document specify requirements and APIs in a prescriptive manner.

Stock Quote Service

The following description uses a stock quote service example to illustrate JAX-RPC
concepts. Note that this use case is used throughout this document to show use cases for
the JAX-RPC APIs.

Note that this usecase describes a high level overview of the JAX-RPC concepts. For
more complete details, refer to the detailed specification later in this document.

The following diagram shows a server side service endpoint definition of a stock quote

service.
__) WSDL<->Java Mapping
_ 4_ —_— —_— —_ — —

StockQuote Servic

Endpoint

WSDL

document Container

Dispatch
Server-side JAX-RPC

Runtime System

Protocol
Transport

Service Endpoint Definition

The example stock quote service is defined and deployed using the Java platform. This
service is capable of use by service clients deployed on any platform. JAX-RPC service
endpoint definition makes no assumption that the service be only used by a Java based
service client. The converse also holds. A Java service client is capable of using an
XML based RPC service deployed on any non Java platform.

Chapter JAX-RPC Usecase JAX-RPC 1.1

2.1.2

The example stock quote service endpoint defines and implements the following Java
interface.

Code Example 1 An example service endpoint interface
package com exanpl e;
public interface StockQuoteProvider extends java.rm .Renpte {
float getlLastTradePrice (String tickerSynbol)
throws java.rm . Renot eExcepti on;
I

}

In this example, stock quote service endpoint definition starts with a Java interface as
shown in the above code example. This interface is called a service endpoint interface.
Note that the service developer could have started from the stock quote service
description in a WSDL document and mapped it to the corresponding Java service
endpoint interface.

A JAX-RPC service endpoint can be realized (or implemented) using the J2EE
component model. This example uses a stateless session bean for realizing the stock
quote service.

The following diagram shows the use case hierarchy view of the JAX-RPC stock quote
service. Later chapters of this document specify in detail how these use cases are
realized by a JAX-RPC runtime system implementation.

JAX-RPC Deployer Service Endpoint

Developer
dependSOn Cj/
- — — >

yRPCService defineRPCService

exportRPCService

configureRPCService

Service Deployment

Once a JAX-RPC service endpoint has been defined and implemented, the JAX-RPC
deployer deploys the service on a server-side container based JAX-RPC runtime system.

The deployment step depends on the type of component that has been used to realize a
JAX-RPC service endpoint.

The example stock quote service endpoint is realized as a stateless session bean and is
deployed on an EJB container. The deployment step includes the generation of container
specific artifacts (skeleton or tie class) based on the service endpoint interface. A
container provided deployment tool provides support for the deployment of JAX-RPC
service endpoints.

During the deployment of a JAX-RPC service endpoint, the deployment tool configures
one or more protocol bindings for this service endpoint. A binding ties an abstract
service endpoint definition to a specific protocol and transport. An example of a binding
is SOAP 1.1 protocol binding over HTTP.

Chapter JAX-RPC Usecase JAX-RPC 1.1

2.1.3

Next, the deployment tool creates one or more service endpoints for this JAX-RPC
service. Each service endpoint is bound to a specific protocol and transport, and has an
assigned endpoint address based on this protocol binding.

Service Description

The deployment tool exports the stock quote service as a WSDL document. The WSDL
description of the stock quote service enables service clients (on any platform) to access
this service and its endpoints.

A Java-to-WSDL mapping tool (typically part of a container provided deployment tool)
maps the example St ockQuot ePr ovi der service endpoint interface to the following
service description in a WSDL document:

Code Example 2 WSDL Description of Stock Quote Service
<!l-- WSDL Extract... -->
<?xm version="1.0"7?>
<definitions name="St ockQuot eServi ce"
t ar get Nanespace="htt p: // exanpl e. conf st ockquot e. wsd| "
xm ns:tns="http://exanpl e. com st ockquot e. wsdl "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. org/ wsdl /">

<types/ >
<nessage nane="get Last TradePrice">
<part name="ticker Synbol " type="xsd:string"/>
</ message>
<nessage nane="get Last Tr adePri ceResponse" >
<part nanme="result" type="xsd:float"/>
</ nessage>

<port Type nane="St ockQuot eProvi der" >
<oper ati on nane="get Last TradePrice">
<i nput nessage="tns: get Last TradePrice"/>
<out put nessage="tns: get Last TradePri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme=" St ockSer vi ceSoapBi ndi ng"
type="tns: St ockQuot eProvi der" >
<soap: bi ndi ng styl e="rpc"
transport="http:/schemas. xnm soap. org/ soap/ http"/>
<oper ati on nane="get Last TradePrice">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="encoded”
nanespace="http://exanpl e. conl st ockquot e. wsdl "
encodi ngStyl e=*http://schenmas. xnm soap. or g/ soap/ encodi ng”/ >
</i nput >
<out put >
<soap: body use="encoded”
nanespace=""http://exanpl e. conf st ockquot e. wsdl ”
encodi ngStyl e=*http://schenas. xn soap. or g/ soap/ encodi ng”/ >
</ out put >
</ oper ati on>
</ bi ndi ng>
<servi ce name="St ockQuot eServi ce" >
<port nanme="St ockQuot eProvi der Port™"

Chapter JAX-RPC Usecase

2.14

JAX-RPC 1.1

bi ndi ng="t ns: St ockSer vi ceSoapBi ndi ng" >
<soap: address | ocation="http://exanpl e. com St ockQuot eServi ce”/ >

</ port>
</ service>
</definitions>

In the above WSDL service description, the following are important points to note:

» The St ockQuot eSer vi ce includes a single port St ockQuot ePr ovi der Port with the
St ockSer vi ceSoapBi ndi ng binding.

+ The binding St ockSer vi ceSoapBi ndi ng binds the St ockQuot ePr ovi der Port port
to the SOAP 1.1 protocol over HTTP.

» The address for the St ockQuot ePr ovi der Port port is htt p: // exanpl e. com

St ockQuot eSer vi ce.

» The port type for St ockQuot ePr ovi der Por t is defined as St ockQuot ePr ovi der. The
St ockQuot ePr ovi der port type includes a single operation get Last Tr adePr i ce that
takes a ticker symbol of the type string and returns a float as the last trade price for

this ticker symbol.

Refer to the WSDL specification [7] for complete details.

Service Use

A service client uses a JAX-RPC service by invoking remote methods on a service
endpoint. Note that a JAX-RPC service client can call a service endpoint that has been
defined and deployed on a non-Java platform. The converse is also true.

The following diagram shows how a service client uses stub based model to invoke
remote methods on a service endpoint.

Service Client
Application

Client-side JAX-RPC
Runtime System

WSDL

document

Protocol

Transport

Chapter JAX-RPC Usecase JAX-RPC 1.1

2.2

The following diagram shows the use case hierarchy for the remote method invocation
by a service client.

% impogW SDL
/
/

useRPCSegrvice

lookupRPCService

invokeRPCService

A service client uses the WSDL document (that describes the stock quote service) to
import the stock quote service.

A WSDL-to-Java mapping tool generates client side artifacts (includes stub class,
service endpoint interface and additional classes) for the stock quote service and its
ports. Note that a service client may use dynamic invocation interface (DII) or a
dynamic proxy mechanism instead of a generated stub class to invoke a remote method
on a service endpoint.

The JAX-RPC service client programming model describes how a service client looks
up and invokes a remote method on a service endpoint. Refer to the chapter 9 (“Service
Client Programming Model”) for more details.

The following code snippet shows an illustrative example of how a service client invokes
a remote method on the imported stock quote service.

Code Example 3 Invoking a remote method on a JAX-RPC service
package com wonbat ;
public class ServiceUser {
...
public void soneMethod () {
com exanpl e. St ockQuot eServi ce sqs =
Il ... get access to the StockQuote service
com exanpl e. St ockQuot eProvi der sgp =
sqgs. get St ockQuot ePr ovi der Port () ;
float quotePrice = sqgp.getlLastTradePrice(“ACW");

}

Refer to the chapter 9 for more details on this example.

JAX-RPC Mechanisms

This section describes a brief overview of the JAX-RPC runtime mechanisms. Note that
this description is illustrative. This example assumes SOAP 1.1 protocol with HTTP as
the transport.

Chapter JAX-RPC Usecase JAX-RPC 1.1

2.2.1

222

Service Client

The following use case hierarchy diagram shows how a client-side JAX-RPC runtime
system process a remote method invocation on a target service endpoint:

Service Client

T

invokeRPC
processRPC
OnClient
mapRPCToSOAP processSOAPMessage processHTTPRequest

The processing of a remote method call includes the following steps:

Mapping of a remote method call to the SOAP message representation: This includes
mapping of the parameters, return value and exceptions (for the remote method call)
to the corresponding SOAP message; serialization and deserialization based on the
mapping between Java types and XML data types.

Processing of the SOAP message: This includes processing of the SOAP message
based on the mapping of this remote method call to the SOAP representation.
Encoding style defines how parameters, return value and types in an remote method
call are represented in the SOAP message.

Processing of the HTTP request. This includes transmission of the SOAP request
message as part of an HTTP request. A SOAP response message is transmitted as an
HTTP response.

Server Side

The diagram shows how server-side JAX-RPC runtime system processes a remote
method invocation. Processing of remote method call on the server side includes the
following steps:

Processing of the HTTP request: Server-side JAX-RPC runtime system receives and
processes the HTTP request.

Processing of the SOAP message: JAX-RPC runtime system extracts the SOAP
message from the received HTTP request and processes the SOAP message to get
access to the SOAP envelope, header, body and any attachments. The processing of
the SOAP message uses an XML processing mechanism; examples are streaming
parser and SAX based parser.

Chapter JAX-RPC Usecase JAX-RPC 1.1

» Mapping of the SOAP message to a remote method call: JAX-RPC runtime system
maps the received SOAP message to a method invocation on the target service
endpoint. SOAP body elements carry parameters and return value for this remote call.
SOAP header carries any context information that is not part of a remote method
signature, but is associated with the remote method call.

» Dispatch to the target JAX-RPC service endpoint: JAX-RPC runtime system invokes
method on the target service endpoint based on the mapping of the received remote
method invocation. Return value, out parameters and exceptions are carried in the
SOAP body and fault elements respectively and are processed as part of the HTTP
response.

[N
JAX-RPC server processRPC

Runtime system ©
: dispatchToTarget

processHTTPRequest ~ processSOAPMessage mapToRPC

Chapter Requirements JAX-RPC 1.1

Requirements

This chapter specifies the proposed scope and requirements for the 1.1 version of JAX-
RPC specification. These requirements are addressed in detail in the later chapters.

RO1

Protocol Bindings

A goal of the JAX-RPC specification is to enable support for multiple protocol bindings
that are based on the XML Information Set (Infoset) [20]. For example, SOAP 1.2
messages are specified as XML Infosets. JAX-RPC allows support for binary protocol
bindings that are based on the XML infoset but do not carry XML 1.0 documents. Note
that the use of term “XML based protocol” in this document is consistent with this goal.

Based on this goal, the JAX-RPC core APIs (defined in the j avax. xm . r pc package)
are defined to be independent of any specific protocol bindings. For the SOAP protocol
binding, JAX-RPC specifies APIs in the j avax. xm . r pc. soap package.

A JAX-RPC runtime system implementation is required to support the SOAP 1.1 with
attachments protocol. Refer to the chapter 14 for the interoperability requirements
related to the protocol bindings for the JAX-RPC runtime system implementations.
SOAP message with attachments [6] defines binding for a SOAP 1.1 message to be
carried within a MIME nul ti part/rel at ed message.

Note that the required support of SOAP 1.1 with attachments protocol must not preclude
or limit use of other protocol bindings and transport in a JAX-RPC runtime system
implementation.

Note — The JAX-RPC specification would consider support for the SOAP 1.2 protocol
when the SOAP 1.2 W3C specification [5] reaches the final recommendation stage. This
would be addressed in the future versions of the JAX-RPC specification.

RO2

Transport

A JAX-RPC runtime system implementation is required to support HTTP 1.1 as the
transport for SOAP messages. HTTP binding for the SOAP messages is based on the
SOAP 1.1 specification [3].

Chapter Requirements JAX-RPC 1.1

Note that the required support of HTTP 1.1 must not mean that the HTTP transport is
the only transport that can be supported by a JAX-RPC runtime system implementation.
JAX-RPC core APIs are designed to be transport-neutral. This enables JAX-RPC APIs
to be usable with any transport that supports ability to deliver SOAP messages and has a
defined protocol binding for the SOAP 1.1 protocol.

JAX-RPC specification does not preclude the use of SOAP binding with a transport that
supports security mechanisms. However, the specification of SOAP bindings to
transports that support security is outside the scope of the JAX-RPC specification.

A JAX-RPC runtime system implementation is not required to support HTTP/S as the
underlying secure transport. Refer to the chapter 14 for the interoperability
requirements.

RO3

Supported Type Systems

The JAX-RPC specification requires support for the following Java types:

« Java types specified in the section 5.1, “JAX-RPC Supported Java Types”

+ Java types specified in the section 7.5, “Mapping between MIME types and Java
types”

The JAX-RPC specification requires support for the following XML types:

« XML types specified in section 4.2, “XML to Java Type Mapping”. Refer to the
“Appendix: XML Schema Support” for more details on the supported XML types.

R0O4

XML Encoding for SOAP Messages

The JAX-RPC specification requires support for both encoded and literal representations
of a SOAP message representing an RPC call or response.

SOAP 1.1 encoding (also called SOAP 1.1 section 5 encoding) [3] defines rules for the
encoding of XML data types. This encoding can be used in conjunction with the
mapping of SOAP based RPC calls and responses. The supported data types in the
SOAP 1.1 encoding include the following:

+ Built-in datatypes specified in the XML Schema Part 2: Datatypes specification [9].
Examples include int, float, string.

» Enumeration as defined in the XML Schema Part 2: Datatypes specification
« Compound types that include Struct and Array
+ Serialization and deserialization support for compound types that are neither Struct

nor an Array

The use of SOAP 1.1 encoding must not preclude use of any other encoding in a JAX-
RPC runtime system implementation. However, the use of a specialized encoding
constrains the interoperability of a JAX-RPC runtime system implementation. Refer to
the chapter 14 for the interoperability requirements.

Chapter Requirements JAX-RPC 1.1

RO5

JAX-RPC Runtime System

The JAX-RPC runtime system forms the core of a JAX-RPC implementation. JAX-RPC
runtime system is a library (part of both service client and server side environments) that
provides a set of services required for the JAX-RPC runtime mechanisms.

The JAX-RPC specification identifies the following as the incremental levels of server
side implementation of a JAX-RPC runtime system:

» J2SE based JAX-RPC runtime system
+ Servlet container based JAX-RPC runtime system

+ Standard J2EE container (includes EJB and Web containers) based JAX-RPC runtime
system

The JAX-RPC specification identifies a servlet container as a typical implementation of
JAX-RPC server side runtime system. Note that the use of the servlet container for the
implementation of a JAX-RPC server side runtime system must not preclude any J2SE
level implementation of a JAX-RPC runtime system.

The JAX-RPC specification requires a server side JAX-RPC compatible implementation
to be either:

« Servlet 2.3 (or higher version) [3] container based JAX-RPC runtime system

« J2EE 1.3 (or higher version) container based JAX-RPC runtime system

The JAX-RPC specification requires a client side JAX-RPC compatible implementation
to be based on either J2SE (1.3 version or higher) platform or J2EE (1.3 version or
higher) containers. A J2SE based client application is a fully functional and capable
client for a JAX-RPC service.

The JAX-RPC specification also supports J2ME (Java 2 platform, Micro Edition) MIDP
client as a form of JAX-RPC service client. Note that the programming model
specification for the J2ME based JAX-RPC service clients is outside the scope of the
JAX-RPC specification.

The JAX-RPC core APIs define the programmatic interface to the JAX-RPC runtime
system. Refer to the chapter 8 for the specification of the JAX-RPC core APIs.

RO6

Default Type Mapping

The JAX-RPC specification specifies the following standard type mappings:

+ Java types to XML datatypes

+ XML datatypes to Java types

A JAX-RPC runtime system implementation is required to support these standard type

mappings. Refer to the section 4.2, “XML to Java Type Mapping” and section 5.3, “Java
to XML Type Mapping” for the specification of the standard type mappings.

A JAX-RPC runtime system implementation is allowed to provide extensions to the
standard type mapping. Refer to the requirement RO7 for the extensible type mapping
support in JAX-RPC.

Chapter Requirements JAX-RPC 1.1

RO7

Extensible Type Mapping

The JAX-RPC specification specifies APIs to support an extensible type mapping and
serialization framework. These APIs support development of pluggable serializers and
deserializers for mapping between the Java and XML data types. These serializers and
deserializers may be packaged as part of a JAX-RPC runtime system implementation or
provided by tools vendors or service developers.

A JAX-RPC runtime system implementation uses the extensible type mapping
framework to support serialization and deserialization of an extended set of XML and
Java data types. The extended set is defined as a super set of the XML and Java data
types supported by the standard type mapping specification (refer to the R03).

RO8

Service Endpoint Model

The JAX-RPC specification specifies the standard programming model for a service
endpoint developed and deployed on a servlet container based JAX-RPC runtime
system.

The JAX-RPC specification does not specify a normative J2SE based service endpoint
model.

The JAX-RPC specification does not specify the service endpoint model for a JAX-RPC
service developed using the standard EJB programming model and deployed on an EJB
container. Refer to the JSR-109 [10] and J2EE 1.4 specifications [3] for EJB service
endpoint model.

RO9

Service Description

The JAX-RPC specification uses the WSDL 1.1 [7] specification for the description of
JAX-RPC services. The use of WSDL based service description supports export and
import of JAX-RPC services across heterogeneous environments and is required for
interoperability.

The standard WSDL-to-Java [refer to the chapter 4] and Java-to-WSDL [refer to the
chapter 5] mappings specify the following:

« Mapping between a Java service endpoint interface and abstract WSDL definitions of
port type, operation and message

» Binding of abstract WSDL definitions of port type, operations and messages to a
specific protocol and transport

A JAX-RPC implementation is not required to support a round-trip mapping between the
Java and WSDL based representations of a JAX-RPC service.

Chapter Requirements JAX-RPC 1.1

RO10

Service Registration and Discovery

The JAX-RPC specification considers service registration and discovery as out of scope.
The JAX-RPC specification does not address how a JAX-RPC service is registered in a
public/private registry and how it is discovered by a service client.

ROI1

Java API for XML Binding (JAXB)

The JAX-RPC specification does not require the use of JAXB (Java APIs for XML Data
Binding) 1.0 [14] for marshalling and unmarshalling of XML data types to and from a
Java representation. Note that a JAX-RPC implementation may use JAXB.

A future version of JAX-RPC will consider using JAXB in more integrated manner as
the JAXB specification evolves to support XML schema.

RO12

Application level Modes of Interaction

The JAX-RPC specification supports the following modes of interaction between a client
and service endpoint. Note that these interaction modes are visible as part of the JAX-
RPC programming model and are termed application level interaction modes.

The JAX-RPC specification does not address how a JAX-RPC runtime system
implementation provides support for these application level interaction modes. A JAX-
RPC runtime system may use more primitive implementation specific interaction modes
to implement support for these application level interaction modes.

The JAX-RPC specification requires that any implementation specific mechanisms or
implementation level interaction modes must not be exposed to the JAX-RPC
programming model.

The JAX-RPC specification does not define any qualities of service QoS (examples:
guarantees of message delivery, reliable messaging, use of intermediaries) related to the
application level interaction modes. A JAX-RPC runtime system may support such QoS
mechanisms. Note that the JAX-RPC specification does not preclude such
implementation-specific QoS support.

Chapter Requirements JAX-RPC 1.1

Synchronous Request-response Mode

A service client invokes a remote method on a target service endpoint and receives a
return value or an exception. The client invocation thread blocks while the remote
method invocation is processed by the service endpoint. Eventually, the service client
gets a return (this may be voi d type) or an exception from the invoked remote method.

Service Client Service Endpoint
Invoke method(pamm)\ |

P

Return method(param)
or Exception

Synchronous Request Response Mode

The JAX-RPC specification does not define how a JAX-RPC runtime system implements
support for the synchronous request-response mode in terms of the underlying protocol
and transport. Refer to the SOAP 1.2 specification Part 2 [5] for more details on
transport message exchange patterns and default HTTP binding.

The JAX-RPC APIs and service client programming model support synchronous
request-response mode through both the stub (or dynamic proxy) based model and DII
Cal | interface.

One-way RPC Mode

Service Client Service Endpoint
Invoke one-way method

One-way RPC

A service client invokes a remote method on a service endpoint in the one-way mode.
The client invocation thread does not block and continues execution without waiting for
this remote method invocation to be processed by the service endpoint. The service
client does not get any return value, out parameters or any remote exception for this
method invocation. Note that a JAX-RPC client runtime system may throw an exception
during the processing of an one-way RPC call.

The non-blocking behavior, message delivery and processing of the one-way RPC mode
depends on the underlying protocol and transport. The JAX-RPC specification does not
specify how a JAX-RPC runtime system implements one-way RPC mode in terms of the
underlying protocol and transport. For example, HTTP is a request-response protocol. In
the one-way RPC mode, the client may handle the HTTP response with either success or
error code (but with no entity-body content) as part of the invocation of a one-way RPC.
In another case, a JAX-RPC client runtime system may achieve non-blocking behavior
for one-way RPC by pipelining multiple HTTP requests without waiting for responses.
A J2SE based JAX-RPC client runtime system (targeted for a less restrictive non-

managed environment) may choose to create thread for a one-way RPC dispatch.

Chapter Requirements JAX-RPC 1.1

Note that a client should not rely on any specific guarantees of message delivery and
processing semantics or quality of services (QoS) in the one-way RPC mode.

The JAX-RPC specification supports the one-way interaction mode through the DII
Cal | interface. Refer to the section 8.2.4, “DII Call Interface” for more details.

The JAX-RPC specification does not specify any standard APIs for the design of
asynchronous stubs. This feature will be addressed in the future version of the JAX-RPC
specification. This will lead to the support for both one-way and non-blocking RPC
interaction modes.

Non-blocking RPC Invocation

A service client invokes a remote method on a service endpoint and continues
processing in the same thread without waiting for the return of the remote method
invocation. Later, the service client processes the remote method return by performing
blocking receive or by polling for the return value. In this case, a service client is
responsible for performing the correlation between the remote method call and
subsequent response.

A JAX-RPC runtime system is not required to support the non-blocking RPC interaction
mode. This interaction mode will be addressed in the future versions of the JAX-RPC
specification.
Service Client Service Endpoint
Invoke method(params) |

Return method(params)

Non-blocking RPC Invocation

RO13

Relationship to JAXM and SAAJ

The JAXM (Java API for XML messaging) specification specifies the standard Java
APIs to support asynchronous document based messaging based on the SOAP protocol.
The JAXM API has two packages:

+ The javax. xn . soap package specifies API to represent a SOAP message with
attachments. This API enables developers to access, create and manipulate a SOAP
message. JAXM allows profiles (example: ebXML TRP) to be defined over this base
SOAP package. These layered profiles define additional mechanisms, abstractions
and conventions on top of the base SOAP abstraction.

+ The j avax. xm . nessagi ng package specifies API for developing clients and
message-driven bean based endpoints to support document based asynchronous
messaging.

Note that the maintenance release of JAXM 1.1 has created a new specification
document named "SOAP with Attachments API for Java ("'SAAJ’)" [13] for the

j avax. xm . soap package. The maintenance release also makes the j avax. xn . soap
package independent of the j avax. xm . messagi ng package.

JAX-RPC 1.1 implementations are required to support the SAAJ 1.2 APIs.

Chapter Requirements JAX-RPC 1.1

In relation to the JAX-RPC specification, the JAXM specification does not define any
mapping between WSDL and Java. It also does not define any standard type mapping
between the XML data types and Java types.Both JAXM and JAX-RPC use SOAP 1.1
with attachments as the underlying protocol. Refer RO1 for the JAX-RPC requirement
related to the protocol bindings.

The JAX-RPC specification specifies APIs for the development of SOAP message
handlers for SOAP message processing. These SOAP message handlers are based on the
j avax. xm . soap package.

The JAX-RPC specification also defines SOAP protocol binding specific APIs in the

j avax. xm . rpc. soap package. This package uses the Java APIs defined in the

j avax. xnm . soap package. JAX-RPC also uses the j avax. xm . soap APIs to represent
mapping of literal fragments carried in a SOAP message.

The following diagram shows the dependency relationship between the j avax. xm . r pc
(specified in JAX-RPC) and j avax. xm . soap packages:

]

<<Package>>

j avax. xm . rpc

N\ dependency
AN

sl_‘

<<Package>>

j avax. xm . soap

RO14

Parameter Passing semantics

JAX-RPC uses pass by copy semantics for parameter passing in a remote method
invocation.

JAX-RPC specification does not define the object-by-reference mode for remote method
invocations. Note that the SOAP 1.2 specification[5] does not address objects-by-
reference feature as part of its design goals.

RO15

Service Context

A remote method call or response may carry context information (termed as service
context). Examples are service contexts for transaction management (example: unique
transaction identifier), security (example: digital signature) or session management.

The JAX-RPC specification specifies a non-normative programming model for the
processing of service context. Refer to the chapter 11 (“Service Context”) for more
details. Note that the JAX-RPC specification does not (nor intends to, in future) specify
the semantic content of the service contexts.

Chapter Requirements JAX-RPC 1.1

If SOAP is the underlying protocol, service context information is carried in the SOAP
header of a SOAP message. Note that neither SOAP 1.1 nor SOAP 1.2 specification
defines any standard SOAP header representation for the transaction or security related
context.

An explicit goal of the JAX-RPC specification is not to define any SOAP header
representation for transaction, security or session related information. A goal of JAX-
RPC specification is to leverage work done in other standardization groups for this
aspect. An important point to note is that any JAX-RPC specific definition of SOAP
headers or session related information is against the design goal of achieving SOAP
based interoperability with heterogeneous environments.

RO16

SOAP Messages with Attachments

The SOAP 1.1 message with attachments defines a binding for a SOAP message to be
carried within a MIME mul ti part/rel at ed message. A SOAP message can be
transmitted together with attached data in a MIME encoded representation.

The JAX-RPC specification provides support for SOAP message with attachments as the
underlying protocol.

A remote method call may include MIME encoded content as a parameter or a return
value. A typical use case is passing or return of an XML document or binary image (in
JPEG or GIF format) in a remote method call.

Refer to the chapter 7 (“SOAP Message With Attachments™) for more details.

RO17

SOAP Message Handler

The JAX-RPC specification specifies the requirements and APIs for the SOAP message
handler. A SOAP message handler gets access to the SOAP message that represents
either an RPC request or response. A typical use of a SOAP message handler is to
process the SOAP header blocks as part of the processing of an RPC request or
response.

Note that other types of handlers (for example; stream based handlers, post-binding
typed handlers) may also be developed for an implementation of a JAX-RPC runtime
system. However, JAX-RPC specification specifies APIs for only the SOAP message
handlers. Future versions of the JAX-RPC specification would add support for other
types of handlers.

RO18

Literal Mode

When the SOAP binding is used, an RPC call with its parameters and return value is
assembled inside the body element of a SOAP message. A message part may be either
encoded using some encoding rules or may represent a concrete schema definition; the
latter is termed literal representation.

The JAX-RPC specification requires support for the literal representation of an RPC
request or response in the SOAP body. Refer to the section 6.4, “Literal Representation”
for more details.

Chapter Requirements JAX-RPC 1.1

RO19

Application Portability

The JAX-RPC specification requires that service client and service endpoint code be
portable across multiple JAX-RPC runtime system implementations.

In the 1.1 version, portable JAX-RPC service client or service endpoint code should not
depend on any pluggable vendor-specific serializers and deserializers.

To achieve portability, the JAX-RPC specification does not require portable stubs and
skeletons. The stub/skeleton classes and other generated artifacts are generated by a
deployment tool (provided with a J2EE container or a JAX-RPC runtime system) during
the deployment of a JAX-RPC service endpoint or a service client. In the 1.1 version,
these generated artifacts are specific to a JAX-RPC implementation.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

WSDL/XML to Java Mapping

This chapter specifies the standard mapping of the WSDL definitions to Java
representation and mapping of the XML data types to the Java types.

The WSDL/XML to Java mapping specification includes the following:

» Mapping of XML data types to the Java types

» Mapping of abstract definitions of port type, operations and messages to Java
interfaces and classes

+ Java representation of a wsdl : port address specification

+ Java representation of a wsdl : servi ce definition

This chapter provides illustrative examples of the specified mapping.

4.1

XML Names

XML names in a WSDL document are mapped to the Java identifiers. Refer to the
“Appendix: Mapping of XML Names” for more details on the mapping of XML names
to Java identifiers.

Any XML names that may be mapped to a reserved Java keyword must avoid any name
collision. Any name collisions in the mapped Java code are resolved by prefixing an
underscore to the mapped name. Refer to the Java language specification [1] for the list
of keywords in the Java language.

4.2

XML to Java Type Mapping
This section specifies the standard type mapping of XML data types to the Java types.

Refer to the “Appendix: XML Schema Support” for the specification of JAX-RPC
support for the XML Schema data types as specified in the XML Schema specifications,
Part 1 [8] and Part 2 [9], and SOAP 1.1 encoding specification (as specified in the
section 5 of the SOAP 1.1 specification].

Note that the rules and format of serialization for XML data types are based on the
encoding style. For example, SOAP encoding [4] specifies the default rules of
serialization for the simple and compound XML types. Refer to the SOAP specification
for more details on the SOAP encoding.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.2.1 Simple Types
The following table specifies the Java mapping for the built-in simple XML data types.

These XML data types are as defined in the XML schema specification [9] and the
SOAP 1.1 encoding [htt p: //schemas. xnl soap. or g/ soap/ encodi ng/].

TABLE 4-1 Java mapping for the built-in simple XML data types

[Simple Type Java Type

xsd: string j ava. |l ang. String
xsd: i nt eger j ava. mat h. Bi gl nt eger
xsd: i nt i nt

xsd: | ong | ong

xsd: short short

xsd: deci mal j ava. mat h. Bi gDeci nal
xsd: 1 oat f1 oat

xsd: doubl e doubl e

xsd: bool ean bool ean

xsd: byt e byt e

xsd: unsi gnedl nt | ong

Xsd: unsi gnedShort | nt

Xsd: unsi gnedByt e short

xsd: QNane j avax. xm . nanespace. QName
xsd: dat eTi ne j ava. util . Cal endar

xsd: dat e j ava. util . Cal endar

xsd: time j ava. util . Cal endar

xsd: anyURI j ava. net. URI (J2SE 1.4 only)

j ava. |l ang. String

xsd: base64Bi nary byt e[]

xsd: hexBi nary byt e[]

xsd: anySi npl eType | ava.lang. String

The JAX-RPC specification does not define the standard Java mapping for the
xsd: anyType. A JAX-RPC implementation is not required to support the xsd: anyType.

The xsd: anyURl type must be mapped to the j ava. net. URI class in applications that
are intended to run on J2SE 1.4 or later. For compatibility with pre-1.4 environments,
JAX-RPC implementations are allowed to map this type to j ava. | ang. Stri ng.

Implementations are also required to support the additional data types defined in the
XML Schema specification using one of the derivation mechanisms covered in sections
4.2.4,4.2.5 and 4.2.6 below. Examples of the types covered by this clause include:
xsd: t oken, xsd: nonPosi ti vel nt eger, xsd: gDay.

The following types are explicitely excluded from the previous proviso and JAX-RPC
implementations are not required to support them: xsd: NOTATI ON, xsd: ENTI TY,
xsd: | DREF and their respective derived types.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

For clarity, the following table lists the mappings for the remaining data types defined in
the XML schema specification. These mappings were derived following the rules given
in the preceding paragraphs.

TABLE 4-2 Derived Java mapping for the remaining built-in simple XML data types

ISimpIe Type Java Type

xsd: duration j ava. |l ang. String
xsd: gYear Mont h j ava. | ang. String
xsd: gYear j ava. |l ang. String
xsd: ghont hDay j ava. |l ang. String
xsd: gDay j ava. |l ang. String
xsd: ghbnt h j ava. |l ang. String
xsd: normal i zedString j ava. l ang. String
xsd: t oken j ava. |l ang. String
xsd: | anguage j ava. |l ang. String
xsd: Nane j ava. |l ang. String
xsd: NCNane j ava. |l ang. String
xsd: | D j ava. | ang. String
xsd: NMTOKEN j ava. | ang. String
xsd: NMTOKENS j ava. | ang. String[]
xsd: nonPositivelnteger | ava. math. Bi gl nt eger
xsd: negati vel nt eger j ava. mat h. Bi gl nt eger
xsd: nonNegati vel nteger | ava. mat h. Bi gl nt eger
xsd: unsi gnedLong j ava. mat h. Bi gl nt eger
xsd: posi tivel nt eger j ava. mat h. Bi gl nt eger

There are a number of cases in which a built-in simple XML data type must be mapped
to the corresponding Java wrapper class for the Java primitive type:

» an element declaration with the ni | | abl e attribute set to true;

+ an element declaration with the mi nCccur s attribute set to 0 (zero) and the
maxCccur s attribute set to 1 (one) or absent;

+ an attribute declaration with the use attribute set to opti onal or absent and carrying
neither the def aul t nor the fi xed attribute;

The following shows examples of each:

<xsd: el ement nane="code" type="xsd:int" nillable="true"/>
<xsd: el ement nane="code2" type="xsd:int" mnCccurs="0"/>

<xsd: el ement nanme="description”>
<xsd: conpl exType>
<xsd: sequence/ >
<xsd: attribute nane="code3” type="xsd:int” use="optional”/>
</ xsd: conpl exType>
</ xsd: el ement >

The element/attribute declarations for code, code2, code3 above are all mapped to the
java. |l ang. | nt eger type.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.2.2

The following table specifies the mapping of element/attribute declarations of the kind
given above for the built-in simple XML types.

TABLE 4-3 Java Mapping for the built-in simple XML data types

Element/attribute declarations in which

a value may be omitted Java Type

xsd: i nt j ava. | ang. | nt eger
xsd: | ong j ava. | ang. Long
xsd: short j ava. | ang. Short
xsd: fl oat j ava. | ang. Fl oat
xsd: doubl e j ava. | ang. Doubl e
xsd: bool ean j ava. | ang. Bool ean
xsd: byt e j ava. | ang. Byte

The SOAP 1.1 specification indicates that all SOAP encoded elements are ni | | abl e. So
in the SOAP encoded case, a SOAP encoded simple XML type is mapped to the
corresponding Java wrapper class for the Java primitive type. An example is mapping of
the soapenc: i nt to the j ava. | ang. I nt eger . The following table shows the Java
mapping of the SOAP encoded simple types.

TABLE 4-4 Java Mapping for the SOAP encoded XML data types

ISOAP Encoded

[Simple Type Java Type

soapenc: string j ava. |l ang. String
soapenc: bool ean j ava. | ang. Bool ean
soapenc: f | oat | ava. | ang. Fl oat
soapenc: doubl e j ava. | ang. Doubl e
soapenc: deci nal j ava. mat h. Bi gDeci nal
soapenc: i nt j ava. | ang. | nt eger
soapenc: short j ava. | ang. Short
soapenc: byte j ava. | ang. Byte
soapenc: base64 byt e[]

Array

An XML array is mapped to a Java array with the operator [] . The JAX-RPC
specification requires support for the following types of XML array definitions:

« An array derived from the soapenc: Array by restriction using the wsdl : arr ayType
attribute. This case is specified in the WSDL 1.1 [7] specification

» An array derived from soapenc: Array by restriction as specified in the SOAP 1.1
specification [4]

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

The type of Java array element is determined based on the schema for the XML array.
Note that the array dimension is omitted in the declaration of a Java array. The number
of elements in a Java array is determined at the creation time rather than when an array
is declared.

The standard type mapping supports XML arrays with multiple dimensions.

Example

The following shows an example of an array derived from the soapenc: Array by
restriction using the wsdl : arr ayType attribute. This array maps to the Javaint[]:

<conpl exType name="ArrayOfint">
<conpl exCont ent >
<restriction base="soapenc: Array" >
<attribute ref="soapenc: arrayType"
wsdl : arrayType="xsd:int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

The following example shows an XML array formed by the restriction of the
soapenc: Array.

<!-- Schema fragment -->
<conpl exType name=" Arr ayOf PhoneNurber s” >
<conpl exCont ent >
<restriction base="soapenc: Array” >
<sequence>
<el enent nane=" phoneNunber”
type="xsd: string” maxCccurs="unbounded”/ >
</ sequence>
</restriction>
</ conpl exCont ent >
</ conpl exType>

The above XML array maps to a String[] in the Java mapping. In this example,
java.lang. String (mapping of the base element type xsd: stri ng in the above XML
array) is used as the element type in the mapped Java array.

The following example shows a schema fragment and instance for a polymorphic array.

<l-- Schema fragment -->
<el ement nanme="nyNunbers” type="soapenc: Array”/>

<l-- Schemm instance -->

<nmyNunbers soapenc: arrayType="xsd:int[2]">
<nunber >1</ nunber >
<nunber >2</ nunber >

</ nyNunber s>

The above XML array maps to a Java array of j ava. | ang. Obj ect. The operator [] is
applied to the mapped Java array. Note that above XML array is not mapped to a Java
array of integers, since the type (xsd: i nt) of array members is determined by the
inspection of the soapenc: arr ayType attribute in the schema instance.

An array can also contain struct values. The following schema fragment shows an

example:
<l-- XM. schena fragnent -->
<conpl exType nanme="Book” >

<al |l >

<el ement nanme="aut hor” type="xsd:string”/>
<el ement name="preface” type="xsd:string”/>
<el enent nane="price” type="xsd:float”/>

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.2.3

</all>
</ conpl exType>

<conpl exType nanme="ArrayOf Books” >
<conpl exCont ent >
<restriction base="soapenc: Array”>
<sequence>
<el ement name="book” type="tns: Book” naxCccurs="unbounded”/>
<sequence>
</restriction>
</ conpl exCont ext >
</ conpl exType>

The above XML array maps to Book[] in the Java mapping. Refer to the Java mapping
of an XML struct for details on how Book type has been mapped.

XML Struct and Complex Type

The JAX-RPC specification supports the mapping of the following types of XML struct:

» The xsd: conpl exType with both sequence of elements of either simple or complex
type. Refer to the xsd: sequence [9]

« The xsd: conpl exType with xsd: al | [9] based unordered grouping of elements of
either simple or complex type

« The xsd: conpl exType with xsd: si npl eCont ent used to declare a complex type by
extension of an existing simple type

In all cases, attribute uses specified using either the xsd: attri bute or
xsd: attri but eG oup elements are supported.

An XML struct maps to a JavaBeans class with the same name as the type of the XML
struct. If the struct is anonymous, then the name of the nearest enclosing xsd: el enent ,
xsd: conpl exType or xsd: si npl eType is used instead.

The mapped JavaBeans class provides a pair of getter and setter methods for each
property mapped from the member elements and attributes of the XML struct.

The identifier and Java type of a property in the JavaBeans class is mapped from the
name and t ype of the corresponding member element (or attribute) in the XML struct.
Refer to the section 4.1, “XML Names” for the mapping of XML names to Java
identifiers.

Note that, according to JavaBeans conventions, the getter method for a boolean property
uses the prefix “is” instead of “get”, e.g. i sRequired().

For complex types defined using xsd: si npl eCont ent and extending a simple type T,
the corresponding JavaBean class will contain an additional property named “_val ue®
and whose type is mapped from the simple type T according to the rules in this
specification.

The instances of the mapped JavaBeans class must be capable of marshaling to and from
the corresponding XML struct representation.

An element in a complex type with the maxQccur s attribute set to a non-negative integer
greater than 1 or unbounded is mapped to a Java array with a pair of setter and getter
methods in the JavaBeans class. The Java type of the array is mapped from the t ype
attribute of the XML element. Refer to the following example.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

The JAX-RPC specification does not require support for all different combinations of
the occurrence constraints (i nOccur s, maxQccur s).

Additionally, the xsd: any element can occur within complex type declarations to
represent element wildcards. In this context, it will result in an additional property on
the JavaBean corresponding to the containing complex type. This property will be called
“_any” and will have j avax. xm . soap. SOAPE! ement as its type, unless the xni : any
element has a maxQccur s attribute with a value greater than 1, in which case its type
will be j avax. xm . soap. SOAPEl enent [] .

Example
The following example shows a struct of the type Book and its schema fragment and
instance:
<l-- XML Schenma fragnent -->
<conpl exType nane="Book” >
<sequence>

<el ement name="aut hors” type="xsd:string” maxCccurs="10"/>
<el ement nane="preface” type="xsd:string”/>
<el erent nane="price” type="xsd:float”/>
</ sequence>
</ conpl exType>

The above XML struct is mapped to a JavaBeans class as follows:

/1 Java
public class Book {
I
public String[] getAuthors() { ... }
public void setAuthors(String[] authors) { ... }
public String getPreface() { ... }
public void setPreface(String preface) { ... }
public float getPrice() { ... }
public void setPrice(float price) { ... }
}
Example

The following schema fragment shows a complex type derived by extension from the
xsd:string simple type:
<l-- XML Schenma fragnent -->
<conpl exType name=" Count edStri ng” >
<si npl eCont ent >
<ext ensi on base="xsd:string>
<attribute nane="counter” type="xsd:int”/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>

The complex type above is mapped to the following JavaBeans class:

/1 Java
public class CountedString {
I
public String get_value() { ... }
public void set_value(String value) { ... }
public int getCounter() { ... }
public void setCounter(int counter) { ... }
}

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.2.4

Enumeration

An XML enumeration is a specific list of distinct values appropriate for a base type. The
XML Schema Part 2: Datatypes specification supports enumerations for all simple built-
in types except for xsd: bool ean.

An XML enumeration is mapped by default to a Java class with the same name as the
enumeration type. If the enumeration is anonymous, then the name of the nearest
enclosing xsd: attri bute, xsd: el enent, xsd: si npl eType or xsd: conpl exType is
used instead.

In order to be compatible with the JAXB 1.0 specification [14], in addition to the default
mapping given above JAX-RPC implementations are required to support mapping
anonymous enumerations using the rules for simple types derived via restriction given in
section 4.2.5.

The mapped Java class declares a get Val ue method, two static data members per label,
an integer conversion method and a constructor as follows:

/1 Java
public class <enuneration_nane> {
/1

/'l Constructor
protected <enuneration_nane>(<base_type> value) { ... }

/1l One for each |abel in the enuneration

public static final <base_type> _<label > = <val ue>;

public static final <enuneration_nane> <l abel > =
new <enumer ati on_nane>(_<I| abel >);

/] Gets the value for a enunerated val ue
public <base_type> getValue() {...}

/1 Gets enuneration with a specific value

/'l Required to throw java.lang. || egal Argument Exception if

/1 any invalid value is specified

public static <enuneration_nane> fronVal ue(<base_type> val ue) {

}
/1 Gets enuneration froma String
/'l Required to throw java.lang. |l egal Argument Exception if
/1 any invalid value is specified
public static <enuneration_nane> fronString(String value){ ... }

/1 Returns String representation of the enunerated val ue

public String toString() { ... }
public bool ean equal s(Object obj) { ... }
public int hashCode() { ... }

}

All _<I abel > and <I abel > used in the mapped Java class (for XML enumeration) are
required to be valid Java identifiers. According to the Java language specification, a Java
identifier cannot have the same spelling as a Java keyword, Bool ean literal or nul |
literal.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

If one or more enumerated values in an XML enumeration cannot map to valid Java
identifiers (examples are “3.14”, “int”), the mapped Java class is required to use Java
identifiers val ue<l. . N> and _val ue<1. . N> for <l abel > and _<I abel > (as in the above
mapping code snippet) respectively. The numeric suffix starts from 1 and increments by
1 per value in the XML enumeration. Examples are _val uel, val uel, val ue2 and

val ue2.

Example

The following shows an example of XML enumeration and its schema fragment:

<l-- XML Schena fragnent -->
<el ement name="EyeCol or” type="EyeCol or Type”/>
<si npl eType name="EyeCol or Type” >
<restriction base="xsd:string”>
<enuneration val ue="green”/>
<enuneration val ue="bl ue”/>
</restriction>
</ si npl eType>

<l-- XM. Schenm instance -->
<EyeCol or >gr een</ EyeCol or >

The following code snippet show the Java mapping for the above XML enumeration:

/1 Java
public class EyeCol or Type {
/1 Constructor

prot ected EyeCol or Type(String value) { ... }
public static final String _green = “green”;
public static final String _blue = “blue”;

public static final EyeCol or Type green = new EyeCol or Type(_green);
public static final EyeCol or Type blue = new EyeCol or Type(_bl ue);

public String getValue() { ... }
public static EyeCol or Type fromval ue(String value) { ... }
publ i c bool ean equal s(Object obj) { ... }
public int hashCode() { ... }
/1l ... OQther methods not shown
}
Here’s the same XML enumeration type, this type defined as an anonymous type:
<l-- XM. Schenma fragnent -->
<el enent nane="EyeCol or” >
<si nmpl eType>

<restriction base="xsd:string”>
<enuneration val ue="green”/>
<enurer ati on val ue="Dbl ue”/>
</restriction>
</ si npl eType>
</ el enent >

The default mapping for this enumeration type is the same as for the non-anonymous
case. Additionally, implementations are also required to support mapping this
enumeration type to the j ava. | ang. Stri ng type, so as to be compatible with the JAXB
1.0 specification.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.2.5

4.2.6

Simple Types Derived By Restriction

The XML Schema specification allows the definition of new simple types obtained by
restricting an existing simple type. Restrictions on the set of allowed values are specified
using one or more of 12 predefined facets.

A simple type derived by restriction from another simple type, referred to as its base
type, is mapped to the same Java type that its base type is mapped to. If its base type
does not have a standard JAX-RPC mapping (i.e. is unsupported), then the derived type
itself is unsupported.

Several built-in types defined in the XML Schema specification are derived by
restriction from other types for which JAX-RPC provides a standard mapping. Such
types must in consequence be mapped according to the rules in the preceding
paragraphs.

Example

The built-in xsd: nor mal i zedSt ri ng type is derived by restriction from xsd: stri ng,
hence it must be mapped to j ava. | ang. Stri ng.

Example

The following schema fragment defines a new simple type by restriction of the xsd: i nt
type. Consequently, it must be mapped to the Java i nt type.
<l-- XM. Schema fragment -->
<si mpl eType name="OneToTenType” >
<restriction base="xsd:int”>
<m nl ncl usi ve val ue="1"/>
<max| ncl usi ve val ue="10"/>
</restriction>
</ si nmpl eType>

Simple Types Derived Using xsd:list

In XML Schema, simple type definitions can specify xsd:list as their derivation
mechanism. In this case, they also specify an i t em t ype which must itself be a simple

type.

Simple types defined using xsd: | i st and whose item type has a standard JAX-RPC
mapping are mapped to arrays.These types include all built-in XML Schema types
defined in the same way, such as xsd: NMTOKENS. The component type of the resulting
array is mapped from the item type of the simpel type.

Example

The following schema fragment defines a new simple type “list of QNames” which is
mapped to the j avax. xm . nanmespace. QNane[] type.

<l-- XM. Schema fragnent -->

<si npl eType nanme=" QNaneLi st” >
<list itenType="xsd: Q\Nane”/>

</ si npl eType>

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3

4.3.1

4.3.2

4.3.3

WSDL to Java Mapping

This section specifies the mapping of a service described in a WSDL document to the
corresponding Java representation.

WSDL Document

A WSDL document is mapped to a Java package. The fully qualified name of the
mapped Java package is specific to an application and is specified during the WSDL to
Java mapping. A WSDL to Java mapping tool is required to support the configuration of
the application specific package name during the mapping.

Note that the JAX-RPC specification does not specify the standard mapping of a

namespace definition (in a WSDL document) to the corresponding Java package name.
However, the JAX-RPC requires that a namespace definition in a WSDL document must
be mapped to a unique Java package name. The name of the mapped Java package must
follow the package naming conventions defined in the Java Language Specification [1].

The WSDL 1.1 specification allows references to the various WSDL definitions
(examples: port Type, message). Such QNane based references in WSDL are mapped
based on the Java package and name scoping conventions.

Extensibility Elements

The WSDL 1.1 specification allows definition of extensibility elements (that may be
specific to a binding or technology) under various element definitions.

The JAX-RPC specification specifies mapping of the extensibility elements for SOAP
and MIME bindings. Refer to the chapter 6 (“SOAP Binding”) and section 7.4, “WSDL
Requirements”. However, the JAX-RPC specification does not address mapping of any
vendor specific extensibility elements. A JAX-RPC implementation may support
mapping of WSDL extensibility elements at the cost of interoperability and application
portability.

WSDL Port Type

A WSDL port type is a named set of abstract operations and messages involved.

A WSDL port type is mapped to a Java interface (termed a Service Endpoint Interface)
that extends the j ava. rmi . Renot e interface. The mapping of a wsdl : port Type to a
service endpoint interface may use the wsdl : bi ndi ng element. Refer to the section 6.1,
“SOAP Binding in WSDL” for details on the use of the soap: bi ndi ng definition in the
mapping of a WSDL port type.

The name of the Service endpoint interface is mapped from the name attribute of the
wsdl : port Type element. Note that a port type name attribute defines a unique name
among all the port types defined in an enclosing WSDL document. Refer to the
section 4.1, “XML Names” for the mapping of the XML names to Java identifiers.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.4

The mapped Java service endpoint interface contains methods mapped from the
wsdl : oper ati on elements defined in the wsdl : port Type. Refer to the section 4.3.4,
“WSDL Operation” for the standard mapping of a wsdl : oper ati on definition.

Since WSDL does not support inheritance of the port types, the standard Java mapping
of the WSDL port type does not define support for the inheritance of the mapped Java
interfaces.

Each method of the mapped Java interface is required to declare j ava. rmi .

Renot eExcepti on in its throws clause. A Renot eExcept i on is the common superclass
for exceptions related to a remote method invocation. Examples are:

java.rm . Marshal Exception, j ava. rm . Connect Excepti on. Refer to the J2SE [2]
documentation for more details on the Renot eExcept i on.

A method may also throw service specific exceptions based on the mapping of a WSDL
faults. Refer to the section 4.3.6, “WSDL Fault” for more details.

Example

The following is an example of a port type definition in a WSDL document:
<l-- WSDL Extract -->
<message nane="get Last TradePrice”>
<part name="ticker Synbol” type="xsd:string"/>
</ nessage>
<message nane="get Last TradePri ceResponse” >
<part name="result” type="xsd:float”/>
</ nessage>

<port Type nane="St ockQuot ePr ovi der” >
<oper ati on name="get Last TradePri ce”
par anmet er Order ="t i cker Symbol " >
<i nput nessage="tns: get Last TradePrice”/>
<out put message="tns: get Last TradePri ceResponse”/ >
</ oper ati on>
</ port Type>

The above WSDL port type definition maps to the following Java service endpoint
interface:
/1 Java
public interface StockQuoteProvider extends java.rm .Renote {
float getlLastTradePrice(String tickerSynbol)
throws java.rmn . Renot eExcepti on;

WSDL Operation

A wsdl : operati on defined in a wsdl : port Type maps to a Java method on the mapped
Java service endpoint interface. The mapping of a wsdl : oper ati on to a Java method
may include the use of the wsdl : bi ndi ng element. Refer to the section 6.1, “SOAP
Binding in WSDL” for the use of the soap: bi ndi ng element in the mapping of a WSDL
operation.

A wsdl : operati on is named by the nane attribute. The operation name maps to the
name of the corresponding method on the mapped Java service endpoint interface. Refer
to the section 4.1, “XML Names” for the mapping of XML names to Java identifiers.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

Note that the WSDL 1.1 specification does not require that operation names be unique.
To support overloading of operations, the wsdl : bi ndi ng element identifies correct
operation by providing the nanme attributes of the corresponding wsdl : i nput and

wsdl : out put elements. Refer to the WSDL 1.1 for complete details.

In the WSDL to Java mapping, overloaded operations are mapped to overloaded Java
methods provided the overloading does not cause any conflicts in the mapped Java
interface declaration and follows the Java Language specification [1].

The JAX-RPC specification supports the mapping of operations with r equest -r esponse
and one- way transmission primitives. The standard Java mapping of operations defined
with other transmission primitives (noti fi cation, solicit-response) is considered
out of scope in the JAX-RPC specification.

The message parts in the wsdl : i nput and wsdl : out put elements defined in an abstract
WSDL operation are mapped to parameters on the corresponding Java method signature.
The name of the Java method parameter is mapped from the nane attribute of the
corresponding message part. The optional wsdl : faul t element maps to an exception.
Refer to the section 4.3.6, “WSDL Fault” for more details on the Java mapping of
WSDL faults.

Parameter Passing Modes

The JAX-RPC specification does not support a pass by reference mode for a remote
service. JAX-RPC does not support passing of a j ava. r i . Renot e instance in a remote
method invocation.

WSDL parameterOrder

According to the WSDL 1.1 specification, a request-response operation may specify a
list of parameters using the par anet er Or der attribute. The value of the
par amet er Or der attribute follows these rules:

» The paranet er Or der attribute reflects the order of the parameters in the RPC
signature

+ The return value part is not present in the par amet er Or der list

+ If a part name appears in both the input and output message with the same type, it is
an i nout parameter

» If a part name appears in only the wsdl : i nput message, it is an i n parameter

+ If a part name appears in only the wsdl : out put message, it is an out parameter

The order of parameters in an RPC signature follows these rules:

« Part names are either listed in the par amet er Or der attribute or are unlisted. If there
is no par amet er Or der attribute, then all part names are considered unlisted.

 If the par anet er Or der attribute is specified, then all part names from the input
message must be listed. The part names from the output message may or may not be
listed.

+ Listed part names appear first in the method signature in the order that they are listed
in the par anet er Or der attribute.

+ Unlisted part names appear following the listed part names in the order in which
these parts appear in the message: first, the input message’s part names; next, the
output message’s part names. If an unlisted part is a component of an i nout
parameter, then it appears in the order in which its corresponding part appears in the
input message (the order of output message parts is ignored for i nout parameters).

« If there is a single unlisted output part that is not a component of an inout parameter,
then it is the return type. Otherwise, the return type is voi d.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.5

The JAX-RPC specification specifies the following rules for the i n, out and i nout
parameter passing modes and return value:

* Anin parameter is passed as copy. The value of the i n parameter is copied before a
remote method invocation.

« The return value is created as a copy and returned to the caller from a remote method
invocation. The caller becomes the owner of the returned object after completion of
the remote method invocation.

» The out and i nout parameters are passed by copy. Parameter passing mode for out
and i nout parameters uses Hol der classes. Refer to the section 4.3.5, “Holder
Classes”. A service client provides an instance of a Hol der class that is passed by
value for either out or i nout parameter. The contents of the Hol der class are
modified in the remote method invocation and the service client uses the changed
contents after the method invocation returns.

Example

The following is an example of a port type definition in a WSDL document:

<l-- WBDL Exanple -->
<nessage name=" St ockQuot el nput” >
<part name="ticker Synbol” type="xsd:string”/>
</ message>
<nmessage nane=" St ockQuot eCut put " >
<part nane="| ast TradePrice” type="xsd:float”/>
<part nanme="vol une” type="xsd:int"/>
<part nanme="bi d” type="xsd:float”/>
<part name="ask” type="xsd:float”/>
</ message>

<port Type nane=" St ockQuot eProvi der” >
<operati on nane="Get St ockQuot e”
par amet er Or der ="t i cker Synbol volune bid ask”>
<i nput nessage="tns: St ockQuot el nput”/ >
<out put message=t ns: St ockQuot eCut put "/ >
</ oper ati on>
</ port Type>

The above wsdl : port Type definition maps to the following Java service endpoint
interface:

/1 Java
package com exanpl e;
public interface StockQuoteProvider extends java.rni.Renote {
/1 Method returns |ast trade price
float get StockQuote(String tickerSynbol,
javax.xm . rpc. hol ders. | nt Hol der vol une,
javax. xm . rpc. hol ders. Fl oat Hol der bi d,
javax. xm . rpc. hol ders. Fl oat Hol der ask)
throws java.rni.RenoteException;

Holder Classes

The JAX-RPC specification requires use of the Hol der classes as part of the standard
Java mapping of a WSDL operation. The use of Hol der classes enables the mapping to
preserve the intended wsdl : oper at i on signature and parameter passing semantics.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

The JAX-RPC specification includes Hol der classes for the Java mapping of the simple
XML data types (including xsd: base64Bi nary, xsd. hexBi nary, soapenc: base64) in
the javax. xml . r pc. hol der s package. Refer to the section 4.2.1, “Simple Types” for the
Java mapping of the simple XML data types.

The Hol der classes for the Java primitive types are defined in the j avax. xni .

rpc. hol der s package. The name of the Hol der class is the name of the Java primitive
type appended with the suffix Hol der. The initial letter of the Java type name is
capitalized. An example is j avax. xm . rpc. hol der s. Fl oat Hol der for the Java
primitive type f | oat .

The name of the Hol der class for a Java wrapper class (that wraps a primitive Java type)
is derived by appending the suffix W apper Hol der to the name of the wrapper class.
These holders for the Java wrapper classes are also packaged in the j avax. xmi . r pc.
hol der s package. An example is the j avax. xnl . r pc. hol der s. Fl oat W apper Hol der
class for the wrapper class j ava. | ang. Fl oat .

A WSDL to Java mapping tool generates Hol der classes for XML data types other than
the simple XML data types. Examples are Hol der classes generated for the complex
XML types and extended simple XML data types based on the XML schema
specification.

For the complex XML data types, the name of the Hol der class is constructed by
appending Hol der to the name of the corresponding Java class. These generated Hol der
classes are packaged as part of the generated sub package named hol der s in the WSDL
to Java mapping. Refer to the section 4.3.1 for the mapping of the Java package. An
example is com exanpl e. hol der s. BookHol der.

The name of the Hol der class in the Java mapping of an XML array is the name of the
complex type (first letter capitalized) appended with the Hol der suffix. Refer to the
example later in this section.

Each Hol der class provides the following methods and fields:
* A public field named val ue. The type of val ue is the mapped Java type

* A default constructor that initializes the val ue field to a default value. The default
values for the Java types are as specified in the Java Language Specification [1]

» A constructor that sets the val ue field to the passed parameter

A standard or generated holder class is required to implement the marker
javax. xm . rpc. hol ders. Hol der interface. The following code snippet shows the
Hol der interface:

package javax.xni.rpc. hol ders;
public interface Hol der {

}

A JAX-RPC implementation is required to support serialization and deserialization of
the value contained in a Hol der class. This requirement holds for all types of Hol der
classes irrespective of whether a Hol der class is generated or is part of the standard
javax. xm . rpc. hol der s package.

The following are the standard Hol der classes specified in the j avax. xm . r pc. hol ders
package:

* Bi gDeci nal Hol der

* Bi gl ntegerHol der

* Bool eanHol der

* Bool eanW apper Hol der

* Byt eArrayHol der

* Byt eHol der

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

* Byt eW apper Hol der

* Cal endar Hol der

* Doubl eHol der

* Doubl eW apper Hol der
* Fl oat Hol der

* Fl oat W apper Hol der
* | ntHol der

* I nteger Wapper Hol der
* LongHol der

* LongW apper Hol der

* (bj ect Hol der

e NaneHol der

* Short Hol der

* Short W apper Hol der
e StringHol der

Example

The following is an example of a Hol der class for a simple XML data type:

/1 Java

package javax.xmnl .rpc. hol ders;

public final class ShortHol der inplenments Hol der {
public short val ue;

public ShortHolder() { }
publ i ¢ ShortHol der (short val ue) {
this.val ue = val ue;
}
}

The following is an example of a Holder class for a compound or an extended simple
XML type.

/1 Java
package com exanpl e. hol ders; // Mapped fromthe WSDL document nam ng
final public class <Foo>Hol der
i mpl ements javax. xm .rpc. hol ders. Hol der {
publ i ¢ <Foo> val ue;

public <Foo>Holder() { ... }
publi ¢ <Foo>Hol der (<Foo> value) { ... }

}

The following shows an example of an array derived from the soapenc: Array by
restriction using the wsdl : arrayType attribute. This array maps to the Javaint[]:

<l-- Exanple -->
<conpl exType name="ArrayOfInt">
<conpl exCont ent >
<restriction base="soapenc: Array">
<attribute ref="soapenc: arrayType"
wsdl : arrayType="xsd:int[]"/>
</restriction>
</ compl exCont ent >
</ conpl exType>

The holder class for the above array is named ArrayOf | nt Hol der. The name of the
holder class is derived from the name of the complex type by appending suffix Hol der..

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.6

WSDL Fault

The wsdl : faul t element (an optional element in a wsdl : oper at i on) specifies the
abstract message format for any error messages that may be output as a result of a
remote operation. According to the WSDL specification, a fault message must have a
single part.

A wsdl : faul t is mapped to either a j ava. rmi . Renot eExcept i on (or its subclass),
service specific Java exception (described later in this section) or a j avax. xm . r pc.
soap. SOAPFaul t Except i on. Refer to the section 6.5, “SOAP Fault” for more details on
the Java mapping of a WSDL fault based on the SOAP binding.

Refer to the section 14.3.6, “Mapping of Remote Exceptions” for the mapping between
the standard SOAP faults [5] and the j ava. rmi . Renot eExcepti on.

Service Specific Exception

A service specific Java exception (mapped from a wsdl : faul t and the corresponding
wsdl : nessage) extends the class j ava. | ang. Except i on directly or indirectly.

The single message part in the wsdl : nessage (referenced from the wsdl : f aul t
element) may be either a type or an element. If the former, it can be either a
xsd: conpl exType or a simple XML type.

Each element inside the xsd: conpl exType is mapped to a getter method and a
parameter in the constructor of the Java exception. Mapping of these elements follows
the standard XML to Java type mapping. The name of the Java exception class is
mapped from the name attribute of the xsd: conpl exType for the single message part.
This naming scheme enables the WSDL to Java mapping to map an xsd: conpl exType
derivation hierarchy to the corresponding Java exception class hierarchy. The following
section illustrates an example. Refer to the section 4.1, “XML Names” for the mapping
of XML names to Java identifiers.

If the single message part in the wsdl : message (referenced from the wsdl : f aul t
element) has a simple XML type or array, then this element is mapped to a getter
method and a parameter in the constructor of the Java exception. In this case, the nane
of the Java exception class is mapped from the nane attribute of the wsdl : message
element.

If the single message part in the wsdl : message refers to an element, then the type of
that element is used to derive the corresponding Java exception class using the rules in
the preceding paragraph.

The mapped service specific Java exception is declared as a checked exception in the
corresponding Java method mapping for the wsdl : oper ati on element. This is in
addition to the required j ava. r ni . Renot eExcept i on.

Example

The following shows an example of the mapping of a wsdl : faul t to a service specific
Java exception. The wsdl : message has a single part of type xsd: stri ng:

<I-- WSDL Extract -->
<message nane="I|nval i dTi cker Exception” >
<part name="ticker Synbol” type="xsd:string”/>
</ nessage>
<port Type name=" St ockQuot eProvi der” >
<oper ati on nane="get Last TradePrice” ...>
<i nput nmessage="tns: get Last TradePrice”/>
<out put message="t ns: get Last TradePri ceResponse”/ >

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

<fault name="1nval i dTi cker Excepti on”
nmessage="tns: I nval i dTi cker Exception”/ >
</ operati on>
</ port Type>

The following is the Java service endpoint interface derived from the above WSDL port
type definition. Note that the get Last Tr adePri ce method throws the
I nval i dTi cker Excepti on based on the mapping of the corresponding wsdl : faul t:

package com exanpl e;
public interface StockQuoteProvider extends java.rni.Renote {
float getlLastTradePrice(String tickerSynbol)
throws java.rni.RenoteException,
com exanpl e. I nval i dTi cker Excepti on;

}

In this example, the wsdl : f aul t element is mapped to a Java exception com exanpl e.
I nval i dTi cker Except i on that extends the j ava. | ang. Except i on class. The name of
Java exception is mapped from the name of the wsdl : message referenced by the
message attribute of the wsdl : f aul t element. The following code snippet shows the
mapped exception.

package com exanpl e;
public class InvalidTickerException extends java.l ang. Exception {

public InvalidTickerException(String tickerSymbol) { ... }
public getTickerSynbol () { ... }

}

Consider another example with the following WSDL extract:

<I-- WBDL Extract... -->

<xsd: conpl exType nanme="BaseConpl exType" >
<xsd: sequence>
<l-- elenments not shown... -->
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Ext endedConpl exType" >
<conpl exCont ent >
<ext ensi on base="BaseConpl exType" >
<xsd: sequence>
<I-- elerments not shown... -->
</ xsd: sequence>
</ ext ensi on>
</ conpl exCont ent >
</ xsd: conpl exType>

<l-- WBDL fault nessage... -->
<message nane="Faul t Message" >

<part name="info" type="tns: BaseConpl exType"/>
</ nessage>

<I-- fault defined within a wsdl:operation... -->
<operation name="...">
<!-- details not shown -->

<fault nane="Faul t Message" nessage="tns: Faul t Message"/ >
</ oper ati on>

In this example, the single message part in the wsdl : nessage (referenced from the
wsdl : f aul t) represents an xsd: conpl exType. The Ext endedConpl exType derives from
the BaseConpl exType. The above example maps to the following Java exception class
hierarchy:
package com exanpl e;
public class BaseConpl exType extends java.lang. Exception {

Il

}

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.7

4.3.8

4.3.9

cl ass Ext endedConpl exType extends BaseConpl exType {
I

}

WSDL Binding

A wsdl : bi ndi ng defines concrete message format and protocol binding for the abstract
operations, messages and port types specified in a WSDL document. An example of a
binding is the soap: bi ndi ng that defines a binding for SOAP 1.1 service ports.

The JAX-RPC specification does not define a standard Java representation of the
wsdl : bi ndi ng element.

WSDL Port

A wsdl : port element specifies an address for a service port (or endpoint) based on the
specified protocol binding. A wsdl : port should have a unique name among all ports
defined within an enclosing WSDL document.

In the JAX-RPC service client programming model, a service endpoint (defined using
wsdl : port) is accessed using an instance of a generated stub class, a dynamic proxy or
a Cal | object. Refer to the section 4.3.9, “WSDL Service” for details on how a stub
instance and dynamic proxy are created.

WSDL Service

A wsdl : servi ce groups a set of service endpoints (or ports), with each service endpoint
defined with specific port type, binding and endpoint address.

The JAX-RPC specification defines the mapping of a wsdl : servi ce element to a
service class. A service class acts as a factory of the following:
» Dynamic proxy for a service endpoint. Refer to the section 8.2.3, “Dynamic Proxy”.

+ Instance of the type j avax. xnl . rpc. Cal | for the dynamic invocation of a remote
operation on a service endpoint. Refer to the section 8.2.4, “DII Call Interface”.

+ Instance of a generated stub class. Refer to the section 8.2.1, “Generated Stub Class”.

A service class implements one of the following interfaces:
» The base j avax. xm . r pc. Ser vi ce interface directly, or,

» A generated service interface. This service interface is generated during the WSDL-
to-Java mapping and extends the base j avax. xni . r pc. Servi ce interface. An
example of a generated service interface is com exanpl e. St ockQuot eSer vi ce.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.10

The following diagram shows the service interface hierarchy.

<<interface>>
javax.xml.rpc.Service

<<interface>>
Generated Service Interface

Service Interface

The following code snippet shows the j avax. xmi . r pc. Servi ce interface:

Code Example 4 javax.xml.rpc.Service interface
package javax.xm .rpc;
public interface Service {
java.rm . Renote get Port (QNanme port Nane,
Cl ass servi ceEndpoi ntlnterface)
throws Servi ceExcepti on;
java.rm . Renote getPort (C ass servi ceEndpoi ntlnterface)
throws Servi ceExcepti on;

Call createCall () throws ServiceException;
Call createCall (Q\Nane portNanme) throws Servi ceException;
Call createCall (QNane portNanme, String operationNane)

throws Servi ceExcepti on;
Call createCall (Q\ane portName, QNanme operati onNane)

throws Servi ceExcepti on;
Call[] getCalls(QNane portName) throws ServiceException;

j ava. net . URL get WSDLDocunent Locati on();

QNane get Servi ceNane();

java.util.lterator getPorts() throws Servi ceException;
11

}

A JAX-RPC runtime system is required to provide the implementation class for the base
j avax. xm . rpc. Servi ce interface. This implementation class is required to support the
creation of both dynamic proxies and Cal | objects.

The JAX-RPC specification does not specify the design of a service implementation
class. The base Servi ce interface is implemented in a vendor specific manner. For
example, a Servi ce implementation class may be created with a reference to an in-
memory representation of the WSDL service description.

The method get Port (QNane, Cl ass) returns a dynamic proxy or instance of a generated
stub class for the specified service endpoint. A JAX-RPC service client uses the returned
dynamic proxy or stub instance to invoke operations on the target service endpoint. The
parameter servi ceEndpoi nt | nt er f ace specifies the service endpoint interface that
must be supported by the created dynamic proxy or stub instance.

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.11

The method get Port (O ass) returns either an instance of a generated stub
implementation class or a dynamic proxy. The parameter ser vi ceEndpoi nt -

I nt erf ace specifies the service endpoint interface that is supported by the returned
stub or proxy. In the implementation of this method, the JAX-RPC runtime system takes
the responsibility of selecting a protocol binding (and a port) and configuring the stub
accordingly. The returned St ub instance should not be reconfigured by the client.

This get Port method throws Ser vi ceExcept i on if there is an error in the creation of a
dynamic proxy/stub instance or if there is any missing WSDL related metadata as
required by this method implementation.

The method get Port s returns a list of qualified names (as j avax. xnl . namespace.
QNane) of ports grouped by this service.

The multiple variants of the method creat eCal | create instances of the j avax. xm .
rpc. Cal | . Refer to the section 8.2.4, “DII Call Interface” and Javadocs for more details
on these methods. The creat eCal | method throws Ser vi ceExcepti on if there is any
error in the creation of the Cal I object.

The get Cal | s method returns an array of preconfigured Cal | objects for invoking
operations on the specified port. There is one Cal | object per operation that can be
invoked on the specified port. A pre-configured Cal | object does not need to be
configured using the setter methods on the Cal | interface. Each invocation of the

get Cal | s method is required to return a new array of preconfigured Cal | objects. This
enables Servi ce implementation class to avoid side effects of any setter methods that
are invoked on the returned Cal | objects.

The get Cal I s method requires the Ser vi ce implementation class to have access to the
WSDL related metadata. This method throws Ser vi ceExcept i on if this Servi ce
instance does not have access to the required WSDL metadata or if an illegal por t Name
is specified.

The Servi ce implementation class should implement j ava. i 0. Seri al i zabl e and/or
j avax. nani ng. Ref er enceabl e interfaces to support registration in the JNDI
namespace.

Generated Service

A WSDL to Java mapping tool is required to generate a service interface based on the
mapping of a wsdl : servi ce element in the WSDL document. This generated service
interface is used for the creation of instances of the generated stub classes.

A JAX-RPC runtime system is required to provide the implementation class for the
generated service interface. The design of a generated service implementation class is
specific to a vendor’s implementation. A service implementation class should implement
java.io. Serializabl e and/or j avax. nani ng. Ref er enceabl e interfaces to support
registration in the JNDI namespace.

A generated service interface is required to follow the design pattern:

Code Example 5 Design pattern for a generated service interface

public interface <Servi ceNane> extends javax.xm .rpc. Service {
<servi ceEndpoi nt | nt erface> get <Name_of _wsdl : port>()
throws Servi ceExcepti on;

/1 ... Additional getter nethods

Chapter WSDL/XML to Java Mapping JAX-RPC 1.1

4.3.12

The name <Ser vi ceNane> of the generated service interface is mapped from the nane
attribute of the corresponding wsdl : servi ce definition. Refer to the section 4.1, “XML
Names” for the mapping of the XML names to the Java identifiers.

For each wsdl : port defined in a wsdl : servi ce definition, the generated service
interface contains the following methods:

» Required get <Nane_of _wsdl : port > method that takes no parameters and returns an
instance of the stub class that implements the <ser vi ceEndpoi nt | nt er f ace>
interface. The <ser vi ceEndpoi nt | nt er f ace> interface is mapped from the
wsdl : port Type and wsdl : bi ndi ng definitions for this wsdl : port . Refer to the
section 4.3.3, “WSDL Port Type”

» Optional get <Nanme_of _wsdl : por t > methods that include parameters specific to the
endpoint (or port) configuration. Each such getter method returns an instance of a
generated stub class that implements the <ser vi ceEndpoi nt | nt er f ace> interface.
An example is a getter method that takes security information (example: user name,
password) as parameters. These additional getter methods are specific to a JAX-RPC
implementation.

All get <Nane_of _wsdl : port > methods are required to throw the Servi ceExcepti on.

The name of the get <Nane_of _wsdl : port > methods is obtained by first mapping the
name of the wsdl : port to a Java identifier according to the rules in section 4.1, “XML
Names”, then treating it as a JavaBean property name for the purpose of adding to it the
“get” prefix.

Refer to the section 9.2, “J2EE based Service Client Programming Model” for more
details on the use of the generated service class.

Example

The following code snippet shows an example of the generated service interface. This
service interface is generated using the WSDL example in the section 2.1.3:

Code Example 6 Example of a Generated Service Interface: StockQuoteService
package com exanpl e;
public interface StockQuoteService extends javax.xnl .rpc. Service {
St ockQuot eProvi der get St ockQuot eProvi der Port ()
throws Servi ceExcepti on;
I

Name Collisions

Note that the WSDL 1.1 specification allows various element definitions to have the
same name within a specified namespace in the WSDL document. This leads to potential
name conflicts in the WSDL to Java mapping. To address this issue, a WSDL to Java
mapping tool is required to resolve any potential name collisions.

The following table specifies rules for avoiding name collisions in the WSDL to Java
mapping. Suffixes are appended to the mapped Java identifiers to resolve the name
conflicts. If there are no name collisions, there is no requirement to use these suffixes.

Chapter WSDL/XML to Java Mapping

JAX-RPC 1.1

TABLE 4-5 Name Collision Rules
ppended
uffix for
Java definition voiding
mapped from WSDL/ |name Example
XML collisions in
the mapped
Java identifier
Java cl ass based | Type XL

on the

MBDL/ XML- >Java

t ype mappi ng whose
nane is derived
fromthat of a
xsd: si npl eType or
an xsd: conpl exType

<xsd: conpl exType nane="shared">

Java: Shared_Type.java

Java enuneration
cl ass (see
section 4.2.4)

| Enunerati on

IXML:

<xsd: si npl eType name="shared” >
<xsd:restriction base="xsd:string”>
<xsd: enuneration val ue="foo0"/>

</ xsd:restriction>

</ xsd: si npl eType>

Java: Shared_Enuneration.java

Java cl ass based | El ement XML
on the WSDL/ XM.- <xsd: el enent nanme="shared” >
>Java type mappi ng
whose names is Java: Shared_El ement.java
derived from that
of a xsd: el enent
IXIVL:
Ser vi ce Endpoi nt | Port Type <wsdl : port Type nane="shared">
i nterface <wsdl : bi ndi ng nane="shared" ..>
Java:
Ser vi ce Endpoi nt interface:
Shar ed_Port Type. j ava
Gener ated Service | Service XML: <wsdl : servi ce nane="shared"
i nterface -2
Java: Shared_Service.java
Exception d ass | Exception Java: Shared_Exception.java

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

Java to XML/WSDL Mapping

5.1

5.1.1

This chapter specifies the standard mapping from the Java definitions to XML and
WSDL definitions. This mapping specifies the following:

» Definition of a JAX-RPC supported Java type

+ Service endpoint interface for a JAX-RPC service

» Mapping from a Java service endpoint definition to WSDL definitions
» Mapping from the Java types to the XML data types

Note that the JAX-RPC specification does not require support for a round trip mapping
between the WSDL and Java definitions.

JAX-RPC Supported Java Types

The following are the JAX-RPC supported Java types:
» One of the Java primitive types as specified in the section 5.1.1

+ A subset of the standard Java classes (as specified in the J2SE APIs) as specified in
the section 5.1.3

* An array of a supported Java type as specified in the section 5.1.2

» An exception class as specified in the section 5.2.1

« A JAX-RPC value type as specified in the section 5.4

A JAX-RPC runtime system implementation must support transmission of the values of
a JAX-RPC supported Java type between a service client and service endpoint at

runtime. Values of a JAX-RPC supported Java type must be serializable to and from the
corresponding XML representation.

Refer to the section 5.3, “Java to XML Type Mapping” for the XML mapping of the
JAX-RPC supported Java types.

Primitive Types

The JAX-RPC specification supports the following Java primitive types and the
corresponding wrapper Java classes:

* bool ean, byte, short, int,long, float, doubl e

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.1.2

5.1.3

5.14

5.2

Java Array

The JAX-RPC specification supports a Java array with members of a supported JAX-
RPC Java type. The JAX-RPC specification requires support for Java array of type

j ava. |l ang. Qbj ect . Multidimensional Java arrays are also supported. Examples are
int[] and String[][].

Standard Java Classes

The following standard Java classes are supported by JAX-RPC:
e java.lang. String

e java.util.Date

* java.util.Cal endar

* java.math. Bi gl nt eger

e java.nath. Bi gDeci nmal

e javax.xnl . nanmespace. QNane

* java.net.UR

Other standard Java classes (for example: classes in the Java Collection Framework) are
mapped using pluggable serializers and deserializers. Refer to the chapter 15
(“Extensible Type Mapping”) for more details on the pluggable serializers and
deserializers.

JAX-RPC Value Type

Refer to the section 5.4, “JAX-RPC Value Type” for more details.

JAX-RPC Service Endpoint Interface

The JAX-RPC specification requires that a JAX-RPC service endpoint interface must
follow the following rules:

» Service endpoint interface must extend j ava. r ni . Renot e either directly or indirectly

+ All methods in the interface must throw j ava. r ni . Renot eExcept i on. Methods may
throw service specific exceptions in addition to the Renot eExcept i on.

» Method parameters and return types must be the JAX-RPC supported Java types
(refer to the section 5.1, “JAX-RPC Supported Java Types”). At runtime, values of a
supported Java type must be serializable to and from the corresponding XML
representation.

» Holder classes may be used as method parameters. These Hol der classes are either
generated or those packaged in the standard j avax. xm . r pc. hol der s package.

« Service endpoint interface must not include constant (as public final static)
declarations. WSDL 1.1 specification does not define any standard representation for
constants in a wsdl : port Type definition.

Example

The following code extract shows an example of a service endpoint interface:
/1 Java

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.2.1

5.2.2

package com exanpl e;
public interface StockQuoteProvider extends java.rn.Renote {
float getlLast TradePrice(String tickerSynbol)
throws java.rm . Renot eExcepti on,
com exanpl e. I nval i dTi cker Excepti on;
public StockQuotel nfo getStockQuote(String tickerSynbol)
throws java.rni.RenoteException,
com exanpl e. I nval i dTi cker Excepti on;

Service Specific Exception

A JAX-RPC service endpoint interface that extends the j ava. r mi . Renot e interface may
declare service specific exceptions in a method signature in addition to the required
java. rm . Renot eExcepti on.

A service specific exception declared in a remote method signature must be a checked
exception. It must extend j ava. | ang. Except i on either directly or indirectly but must
not be a Runt i neExcepti on.

Example

The following is an example of a service specific Java exception:

/1 Java
package com exanpl e;
public interface StockQuoteProvider extends java.rni.Renote {
float getlLastTradePrice(String tickerSynbol)
t hrows Renpt eExcepti on,
com exanpl e. I nval i dTi cker Excepti on;

11

}

public class InvalidTickerException extends java.lang. Exception {
public InvalidTi ckerException(String tickersynbol) { ... }
public String getTickerSynbol () { ... }

Remote Reference Passing

The JAX-RPC specification does not require support for the passing or return of a
remote reference across a remote method invocation. The reason is that SOAP [5]
specifies object-by-reference as out of scope in both the 1.1 and 1.2 versions. Any
support for remote reference passing in the JAX-RPC would be non-standard and hence
constrain interoperability.

A service endpoint interface must not include a remote reference as either a parameter
or a return type. A Java array or JAX-RPC value type must not include a remote
reference as a contained element.

Example

The following is an example of a non-conforming service endpoint interface.

/'l Java

package com exanpl e;

public interface StockBroker extends java.rm .Renote {
/1 ... Renote methods not shown

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

523

53

5.3.1

}

public interface StockQuoteProvider extends java.rm.Renmpte {
St ockBr oker get Pref erredSt ockBroker ()
throws java.rm .RenoteException;

}

In the above example, the return type for the method get Pr ef er r edSt ockBr oker
represents a remote reference to the St ockBr oker service endpoint.

Pass by Copy

The JAX-RPC specification requires support for the pass by copy parameter passing
mode for all parameters and return values. This is similar to the parameter passing
semantics defined by Java RMI [15].

The value of a parameter object is copied before invoking a remote method on a JAX-
RPC service. By default, only non-static and non-transient fields are copied. For return
value, a new object is created in the calling virtual machine.

Java to XML Type Mapping

This section specifies the standard mapping of the Java types to the XML data types.

Java Primitive types

The following table specifies the standard mapping of the Java primitive types to the
XML data types:

TABLE 5-1 Mapping of the Java Primitive Types

Java Primitive Type XML Data Type
bool ean xsd: bool ean
byt e xsd: byt e
short xsd: short

i nt xsd: i nt

| ong xsd: 1 ong

f1 oat xsd: f| oat
doubl e xsd: doubl e

In the case of literal element declarations, the Java class for a Java primitive type
(example: j ava. | ang. I nt eger) is mapped to an element declaration with the ni | | abl e
attribute set to t r ue and with the corresponding built-in XML data type. The following
example shows the mapping for the j ava. | ang. | nt eger:

<xsd: el ement nanme="code" type="xsd:int" nillable="true"/>

<l-- Schemm instance -->

<code xsi:nil="true"></code>

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.3.2

533

534

Note that the SOAP 1.1 specification indicates that all SOAP encoded elements are
ni |l abl e. So in the SOAP encoded case, the Java wrapper class for a Java primitive
type is mapped to the corresponding SOAP encoded type. For example, the

java.l ang. | nt eger maps to soapenc:int if the SOAP encoding is being used.

Standard Java Classes

TABLE 5-2 Mapping of Standard Java Classes

Java Class IXML Data Type

j ava. |l ang. String xsd: string

j ava. mat h. Bi gl nt eger xsd: i nt eger

j ava. mat h. Bi gDeci nal xsd: deci mal

j ava. util . Cal endar xsd: dat eTi me
j ava. util . Date xsd: dat eTi ne
j avax. xml . nanespace. QNane [xsd: QNane

j ava. net. URI xsd: anyURI

Array of Bytes

Both byte[] and Byte[] are mapped to the xsd: base64Bi nary type.

The mapping of the j ava. | ang. Byt e[] type to the xsd: base64Bi nary type is now
deprecated because it cannot represent nul | values accurately. Instead, Byt e[] should
be mapped to a regular array following the rules in section 5.3.4.

Java Array

The JAX-RPC specification maps a Java array to one of the following XML types:

» An array derived from the soapenc: Array using the wsdl : arrayType attribute for
restriction. This case is specified in the WSDL 1.1 [7] specification

« An array with the soapenc: arrayType in the schema instance as specified in the
SOAP 1.1 encoding

* An array derived from the soapenc: Array by restriction as specified in the SOAP 1.1
specification

* An element in a xsd: conpl exType with the maxCccur s attribute set to an integer
greater than 1 or unbounded. This is one form of mapping used for Java arrays
defined in a JAX-RPC value type. Refer to the section 5.4 for more details on the
JAX-RPC value types.

Refer to the “Appendix: XML Schema Support” for examples of the above cases.

The JAX-RPC specification requires support for the mapping of the multi-dimensional

Java arrays. The member type of a Java array must be a JAX-RPC supported Java type
as defined in the section 5.1. The mapped XML array contains elements with XML data
type mapped from the corresponding member type of the Java array.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.4

Example

/1 Java
int[] nunbers;

The above Java array is mapped to the following schema fragment:

<!-- Schenm fragnment -->
<conpl exType nane="nunbers" >
<conpl exCont ent >
<restriction base="soapenc: Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

The following example shows another form of XML schema representation and an XML
schema instance:

<l-- Schema fragment -->
<el ement name="nunbers” type="soapenc: Array”/>

<l-- Schemm instance -->

<nunbers soapenc: arrayType="xsd:int[3]">
<nmenber >1</ nmenber >
<menber >2</ nenber >
<nmenber >3</ nenber >

</ nunber s>

JAX-RPC Value Type

This section specifies requirements for the JAX-RPC value types.

A JAX-RPC value type is a Java class whose value can be moved between a service
client and service endpoint. A Java class must follow these rules to be a JAX-RPC
conformant value type:

+ Java class must have a public default constructor.

« Java class must not implement (directly or indirectly) the j ava. r mi . Renot e
interface.

« Java class may implement any Java interface (except the j ava. r m . Renot e interface)
or extend another Java class.

« Java class may contain public, private, protected, package-level fields. The Java type
of a public field must be a supported JAX-RPC type as specified in the section 5.1,
“JAX-RPC Supported Java Types”.

+ Java class may contain methods. There are no specified restrictions on the nature of
these methods. Refer to the later rule about the JavaBeans properties.

« Java class may contain static or transient fields.

» Java class for a JAX-RPC value type may be designed as a JavaBeans class. In this
case, the bean properties (as defined by the JavaBeans introspection) are required to
follow the JavaBeans design pattern of setter and getter methods. The Java type of a
bean property must be a supported JAX-RPC type as specified in the section 5.1,
“JAX-RPC Supported Java Types”.

Example

The following code snippets show valid examples of JAX-RPC value types:
/1 Java

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

public class Base {
public Base() { }
public int a;
private int b;
private int c;

public int getB() {
return b;

}
public void setB(int b) {

this.b = b;
}
public void soneMethod() { ... }

}

public class Derived extends Base {
public Derived() { }

public int x;
private int vy;

5.4.1 XML Mapping

A JAX-RPC value type is mapped to an xsd: conpl exType with either the xsd: al | or
the xsd: sequence compositor. Please notice that the XML Schema specification places
several restrictions on the contents of a particle that uses the xsd: al | compositor.

The standard Java to XML mapping of a JAX-RPC value type must follow these rules:

« The nane attribute of the xsd: conpl exType is mapped from the name of the Java
class for the JAX-RPC value type.

+ Each public non-final non-transient field in the Java class is mapped to an element in
the xsd: conpl exType. The nane and t ype attributes of the mapped element are
mapped from the name and Java type of the public field. The t ype attribute is derived
from the Java type of the public field using the type mapping rules in the section 5.3,
“Java to XML Type Mapping”.

» Each read/write property (as identified by the j ava. beans. | ntrospect or class) is
mapped to an element in the xsd: conpl exType. The nane attribute for the mapped
element is derived from the name of the property. The t ype attribute is mapped from
the Java type of the property using the type mapping specified in the section 5.3,
“Java to XML Type Mapping”.

« Inheritance of the Java classes is mapped using the derivation of xsd: conpl exType
types using the extension mechanism.

» The only fields that are mapped are the non-transient, non-final public fields.
» No methods are mapped.

« There is no standard mapping of indexed properties as reported by the JavaBeans
introspection.

+ There is no standard mapping for the case when a JavaBean property has the same
name as a public field. A Java to XML mapping implementation is required to flag
this case as an error.

Note that the pluggable serializers and deserializers may be used to support an advanced
custom form of mapping for the JAX-RPC value types. Such custom mapping may add
implementation specific additional rules over the above standard XML mapping.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.4.2

Example

The XML mapping for the Base class is as shown below:
<conpl exType nane="Base">
<sequence>
<el erent nane="a" type="xsd:int"/>
<el erent nanme="b" type="xsd:int"/>
</ sequence>
</ conpl exType>

The Base XML type includes elements based on the mapping of the public field a and
the bean property b (mapped from the pair of get B and set B methods). The private field
¢ and the method soneMet hod are not mapped.

The Deri ved class is mapped to the following XML schema type:
<conpl exType nane="Derived">
<conpl exCont ent >
<extensi on base="Base">
<sequence>
<el enent nanme="x" type="xsd:int"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

The Deri ved XML type extends from the Base type. The Deri ved XML type includes
element x mapped from the public field x in the Deri ved Java class. The private field y
in the Deri ved class is not mapped.

Java Serialization Semantics

The default serialization semantics (termed SOAP serialization semantics) and on-wire
representation of a JAX-RPC value type are defined in terms of the XML mapping of a
JAX-RPC value type. Based on the standard XML mapping of a JAX-RPC value type
(as defined in the section 5.4.1, “XML Mapping”), the default serialized state for a JAX-
RPC value type includes only the XML mapping of the public fields and bean
properties. For example, the serialized state for the Base value type includes only the
public field a and property b. This XML serialized state gets transmitted over the wire
between the client and service.

The XML/SOAP serialization semantics and representation for a JAX-RPC value type
differ from the standard Java serialization. In the standard Java serialization, the
serialized state includes the public, private, protected and package level non-transient
fields for a serializable Java class. RMI-IIOP uses the standard Java serialization
semantics for its value types.

A JAX-RPC value type is required to conform to the following set of rules if a JAX-
RPC value type requires the Java serialization semantics. Note that the following rules
are in addition to the rules (in the section 5.4) for a JAX-RPC value type:

+ A JAX-RPC value type must implement the j ava. i 0. Seri al i zabl e interface
+ All public fields in the Java class must be non-transient.

+ Each non-public, non-transient field must exactly represent a JavaBeans property, and
vice versa.

« Each non-public field that does not exactly represent a JavaBeans property must be
marked transient.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.5

5.5.1

552

553

A JAX-RPC value type that conforms to the above rules is usable across both JAX-RPC
(with different protocol bindings) and RMI-IIOP (that uses the standard Java
serialization semantics for its value types) with the same Java serialization semantics.

A JAX-RPC value type that implements the Seri al i zabl e interface but does not
conform to all above rules, may not have the Java serialization semantics.

Java to WSDL Mapping

This section specifies the standard mapping of a JAX-RPC service endpoint definition to
a WSDL service description.

Note that the Java to WSDL mapping specifies mapping of the Java definitions to the
abstract WSDL definitions (namely: wsdl : t ypes, wsdl : nessage, wsdl : oper ati on and
wsdl : port Type). The following mapping specification does not specify how the SOAP
binding (or binding for any other protocol) is defined in a WSDL document.

Java Identifier

A Java identifier is mapped to an equivalent XML name. Java identfiers are legal XML
names. Note that the SOAP 1.2 specification [5] specifies rules for mapping application
defined names to XML names.

Java Package

A Java package is mapped to a WSDL document. The mapped WSDL document
contains abstract definitions (port type, operations, messages) based on the mapping of
Java declarations in the corresponding Java package.

The JAX-RPC specification requires the namespace definitions in the WSDL document
to be mapped in an application specific manner. A Java to WSDL mapping tool is
required to support the configuration of the namespace definitions in the mapped WSDL
document.

Note that the Java to WSDL mapping specification does not require any specific
authoring style for the mapped WSDL document. For example, the mapped WSDL
definitions may be separated into multiple WSDL documents that are imported across
documents.

Service Endpoint Interface

A service endpoint interface (that extends j ava. rmi . Renot e) is mapped to the
wsdl : port Type element. The name attribute of the wsdl : port Type has the same name
as the service endpoint interface.

Methods defined in a service endpoint interface are mapped to the wsdl : oper ati on
definitions in the corresponding wsdl : port Type. Refer to the section 5.5.5, “Methods”
for more details on the mapping of methods in a service endpoint interface.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

554

Example

The following shows an example of a service endpoint interface:

/1 Java
package com exanpl e;
public interface StockQuoteProvider extends java.rm . Renmpte {
float getlLastTradePrice(String tickerSynbol)
throws java.rm . RenoteException;

}

The above service endpoint interface is mapped to the following wsdl : port Type
definition. Note that the par anet er Or der attribute is optional based on the WSDL 1.1
specification:
<l-- WBDL extract -->
<port Type name=" St ockQuot eProvi der” >
<oper ati on nane="get Last TradePri ce”
par anet er Or der ="t i cker Synbol " >
<i nput nmessage="tns: get Last TradePrice”/>
<out put nmessage="t ns: get Last TradePri ceResponse”/ >
</ operati on>
</ port Type>

Inherited Service Endpoint interfaces

Each Java interface in the service endpoint inheritance hierarchy is mapped to an
equivalent wsdl : por t Type definition. Since the WSDL 1.1 specification does not define
a standard representation for the inheritance of the wsdl : port Type elements, each
mapped wsdl : port Type definition includes mapping of the complete set of inherited
Java methods. The support for this mapping is optional.

The following example illustrates this mapping.

Example

In the following example, the service endpoint interfaces St ockQuot ePr ovi der and
Pr eni unt ockQuot ePr ovi der are mapped to respective wsdl : port Type definitions.
The port type St ockQuot ePr ovi der includes a single operation get Last Tr adePri ce;
while the port type Prem unst ockQuot ePr ovi der includes two operations
get Last TradePri ce and get Real ti meLast TradePri ce. The get Last TradePri ce
operation in the Preni unBt ockQuot ePr ovi der port type is mapped from the
corresponding inherited method.
/'l Java Code
package com exanpl e;
public interface StockQuoteProvider extends java.rm.Renote {

/1 gets a 20 minute del ayed stock price

float getlLastTradePrice(String tickerSynbol)

throws java.rm . Renot eExcepti on;

}

package com exanpl e;
public interface Prem untt ockQuot eProvi der extends
com exanpl e. St ockQuot eProvi der {
/1 gets a realtinme stock quote
float getReal tineLast TradePrice(String tickerSynbol)
throws java.rm . Renot eExcepti on;

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

5.5.5

The mapping of the St ockQuot ePr ovi der interface is the same as shown in the example
in the section 5.5.3, “Service Endpoint Interface”.

The Premi unst ockQuot eProvi der interface is mapped to the following wsdl :
port Type definition:

<I-- WSDL Extract -->
<port Type nane="Premn untt ockQuot eProvi der” >

<operati on name="get Last TradePri ce”
par anet er Or der ="t i cker Synbol " >
<i nput nmessage="tns: get Last TradePrice"/>
<out put nessage="tns: get Last TradePri ceResponse”/>
</ oper ati on>
<operati on nane="get Real ti meLast TradePri ce”
paranet er Order="ti cker Synbol " >
<i nput nessage="tns: get Real ti neLast TradePrice”/>
<out put nmessage="tns: get Real ti neLast TradePri ceResponse”/ >
</ operati on>

</ port Type>

Methods

Each method on a Java service endpoint interface is mapped to an equivalent
wsdl : oper at i on definition. The mapped wsdl : oper at i on definition preserves the
method signature in terms of the parameter ordering.

The standard mapping of a Java method to a wsdl : oper ati on definitions follows these
rules:

The name attribute of the mapped wsdl : oper ati on is the same as the name of the
Java method.

Overloaded Java methods are mapped to multiple wsdl : oper ati on elements. These
mapped wsdl : oper ati on elements are named the same (as the name of the
overloaded Java methods) or with unique names depending on the mechanism that is
used by the server-side JAX-RPC runtime system to dispatch methods to the target
service endpoint. For example, a JAX-RPC runtime system may use unique operation
names, SOAPAct i on or an implementation specific mechanism to dispatch methods to
the target service endpoint. Note that the JAX-RPC specification does not require use
of the SOAPAct i on.

A mapped wsdl : oper ati on contains wsdl : i nput and, unless it is one-way,

wsdl : out put and optional wsdl : f aul t (s) based on the mapping of the Java method
signature. The message attribute of these wsdl : i nput and wsdl : out put elements
uses the qualified name of the corresponding wsdl : nessage definition. Only Java
methods with a voi d return type and that do not throw any exception other than
java.rni . Renot eExcepti on can be mapped to one-way operations. Since not all
Java methods that fulfill this requirement are amenable to become one-way
operations, Java to WSDL mapping tools are required to provide a facility for
specifying metadata used to identify which of the methods should indeed be mapped
to one-way operations.

Each Java parameter (in the Java method signature) is mapped to a message part in
the wsdl : message. This wsdl : message corresponds to the wsdl : i nput element for
the mapped wsdl : oper at i on. Each message part has a nane attribute that is mapped
based on the name of the Java parameter and a t ype attribute (an XML data type)
mapped from the Java type of the parameter. Message parts appear in the same order
as in the Java method signature.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

Refer to the section 6.2, “Operation Style attribute” for the requirements related to
the mapping of Java methods to the soap: oper ati on definitions with docunent and
r pc styles in the SOAP binding.

Refer to the section 6.4, “Literal Representation” for details related to the literal
representation of SOAP messages for RPC calls and responses. In brief, if literal
representation is used for the SOAP message, each message part in the SOAP body
references a concrete schema definition using either the el ement or t ype attribute. If
the el enent attribute is used, the element referenced by the part appears under the
Body element. If the t ype attribute is used, then the referenced type becomes the
schema type of the element.

A Java return type (for a Java method) is mapped to a message part in the
wsdl : nessage. This wsdl : nessage corresponds to the wsdl : out put element for the
mapped wsdl : operati on. The name of this message part is not significant.

For Hol der classes used as method parameters, a Java to WSDL mapping tool is
required to provide a facility for specifying the related mapping metadata. This
metadata identifies whether a Hol der parameter in the method signature is mapped to
either the OUT or | NOUT parameter mode. A mapping tool may choose to map all

Hol der parameters to the default | NOUT parameter mode. Future versions of the JAX-
RPC specification would consider specifying a standard approach for specifying such
mapping metadata.

Ordering of Java parameters is represented in the par amet er Or der attribute in the
wsdl : oper ati on element. The message part for a return value is not listed in the
par anet er Or der attribute. Refer to the WSDL 1.1 specification for more details on
the par amet er Or der attribute.

Exceptions

Each service specific Java exception in a remote method signature is mapped to a
wsdl : faul t element. This wsdl : faul t element references a wsdl : message element.

The name attribute of the wsdl : nessage element is the same as the name of the Java
exception. The message attribute of the wsdl : f aul t element is the qualified name of
the wsdl : nessage definition.

The single message part in the wsdl : f aul t element (as required by the WSDL 1.1
specification) can refer to either a type or an element. If it refers to a type, it is either
a xsd: si npl eType or a xsd: conpl exType. If the latter, the name attribute of the
xsd: conpl exType is the same as the name of the Java exception class. Similarly, if it
refers to an element, the nanme attribute of the xsd: el ement is the same as the name
of the Java exception class and its type must follow the rules for the mapping to
complex types given in this same section.

Multiple fields (each with a getter method and corresponding parameter in the
constructor) in the Java exception class are mapped to elements of the

xsd: conpl exType. The nane and t ype attribute of each element are mapped from
the name and Java type of the corresponding field in the Java exception class. The
mapping of these fields follows the mapping specified in the section 5.3, “Java to
XML Type Mapping”.

If a Java exception class has a single field (with a getter method and corresponding
parameter in the constructor), this field is mapped (as an option to the previous bullet)
to a single message part in the wsdl : message. The name and t ype of this message
part are mapped from the name of Java type of the corresponding field.

The wsdl : message part represents the contents of the det ai | element in the SOAP
fault.

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

+ Inheritance of Java exceptions is mapped using the derivation of xsd: conpl exType
using the extension mechanism. This applies to the xsd: conpl exType used to
represent the single message part in the wsdl : message for the wsdl : faul t.

» A remote exception (j ava. r ni . Renot eExcept i on or its subclasses) is mapped to a
standard SOAP fault. Refer to the section 14.3.6, “Mapping of Remote Exceptions”
for the standard mapping of remote exceptions.

Example

The following shows an example of a service endpoint interface St ockQuot ePr ovi der
with a single method get Last Tr adePri ce:

/1 Java
package com exanpl e;
public interface StockQuoteProvider extends java.rni.Renote {
float getlLastTradePrice(String tickerSynbol)
throws java.rni.RenoteException,
com exanpl e. I nval i dTi cker Excepti on;
}
public class InvalidTi ckerException
extends java.l ang. Excepti on {
private String tickerSynbol;

public InvalidTi cker Exception(String tickerSynmbol) { ... }
public String getTickerSynmbol () { ... }

}

The above Java service endpoint interface is mapped to the following WSDL definitions
(using the t ype attribute of wsdl : part):

<l-- WSDL Extract -->
<nessage nane="get Last TradePrice”>
<part nanme="ticker Synbol” type="xsd:string”/>
</ nessage>
<nessage name="get Last TradePri ceResponse" >
<part nanme="result" type="xsd:float"/>
</ nessage>
<nessage nane="I|nval i dTi cker Excepti on">
<part nanme="ticker Synbol" type="xsd:string"/>
</ message>
<port Type nane="St ockQuot eProvi der” >
<oper ati on nanme="get Last TradePri ce”
par amet er Or der ="t i cker Synbol " >
<i nput message="tns: get Last TradePrice”/ >
<out put nessage="tns: get Last TradePri ceResponse”/ >
<fault nane="InvalidTi cker Excepti on"
message="t ns: | nval i dTi cker Excepti on"/>
</ operati on>
</ port Type>

It may also be mapped to the following WSDL definitions (using the element attribute of
wsdl : part):
<I-- WSDL Extract -->
<types>
<schema xm ns="..."
t ar get Namespace="...">
<el ement nane="1Inval i dTi cker Excepti on” >
<conpl exType>
<el ement nane="ti cker Synbol " type="xsd:string"/>
</ conpl exType>
</ el enent >
</ schema>

Chapter Java to XML/WSDL Mapping JAX-RPC 1.1

</types>

<nmessage nhane="get Last TradePrice” >
<part name="ticker Synbol” type="xsd:string”/>
</ nessage>
<message hane="get Last Tr adePri ceResponse" >
<part nanme="result" type="xsd:float"/>
</ nessage>
<message nane="I|nval i dTi cker Exception">
<part name="exception" elenment="ttns:|nvalidTickerException"/>
</ nessage>
<port Type name=" St ockQuot eProvi der” >
<oper ati on nane="get Last TradePri ce”
par anet er Or der ="t i cker Synbol " >
<i nput nessage="tns: get Last TradePrice”/>
<out put message="t ns: get Last TradePri ceResponse”/ >
<fault name="Inval i dTi cker Excepti on"
nmessage="tns: | nval i dTi cker Excepti on"/ >
</ oper ati on>

</ port Type>

Chapter SOAP Binding JAX-RPC 1.1

SOAP Binding

6.1

This chapter specifies the JAX-RPC support for the SOAP 1.1 binding.

Note that this section uses extracts from the WSDL 1.1 specification. In all cases,
WSDL specification should override any WSDL extracts that have been used in this
chapter.

SOAP Binding in WSDL

The soap: bi ndi ng element in the WSDL identifies that the SOAP protocol is used for
binding the abstract WSDL definitions.

The JAX-RPC specification requires support for the following cases (termed oper ati on
modes) for an operation with the SOAP binding. Later sections of this chapter specify
more details on these supported operation modes:

« Operation with the r pc style and encoded use (r pc/ encoded)
» Operation with the r pc style and literal use (rpc/literal)
» Operation with the docunent style and | i teral use (document/literal)

Refer to the WSDL 1.1 [7] specification for more details on the docunent and r pc
operation styles.

A JAX-RPC implementation is required to support the above operation modes for the
mapping of a WSDL based service description to the corresponding Java representation.

A JAX-RPC implementation may choose to support the optional operation mode of
docunent /encoded.

6.2

Operation Style attribute

The styl e attribute (specified per soap: oper ati on element or as a default in the
soap: bi ndi ng element) indicates whether an operation is r pc or docunent oriented. In
the JAX-RPC programming model, both r pc and docunent style operations are mapped
to the corresponding remote methods on a service endpoint interface.

A JAX-RPC client side implementation is required to support use of services that follow
either the WSDL 1.1 or JAX-RPC (refer to the beginning of this section) specified
docurent and r pc operation style requirements. Note that the WSDL 1.1 specification
does not require a wrapper element for the docunent style operations and assumes the
use of SOAPAct i on.

Chapter SOAP Binding JAX-RPC 1.1

The JAX-RPC specification requires that the above requirements based on the operation
style should be hidden from the JAX-RPC programming model. A JAX-RPC
implementation should take the responsibility for the appropriate representation of a
SOAP message based on the operation style.

6.3

Encoded Representation

The JAX-RPC specification requires support for r pc style operations with the encoded
use. Support for docunent style operations with encoded use is optional. In the
encoded use, each message part in the SOAP body references an abstract type using the
t ype attribute. These types are serialized according to the encodings identified in the
encodi ngSt yl e attribute of the soap: body element. An example of such encoding is the
SOAP 1.1 encoding [4].

Refer to the chapter 14 for the related interoperability requirements.

6.4

6.4.1

Literal Representation

The JAX-RPC specification requires support for r pc and docunent style operations with
the l i teral use. Note that the | i teral use is defined on the soap: body element in the
WSDL.

If the use is I i ter al , each message part in the SOAP Body element references a
concrete schema definition using either the el ement or t ype attribute. If the el enent
attribute is used, the element referenced by the message part appears under the Body
element (with or without wrapper depending on the operation style). If the t ype attribute
is used, the type referenced by the part becomes the schema type of the enclosing
element (Body element for the document style or part accessor element for the r pc
style). WSDL 1.1 specification allows (but does not require) use of an optional

encodi ngSt yl e attribute for encoding in the literal case.

The JAX-RPC specification requires support for the el enent attribute in a message part
with literal representation and referenced by a docunent style operation. It also requires
support for the t ype attribute in a message part with literal representation and
referenced by an r pc style operation. However, use of any specific encoding style with
the literal mode is not required. A JAX-RPC implementation may use the optional
encodi ngSt yl e attribute (in a soap: body element with the | i t eral use) to apply
specific encoding rules.

Java Mapping of Literal Representation

The Java mapping for a message part (either a parameter or return value) with literal
representation depends on whether the JAX-RPC specifies a standard Java mapping for
the XML type of this message part. The “Appendix: XML Schema Support” specifies a
subset of the XML schema data types that a JAX-RPC implementation is required to
support. Refer to the section 4.2, “XML to Java Type Mapping” for the specified
mapping of this subset of XML schema.

Chapter SOAP Binding JAX-RPC 1.1

6.4.2

When mapping docunent style operations, in addition to the regular mapping, JAX-RPC
implementations are required to support the so-called “wrapper” style, in which the
logical parameters of an operation are wrapped inside a xsd: sequence element named
after the operation.

In order to qualify as using the “wrapper” style, an operation must fulfill the following
conditions:

+ its input and output messages (if present) must contain exactly one part;
+ such a part must refer to an element named after the operation;

+ such an element (a wrapper) must be of a complex type defined using the
xsd: sequence compositor and containing only elements declarations.

In this case, implementations must be able to discard the wrapper elements and treat
their children as the actual parameters of the operation. Please refer to section 6.4.3
below for an example.

If there is no standard Java mapping for an XML schema type, a message part with
literal representation is considered and mapped as a document fragment. The XML to
Java mapping uses the interface j avax. xm . soap. SOAPEl enment to represent a literal
message part in the Java mapping of a wsdl : oper ati on element. For example, a
parameter or a return type (for a remote operation) represented as a literal message part
is mapped to a SOAPE!l enent in the Java method signature.

When a SOAPEI enent is declared and passed as parameter to the remote method call, the
JAX-RPC runtime system implementation is required to embed the XML representation
of the SOAPE!l enent instance as part of the underlying SOAP message representation.
This embedding of SOAPEI enent instance is internal to the implementation of a JAX-
RPC runtime system.

In order to make it possible to use other data binding frameworks (e.g. JAXB) in
conjunction with JAX-RPC, it must be possible to selectively turn the standard JAX-
RPC type mapping off on a per-part basis and revert to the default mapping, namely
SOAPE!l enent . JAX-RPC tools are required to provide a facility to specify metadata for
this purpose.

Refer to the section 6.4.2, “SOAPElement” for more details on the SOAPEI ement API.

Any other form of mapping between the Java and XML data types for an operation with
the literal use is specific to a JAX-RPC implementation. A portable application should
not rely on any non-standard JAX-RPC implementation specific mapping. For example,
a JAX-RPC implementation may use a Java framework for XML data type binding to
map the literal parts. In this case, each literal part or its elements is represented by an
instance of a Java class generated by the data binding framework. In the JAX-RPC
specification, this form of mapping is specific to a JAX-RPC implementation. Note that
the JAXB 1.0 specification is defining standard Java APIs for the XML data binding.
Future versions of the JAX-RPC specification will consider use of the JAXB 1.0 APIs.

SOAPElement

The following code snippet shows the j avax. xnl . soap. SOAPFact ory. A SOAPFact ory
is used to create a SOAPEl ement, Det ai | and Nane objects. Refer to the JAXM 1.1 and
SAAJ [13] specification for complete details on the SOAPFact ory.

package javax.xmnl . soap;
public abstract class SOAPFactory {
public abstract SOAPElI ement createEl ement (Name nane)
t hrows SOAPExcepti on;

Chapter SOAP Binding JAX-RPC 1.1

public abstract SOAPElI enent createEl ement(String | ocal Nane)
t hr ows SOAPExcepti on;
public abstract SOAPEl enent createEl ement(String | ocal Nane,
String prefix,String uri)
t hr ows SOAPExcepti on;
public abstract Detail createDetail () throws SOAPExcepti on;

public abstract Nane createNane(String | ocal Nane,
String prefix, String uri)throws SOAPExcepti on;
public abstract Nanme createNanme(String | ocal Nane)
t hrows SOAPExcepti on;

public static SOAPFactory new nstance()
t hrows SOAPException { ... }
}

The SOAPFact ory in the j avax. xm . soap package follows the abstract factory pattern.
An instance of the SOAPFact ory is created using the static new nst ance method.

The variants of the cr eat eEl ement method create a SOAPEI enent . The created

SOAPE! ement instance represents a document fragment and can be used as parameter to
a remote method call. The JAX-RPC specification requires the use of the SOAPFact ory
to create SOAPEI enent instances that are passed in the remote method invocation.

The method cr eat eName creates an instance of the j avax. xmi . soap. Name. The method
creat eDet ai | creates an instance of the j avax. xnl . soap. Det ai | .

The following code snippet shows the j avax. xnl . soap. SOAPEl enent interface. This
interface is used to represent a literal message part when mapped as a document
fragment.

Refer to the JAXM and SAAJ specifications [13] for complete details on the
SOAPE! erent :

package javax.xml . soap;
public interface SOAPEl enent extends Node {
SQAPE!l enent addChi | dEI enent (Nane nane)
t hr ows SOAPExcepti on;
SCQAPE!l ement addChi | dEl enent (String | ocal Nane)
t hr ows SOAPExcepti on;
SCAPE!l emrent addChi | dEl enent (String | ocal Nane,
String prefix)
t hr ows SOAPExcepti on;
SQAPE!l enment addChi | dEl enent (String | ocal Nane,
String prefix,String uri)
t hr ows SOAPExcepti on;
SCAPE!l ement addChi | dEl ement (SOAPEI enent el enment)
t hr ows SOAPExcepti on;

SQAPEl enment addText Node(String text) throws SOAPExcepti on;
SCQAPE!l ement addAttri bute(Nane nanme, String val ue)
t hr ows SOAPExcepti on;
SCAPE!l ement addNanespaceDecl aration(String prefix,
String uri)
t hr ows SOAPExcepti on;

String getAttributeVal ue(Nane nane);

Iterator getAll Attributes();

String get NamespaceURI (String prefix);

Iterator getNanespacePrefixes();

Narme get El enent Nane() ;

bool ean renoveAttribute(Nanme nane);

bool ean renoveNanespaceDecl aration(String prefix);

Chapter SOAP Binding JAX-RPC 1.1

6.4.3

Iterator getChil dEl ements();

Iterator getChil dEl emrent s(Name nane);

voi d set Encodi ngStyl e(String encodi ngStyl e)
t hrows SQAPExcepti on;

String get Encodi ngStyl e();

}

A SOAPE! enent instance represents the contents in the SOAP Body element for either
an RPC request or response. Once a new SOAPEl enent is created using the
SOAPFact ory, the various add methods are used to populate this document fragment.

Example

The following shows schema fragment for this example. Let the namespace prefix be
“s” for the following schema definitions:
<types>
<scherma attri but eFor nDef aul t ="qual i fi ed”
el ement For mDef aul t =" qual i fi ed”
t ar get Nanespace="...">
<el ement nane="DoExanpl e">
<conpl exType>
<sequence>
<el ement nane="val uel" type="xsd:string"/>
<el ement nane="val ue2" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ el ement >

<el ement nane="DoAnot her Exanpl e" >
<conpl exType>
<sequence>
<el ement nanme="fiel d1" type="xsd:string"/>
<el ement nane="fiel d2" type="xsd:string"/>
O her elenments with types that do not have standard mappi ng
defined by JAX-RPC
</ sequence>
<attribute name="generic" type="xsd:string" use="required"/>
<anyAttri bute nanespace="##ot her”/>
</ conpl exType>
</ el ement >

<el ement nane="DoExanpl eResponse" >
<conpl exType>
<sequence>
<el ement nane="result” type="xsd:string”/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</types>

The following WSDL extract shows the definitions for the messages, port type and
binding:
<l-- WBDL extract -->
<nessage nane="DoExanpl e" >
<part nane="body" el ement="s: DoExanpl e"/>
</ message>
<nessage nane="DoAnot her Exanpl e" >
<part nane="body" el enent ="s: DoAnot her Exanpl e"/ >
</ message>

Chapter SOAP Binding JAX-RPC 1.1

<message nhane="DoExanpl eResponse" >
<part nanme="result" el enent="s: DoExanpl eResponse"/ >
</ nessage>

<port Type nane="Exanpl eSoap" >
<operati on nane="DoExanpl e">
<i nput message="t ns: DoExanpl e"/ >
<out put nmessage="t ns: DoExanpl eResponse"/ >
</ operati on>
<oper ati on nane="DoAnot her Exanpl e" >
<i nput message="t ns: DoAnot her Exanpl e"/ >
<out put message="t ns: DoExanpl eResponse"/ >
</ oper ati on>
</ port Type>

<bi ndi ng nanme="Exanpl eSoap" type="tns: Exanpl eSoap" >
<soap: bi ndi ng styl e="docunment"

transport="http://schemas. xm soap. org/ soap/ http"/>
<operati on nanme="DoExanpl e">

<soap: operation soapAction="" styl e="docunent"/>
<i nput nessage="t ns: DoExanpl e" >
<soap: body use="literal" parts="body" nanespace="..."/>
</i nput >
<out put message="t ns: DoExanpl eResponse" >
<soap: body use="literal" parts="result" namespace="..."/>
</ out put >

</ operati on>
<operati on nane="DoAnot her Exanpl e" >
sane for the operation DoAnot her Exanpl e
</ operati on>
</ bi ndi ng>

The above example uses document style and |'i teral use.

Based on the specification in the sections 6.2 and 6.4, the above WSDL definitions are
mapped to the following service endpoint interface.

/1l Java

public interface Exanpl eSoap extends java.rm .Renmote {
String doExanple(String fieldl, String field2)
throws java.rm . Renot eExcepti on;
DoExanpl eResponse doAnot her Exanpl e(SOAPEl ement doAnot her Exanpl €)
throws java.rm . Renot eException;

}

This example assumes that the return type is mapped to a Stri ng for both methods.
Refer to the section 4.3.4, “WSDL Operation” for more details on how WSDL
operations are mapped.

In the above example mapping, the part (named body) in the message named
DoExanpl e is mapped as a wrapper. The elements fi el d1 and fi el d2 are mapped as
separate parameters with the corresponding Java types based on the standard XML to
Java type mapping.

Another possible mapping of the doExanpl e method is as follows. In this example, the
part named body in the DoExanpl e nessage is mapped as an xsd: conpl exType:

DoExanpl eResponse doExanpl e(DoExanpl e body)
throws java.rm . Renot eExcepti on;

The JAX-RPC specification does not specify a standard Java mapping for a
xsd: conpl exType with the xsd: anyAttri but e. So the message part in the
DoAnot her Exanpl e message is mapped as a SOAPE!l enent .

Chapter SOAP Binding JAX-RPC 1.1

6.5

The following code snippet shows the client code for invoking the doAnot her Exanpl e
method:
Exanpl eSoap ib = // ... get the Stub instance

SOAPFact ory sef = SOAPFactory. newl nstance();
SOAPE!l enent request = sef.createEl enent(...);

/1 popul ate the SOAPEl ement with attributes and child el enents
...
String response = ib.doAnot her Exanpl e(request);

SOAP Fault

This section specifies the Java mapping of the SOAP faults.

The soap: faul t element in the WSDL specifies the contents of the det ai | element of
a SOAP fault. The nane attribute relates the soap: faul t element to the wsdl : f aul t
element. The wsdl : faul t element (an optional element in a wsdl : oper at i on) specifies
the abstract message format for any error messages that may be output as a result of a
remote operation.

The soap: faul t element is patterned after the soap: body element in terms of the literal
or encoded use. According to the WSDL 1.1 specification, the soap: f aul t element
must contain only a single message part.

A SOAP fault is mapped to either a j avax. xnl . r pc. soap. SOAPFaul t Excepti on, a
service specific exception class or Renot eExcept i on.

SOAPFaultException

The SOAPFaul t Except i on exception represents a SOAP fault. This exception is thrown
from the Java method mapped from the corresponding wsdl : oper ati on. Refer to the
section 4.3.4, “WSDL Operation” for the mapping of WSDL operations.

The message part in the SOAP fault maps to the contents of det ai | element accessible
through the get Det ai | method on the SOAPFaul t Except i on. The method
createDetai | on the j avax. xnl . soap. SOAPFact ory creates an instance of the
javax. xm . soap. Detail .

The faul t string provides a human-readable description of the SOAP fault. The
faul t code element provides an algorithmic mapping of the SOAP fault.

The following code snippet shows the SOAPFaul t Except i on:

package javax.xm .rpc. soap;
public cl ass SCAPFaul t Excepti on extends java.l ang. Runti meException {
publ i ¢ SCAPFaul t Excepti on(QName faul t code,
String faultstring,
String faultactor,

javax.xnm .soap. Detail detail) { ... }
public QNane getFaul tCode() { ... }
public String getFaultString() { ... }
public String getFaultActor() { ... }
public javax.xm .soap.Detail getDetail() { ... }

Chapter SOAP Binding JAX-RPC 1.1

6.6

SOAP Headerfault

The soap: header faul t element is used to specify SOAP header faults, that is, faults
pertaining to the processing of header elements in the message. According to the SOAP
specification, such faults must be carried within the Header element of the SOAP
envelope instead of the Body.

Unlike soap: f aul t, which refers to a wsdl : f aul t, headerfaults refer directly to a
message part. The JAX-RPC specification only requires support for header faults with
literal use and referring (through their message part) to an xsd: el ement . When the
header fault is transmitted, this element will appear within the SOAP- ENV: Header
element (and not inside the detail element of a SOAP- ENV: Faul t), while the SOAP-
ENV: Body will contain a SOAP- ENV: Faul t element whose det ai | is either empty or
unspecified.

Aside from their different serialization, SOAP headerfaults may be mapped to Java
exceptions in the same way that regular faults are, with the caveat that the mapping
applies only when the corresponding soap: header has been mapped to a method
argument according to the explicit service context rules (see section 11.2.2).

Chapter SOAP Message With Attachments JAX-RPC 1.1

SOAP Message With Attachments

7.1

7.2

The JAX-RPC specification supports the use of MIME encoded content in a remote
method call to a target service endpoint. This chapter specifies details on the following
related aspects:

» SOAP Message with Attachments
« WSDL 1.1 MIME Binding
« Mapping between MIME types and Java types

SOAP Message with Attachments

A JAX-RPC runtime system implementation must use the SOAP message with
attachments [6] protocol to support MIME encoded parameters or return value in a
remote method call.

A SOAP message package with attachments is constructed using the MIME nul ti part/
rel at ed type. The primary SOAP 1.1 message is carried in the root body part of the
mul tipart/rel at ed structure. The primary SOAP 1.1 message may reference
additional entities (termed as attachment or MIME parts) in the message package.

Both the header entries and body of the primary SOAP 1.1 message refer to the MIME
parts in the message package using the href attributes. A referenced MIME part
contains either a Cont ent - | D or Cont ent - Locat i on MIME header. The SOAP
messages with Attachment specification [6] specifies more details on the resolution of
URI references.

Java Types

A remote method in a Java service endpoint interface may use the following Java types
to represent MIME encoded content:

« Java classes based on the standard Java mapping of MIME types. Refer to the section
section 7.5, “Mapping between MIME types and Java types” for more details.

« Java class j avax. acti vati on. Dat aHandl er for content with any MIME type

The JAX-RPC specification uses the JavaBeans Activation Framework [18] to support
various MIME content types. The Dat aHandl er class provides a consistent interface to
the data represented in various MIME types. A Dat aHandl er can be instantiated with
data and a specific MIME type using the constructor Dat aHandl er (Obj ect obj, String
m ne_t ype).

Chapter SOAP Message With Attachments JAX-RPC 1.1

The data represented by a Dat aHandl er may be retrieved as a Java object or an

I nput St r eam The method Dat aHand| er.get Cont ent Type returns the MIME type of
the encapsulated data. The Dat aHandl er . get Cont ent method returns a Java object
based on the MIME type of the encapsulated data.

A Dat aHandl er class uses the Dat aCont ent Handl er interface to convert between a
stream and specific Java object based on the MIME type.

7.3

MIME Types

The JAX-RPC specification does not define any restrictions on the MIME types. For
example, the content in an attachment (for a SOAP message with attachments) may be
text, binary image or a complex XML document.

The JAX-RPC runtime system determines the MIME type of a MIME part carried in the
SOAP message package by using the following:

» The MIME type defined in the nmi ne: cont ent element for this MIME part in the
WSDL MIME binding

+ The Cont ent - Type of the MIME part in the SOAP message package

The MIME type of an attachment part in the SOAP message is required to conform to
the MIME type in the MIME binding for an operation.

7.4

WSDL Requirements

A JAX-RPC implementation is required to support mapping between Java and WSDL/
XML for remote method calls with the MIME encoded content.

A JAX-RPC implementation may use the MIME binding (as specified in the WSDL 1.1
specification [7]) to support remote method calls with the MIME encoded content. In the
mapped WSDL, MIME elements appear under wsdl : i nput and wsdl : out put elements
in the wsdl : bi ndi ng. The mi ne:nul ti part Rel at ed element aggregates a set of MIME
parts (or attachment parts) into one message of MIME type "nul ti part/rel ated". The
mi me: part element describes each attachment part of such mul ti part/rel ated
message.

The ni me: cont ent elements appear within each ni ne: part to specify the concrete
MIME type for this part. If more than one ni me: cont ent element appears inside a
m me: par t, these are considered alternatives.

The t ype attribute of the mi me: cont ent element specifies the MIME type for an
attachment part. The part attribute is used to specify the name of the message part. The
t ype attribute may use * wild cards to specify a set of acceptable MIME types. An
example is i mage/ * for all image types.

The part s attribute in the wsdl : i nput and wsdl : out put elements (defined per

oper at i on in the wsdl : bi ndi ng) lists parts that appear in the SOAP body portion of the
message. The unlisted parts of a message appear in the attachment parts of the SOAP
message in the case of the nul ti part/rel at ed MIME binding.

Chapter SOAP Message With Attachments JAX-RPC 1.1

7.5

Mapping between MIME types and Java types

The following table specifies the standard Java mapping for a subset of the MIME types.

TABLE 7-1 Mapping of MIME Types

MIME Type Java Type

i mage/ gi f j ava. awt . | mage

i mage/ j peg j ava. awmt . | mage

text/plain j ava. |l ang. String

mul ti part/* j avax. mail.internet. M neMul tipart
text/xm or application/xm j avax. xml . transform Source

The Java to WSDL/XML and WSDL/XML to Java mapping for the MIME types is
required to conform to the above mapping. This mapping is reflected in the mapped Java
method signatures and WSDL description. A WSDL/XML to Java mapping tool is
required to provide an option to map the above set of MIME types to the

j avax. activation. Dat aHandl er class. The Dat aHand! er class provides methods to
get access to the stream representation of the data for a MIME type.

A Java to WSDL mapping tool is required to provide a facility for specifying metadata
related to the above mapping between Java and MIME types. This metadata identifies
whether a Java type is mapped to a MIME type (using the WSDL MIME binding) or is
mapped to an XML schema type (based on the section 4.2, “XML to Java Type
Mapping”). For example, a j ava. | ang. Stri ng can be mapped to either an xsd: stri ng
or MIME type t ext/ pl ai n. The mapping metadata identifies a specific mapping.

If a MIME type is mapped to the j avax. acti vati on. Dat aHandl er, the get Cont ent
method of the Dat aHandl er class must return instance of the corresponding Java type
for a specific MIME content type.

A JAX-RPC implementation is required to support the above MIME types (as specified
in the TABLE 7-1) and provide implementation of the required
j avax. acti vati on. Dat aCont ent Handl er classes.

Due to limitations in the platform, a JAX-RPC implementation is required only to
support decoding images of type i mage/ gi f, but not encoding of the same.

A JAX-RPC implementation is not required to support MIME types beyond that
specified in the above table. These additional MIME types may be mapped and
supported using the j avax. acti vati on. Dat aHandl er class and Java Activation
Framework.

Chapter JAX-RPC Core APls JAX-RPC 1.1

JAX-RPC Core APIs

8.1

This chapter specifies JAX-RPC APIs that support the JAX-RPC runtime mechanisms.
These APIs are packaged in the j avax. xmi . r pc package. The chapter 12 specifies the
SOAP message handler APIs.

Server side APIs

It is important to note that the JAX-RPC specification does not define and require any
standard APIs for the EJB container based implementation of a JAX-RPC server-side
runtime system. Refer to the chapter 10 for API specified for the servlet endpoint model.

The internals of a J2EE container based JAX-RPC runtime system are implementation
specific.

8.2

8.2.1

Client side APIs

The JAX-RPC specifies the following client side APIs:
e The javax. xni . rpc. St ub interface

e Thejavax.xm .rpc. Cal |l interface for the dynamic invocation of a JAX-RPC
service

+ The javax. xnl . rpc. Servi ce interface
e The javax. xm . rpc. Servi ceFactory class

* The javax. xnl . rpc. JAXRPCExcept i on class
A JAX-RPC runtime system implementation is required to implement the above APIs.

The chapter 9 describes the programming model for the use of these APIs by a service
client.

Generated Stub Class

A WSDL to Java mapping tool generates a stub class during the import of a service
described in a WSDL document. The JAX-RPC specification does not require that a stub
class be generated only through the mapping of a WSDL document. For example, a stub
class may be generated using a service endpoint interface and additional information
about the protocol binding.

Chapter JAX-RPC Core APls JAX-RPC 1.1

All generated stub classes are required to implement the j avax. xm . r pc. St ub
interface. An instance of a stub class represents a client side proxy or stub instance for
the target service endpoint.

The following code snippet shows the j avax. xmi . r pc. St ub interface:
package javax.xm .rpc;

public interface Stub {
/1 ... Methods specified |later

}

A generated stub class is required to implement a service endpoint interface. The name
of a generated stub class is either <Bi ndi ngNanme>_St ub or is implementation specific.
In the former case, the name of the generated stub class is derived from the name
attribute of the corresponding wsdl : bi ndi ng element in the imported WSDL service
description. The wsdl : bi ndi ng element binds an abstract wsdl : port Type to a specific
protocol and transport.

Note that the JAX-RPC specification does not require that a generated stub class be
binding and transport neutral. A stub class should be bound to a specific protocol and
transport.

Example

The following diagram shows an illustrative example of the stub class hierarchy. The
diagram shows the generated St ockSer vi ceSoapBi ndi ng_St ub class that implements
the j avax. xm . r pc. St ub and com exanpl e. St ockQuot ePr ovi der interfaces where the
St ockQuot ePr ovi der interface is the service endpoint interface.

The diagram also shows the generated stub class using the standard j avax. xm . r pc
package and a vendor specific JAX-RPC implementation package. For example, a
generated stub class may be based on either the standard APIs that are specified in the
j avax. xm . r pc package or vendor specific JAX-RPC implementation APIs.

<<interface>>
javax. xm . rpc. Stub
4 <<interface>>
| com exanpl e. St ockQuot ePr ovi der
| AN
|

com exanpl e. St ockSer vi ceSoapBi ndi ng_Stub +-

N
/ N
/ ~
1 K N
<<package>> <<package>>
javax. xm . rpc com <vendor >. xm . rpc

The following code snippet shows how a J2SE based service client uses a stub instance.
This example uses a generated stub class:

com exanpl e. St ockQuot eProvi der _Stub sqp =// get the Stub i nstance
float quote = sqp. getlLastTradePrice("ACMVE");

Chapter JAX-RPC Core APls JAX-RPC 1.1

8.2.2

Stub Configuration

A stub instance must be configured such that a service client can use this stub instance
to invoke a remote method on the target service endpoint. A stub instance may be
configured in one of the following manners:

+ Static configuration based on the WSDL description of a target service endpoint.
Examples of such configuration include protocol binding specified using the
wsdl : bi ndi ng and soap: bi ndi ng elements; target service endpoint address specified
using the wsdl : port element.

+ Dynamic runtime configuration using the j avax. xm . r pc. St ub API. This section
specifies further details of this type of configuration.

The JAX-RPC specification does not require support for protocol and transport neutral
stub classes that are dynamically configurable for different protocols and transports. A
stub class should be bound to a specific protocol and transport.

The j avax. xm . r pc. St ub interface provides an extensible property mechanism for the
dynamic configuration of a stub instance. The following code snippet shows the St ub
interface:
package javax.xm . rpc;
public interface Stub {

I

void _setProperty(String name, Object value);

oj ect _getProperty(String nane);

java.util.lterator _getPropertyNanmes();

}

The _set Property method sets the value of a property configured on the stub instance.
This method throws the j avax. xnl . r pc. JAXRPCExcept i on in the following cases:

« If an optional standard property name is specified, however this St ub implementation
class does not support the configuration of this property.

+ If an invalid or unsupported property name is specified or if a value of mismatched
property type is passed. An example is an illegal property with the standard property
name prefix j avax. xni . r pc.

 If there is any error in the configuration of a valid property.

Note that the _set Proper t y method may not check validity of a configured property
value. An example is the standard property for the target service endpoint address that is
not checked for validity in the _set Property method. In this case, any stub
configuration errors are detected at the remote method invocation.

The _get Property method gets the value of a property configured on the stub instance.
This method should throw the j avax. xml . r pc. JAXRPCExcept i on if an invalid or
unsupported property name is passed.

The _get Proper t yNanmes returns the names of the supported configurable properties for
this stub class.

Standard Properties

The JAX-RPC specification specifies a standard set of properties that are protocol and
transport independent. These standard properties may be passed to the _get Property
and _set Property methods.

Chapter JAX-RPC Core APls JAX-RPC 1.1

A stub class is not required to support these standard properties. The names and types of
these properties are as follows. This table also specifies whether or not a St ub
implementation is required to support a specific standard property:

TABLE 8-1 Standard Properties for Stub Configuration

Name of Property Type of Property Description and Required/Optional support
j avax. xm . rpc. j ava. | ang. User name for authentication
security. auth. String

user nane

Required to support HTTP Basic
IAuthentication. Refer to the
section 13.1.1 for more details.

j avax. xm . rpc. j ava. | ang. Password for authentication
security. auth. String
passwor d

Required to support HTTP Basic
IAuthentication. Refer to the
section 13.1.1 for more details.

j avax. xm . rpc. j ava. | ang. [Target service endpoint address. The
servi ce. endpoi nt. String [URI scheme for the endpoint address
addr ess

specification must correspond to the
protocol/transport binding for this stub

class.

Required.
j avax. xm . rpc. j ava. | ang. [This bool ean property is used by a
session. maintain Bool ean service client to indicate whether or

not it wants to participate in a session
with a service endpoint.

If this property is set to t r ue, the
service client indicates that it wants
the session to be maintained. If set to
f al se, the session is not maintained.
[The default value for this property is
fal se. Refer to the section 13.2,
“Session Management” for more
details.

Required to support session
imanagement.

Note that the standard JAX-RPC properties are required to be prefixed by the
j avax. xm . r pc package name. Any vendor implementation specific properties must be
defined prefixed by a vendor specific package name.

Chapter JAX-RPC Core APls JAX-RPC 1.1

8.2.3

8.2.4

Dynamic Proxy

The JAX-RPC specification requires support for the dynamic proxy for invoking a
service endpoint. A dynamic proxy class supports a service endpoint interface
dynamically at runtime without requiring any code generation of a stub class that
implements a specific service endpoint interface.

Refer to the J2SE [2] documentation for more details on the dynamic proxy APIs
java.lang.refl ect.Proxy and j ava. |l ang. refl ect. | nvocati onHandl er.

The get Port method on the j avax. xm . r pc. Ser vi ce interface provide support for the
creation of a dynamic proxy. The ser vi ceEndpoi nt | nt er f ace parameter specifies the
service endpoint interface that is supported by the created dynamic proxy. The service
endpoint interface must conform to the JAX-RPC specification.:
package javax.xml . rpc;
public interface Service {

java.rm . Renote getPort (QNane port Nane,

Cl ass servi ceEndpoi nt | nterface)

t hrows Servi ceExcepti on;
/1

}

This method throws Ser vi ceExcept i on if there is an error in creation of the dynamic
proxy or if there is any missing WSDL related metadata that is required. The JAX-RPC
specification does not require that the get Port method fully validate the passed

servi ceEndpoi nt | nt er f ace against the corresponding WSDL definitions. A JAX-
RPC implementation may choose to perform either lazy or eager validation in an
implementation specific manner.

A dynamic proxy is required to also support the j avax. xnl . r pc. St ub interface. This
provides support for the configuration of a dynamic proxy. Refer to the section 8.2.2,
“Stub Configuration” for additional details.

Example

The following example shows the use of a dynamic proxy for invoking an operation on
the target service endpoint. Note that this example does not use any generated stub class
that implements the St ockQuot ePr ovi der service endpoint interface:

javax. xm .rpc. Service service = //... access a Service instance

com exanpl e. St ockQuot eProvi der sqgp =

(com exanpl e. St ockQuot eProvi der) servi ce. get Port (
port Nane, StockQuoteProvider.class);
float price = sqgp.getlLastTradePrice("ACMVE");

DII Call Interface

The j avax. xm . rpc. Cal | interface provides support for the dynamic invocation of an
operation on the target service endpoint. The j avax. xni . r pc. Ser vi ce interface acts as
a factory for the creation of Cal | instances.

A client side JAX-RPC runtime system implementation is required to implement the
Cal | interface.

The creat eCal | method on the Servi ce interface may create a Cal | object with an
internal implementation specific in-memory model of the WSDL description of the
service. The port Nane in the cr eat eCal | method identifies the target service endpoint.

Chapter JAX-RPC Core APls JAX-RPC 1.1

The creat eCal | method with no parameters creates an empty Cal | object that needs to
be configured using the setter methods on the Cal | interface.

The following code snippet shows the Servi ce and Cal | interfaces. Refer to the
Javadocs for a complete API specification:

package javax.xm .rpc;
public interface Service {

}

Cal|l createCall () throws ServiceException;
Call createCall (Q\Nane portNanme) throws Servi ceException;
Call createCall (Q\Nane portNanme, String operationNane)

throws Servi ceExcepti on;
Call createCall (Q\ane portName, QNanme operati onNane)

throws Servi ceExcepti on;
Cal I [] getCalls(QNane portNanme) throws ServiceException;
/1 ... Other nmethods not shown here

/1l Typesafe Enuneration for ParaneterMde
public class ParaneterMde {

}

private final String node;
private ParaneterMde(String node) {

t hi s. nrode = node;
}
public String toString() { return node; }
public static final ParaneterMde IN = new ParaneterMbde("IN');
public static final Paraneter Mbde OUT = new Paranet er Mode(" QUT");
public static final ParaneterMde |INOUT =

new Par anet er Mode(" | NOUT") ;

public interface Call {

1.,
bool ean i sPar anet er AndRet ur nSpecRequi r ed(QNane operati on);
voi d addParaneter (String paranNane,
ane xm Type,
Par anet er Mode par anet er Mode) ;
voi d addParaneter (String paraniNane,
QNanme xm Type, O ass javaType
Par anet er Mode par anet er Mode) ;
QNane get Par anet er TypeByNane(Stri ng paramNane) ;
voi d set ReturnType(@ame xm Type);
voi d set ReturnType(@Qane xm Type, C ass javaType);
public QNane get Ret urnType();
voi d renmoveAl | Paraneters();

QNane get Operati onNane() ;
voi d set Operati onNane(QNane oper ati onNane) ;

QName get Port TypeNane();
voi d set Port TypeNane(QNane port Type);

String get Tar get Endpoi nt Address();
voi d set Tar get Endpoi nt Address(String address);

voi d setProperty(String nane, Object val ue);
hj ect getProperty(String nane);

bool ean renoveProperty(String name);
java.util.lterator getPropertyNanes();

/] Renmote Method I nvocation mnethods
Chj ect i nvoke(QName operati onName, Object[] inputParans)

Chapter JAX-RPC Core APls JAX-RPC 1.1

}

throws java.rm . Renot eExcepti on;
oj ect i nvoke(Qoj ect[] i nputParans)

throws java.rm . Renot eExcepti on;
voi d i nvokeOneWay(Obj ect[] i nput Parans);

java.util.Map get Qut put Parans();
java.util.List getQutputValues();

Once a Cal | instance is created, various setter and getter methods are used to configure
this Cal I instance. The configuration of a Cal | instance includes the following:

Name of a specific operation
Port type for the target service endpoint
Address of the target service endpoint

Properties specific to the binding to a protocol and transport: example, SOAPAction
URI for the SOAP binding to HTTP. The standard properties are specified later in this
section.

Name, type and mode (I N, | NOUT, OUT) of the parameters. These properties are
optional.

Return type

A setter method should throw j avax. xml . r pc. JAXRPCExcept i on in the following
cases:

If an optional standard property name is specified, however this Cal | implementation
class does not support the configuration of this property.

If an invalid or unsupported property name is specified or if a value of mismatched
property type is passed. An example is an illegal property name with the standard
property name prefix j avax. xni . rpc.

If there is any error in the configuration of a valid property.

Note that a setter method may not check validity of a configured property value. An
example is the standard property for the target service endpoint address that is not
checked for validity. In this case, any configuration errors are detected at the invoke
time.

In terms of the specification of parameters and return value, a Cal | implementation class
is required to support the following cases:

The Cal | implementation class determines the types of the parameters and return
value from the invocation of addPar amet er and set Ret ur nType methods in the
client code. The method i sPar anet er AndRet ur nSpecRequi r ed is required to return
true in this case.

The Cal | implementation class determines the types and modes of the parameters in
an implementation specific manner. For example, a Cal | implementation class may
determine parameter types by using Java reflection on parameters, using WSDL
service description and the configured type mapping registry. In this case, the client
code is not required to invoke any addPar anet er and set Ret ur nType methods
before calling the i nvoke method. The method i sPar anet er AndRet ur nSpec-

Requi r ed is required to return f al se in this case. The methods addPar anet er,
renoveAl | Par anet er s and set Ret ur nType may throw JAXRPCExcept i on if invoked
in this case.

8.2.4.1 Invocation Modes

The Cal | implementation class is required to support the following invocation modes:

Chapter JAX-RPC Core APls JAX-RPC 1.1

8.2.4.2

» Synchronous request-response mode: The i nvoke method calls a specified operation
using a synchronous request-response interaction mode. The i nvoke method takes as
parameters the object values corresponding to the parameter types. The
implementation of the i nvoke method checks whether the passed parameter values
match the number, order and types of parameters specified in the corresponding
WSDL specification of the same operation. The i nvoke method is required to throw
exception j ava. rmi . Renot eExcept i on if there is any error in the remote method
invocation. The method throws JAXRPCExcept i on if the Cal | object is not configured
properly or if parameters and return type are incorrectly specified.

* One-way mode: The i nvokeOneWay method invokes a remote method using the one-
way interaction mode. The client thread does not block waiting for the completion of
the processing of this remote method invocation on the service endpoint. When the
protocol in use is SOAP/HTTP, the client should block until an HTTP response code
has been received or an error occurs. Reception of a response code simply means that
the transmission of the request is complete, and not that the request was accepted or
processed. This method must not throw any remote exceptions. This method is
required to throw a JAXRPCExcept i on if there is an error in the configuration of the
Cal | object (example: a non-void return type has been incorrectly specified for the
one-way call) or if there is any error during the invocation of the one-way remote
call.

The method get Qut put Par ans returns a j ava. util . Map of {name, value} for the
output parameters for the last invoked operation. The parameter names in the returned
Map are of the type j ava. | ang. Stri ng. The type of a value depends on the mapping
between the Java and XML types. This method is required to throw JAXRPCExcept i on if
invoked for a one-way operation or if invoked before any i nvoke method has been
called.

The method get Qut put Val ues returns a list (of Java type j ava. util . Li st) of values
for the output parameters. This method is required to throw JAXRPCExcept i on if
invoked for a one-way operation or if invoked before any i nvoke method has been
called.

Standard Properties

The JAX-RPC specification specifies a standard set of properties that may be passed to
the Cal | .set Property method. A Cal | implementation class may also support
additional set of properties. However, the specification of these additional properties is
out of scope for JAX-RPC.

Chapter JAX-RPC Core APls JAX-RPC 1.1

The names and types of these properties are as follows. The following table also
specifies whether or not a Cal | implementation is required to support a specific standard

property:

TABLE 8-2 Standard Properties for the Call Interface

Name of Property Type of Property Description

j avax. xm . rpc. j ava. | ang. User name for Authentication
security. auth. St ring

user nane

Required to support HTTP Basic
IAuthentication. Refer to the
section 13.1.1 for more details.

j avax. xm . rpc. j ava. | ang. IPassword for Authentication.
security. auth. St ring
passwor d

Required to support HTTP Basic
IAuthentication. Refer to the
section 13.1.1 for more details.

j avax. xm . rpc. j ava. | ang. [This bool ean property is used by a
session. mai ntain Bool ean service client to indicate whether or
not it wants to participate in a
session with a service endpoint.

If this property is set to t r ue, the
service client indicates that it wants
the session to be maintained. If set to
f al se, the session is not maintained.
[The default value for this property is
f al se. Refer to the section 13.2,
“Session Management” for more
details.

Required to support session

management.
j avax. xm . rpc. j ava. | ang. “r pc” if the operation style is r pc;
soap. operation.style String “docunent > if the operation style is
docunent .

Note that a Cal | implementation
may choose to not allow setting of
this property. In this case, the

set Proper ty method throws
JAXRPCExcept i on.

Optional

Chapter JAX-RPC Core APls JAX-RPC 1.1

TABLE 8-2 Standard Properties for the Call Interface

Name of Property Type of Property Description

j avax. xm . r pc. j ava. | ang. This boolean property indicates
soap. http. soapaction [Bool ean whether or not SOAPAct i on is to be
. use

used. The default value of this
property is f al se indicating that the
SOAPAct i on is not used.

Optional
j avax. xm . rpc. j ava. | ang. Indicates the SOAPAct i on URI if the
soap. http. soapaction String avax. xm . rpc. soap. ht t p. soapac
- urt tion. use property is set to true.
Optional
j avax. xm . rpc. j ava. | ang. Encoding style specified as a
encodi ngstyl e. String namespace URI. The default value is
namespace. uri the SOAP 1.1 encoding http://
schemas. xm soap. or g/ soap/
encodi ng/
Optional

Note that the standard properties are prefixed by the j avax. xm . r pc package name.
Any vendor implementation specific properties must be defined prefixed by a vendor
specific package name.

8.2.4.3 Example
The following code example shows a typical use of the Cal | interface:
javax.xm .rpc. Service service = //... get a Service instance
javax.xm .rpc.Call call = service.createCall(

port Nane, “<operationNanme>");

cal | . addPar anet er (“ paraml”, <xsd:string>,

Par anet er Mode. I N) ;
cal | . addPar anet er (“ paranR”, <xsd:string>,

Par anet er Mode. OUT) ;
call.setReturnType(<xsd:int>);
bject[] inParams = new Object[] {“<SoneString>"};
Integer ret = (Integer) call.invoke(inParans);
Map out Parans = call. get Cut put Par ans() ;
String outValue = (String)outParans. get (“parank”);

An alternative way to invoke the same remote method using the DII Cal | interface is as
follows. In this case, the Cal | implementation class takes the responsibility of
determining the corresponding types for the parameters and return value:

javax.xm .rpc. Service service = //... get a Service instance

javax.xm .rpc.Call call = service.createCall(

port Nane, “<operationNanme>");

hject[] parans = new Cbject[] {“<SomeString>"};

Integer ret = (Integer) call.invoke(parans);

String outValue = (String)call.getQutputParans().get("“paranR”);

Chapter JAX-RPC Core APls JAX-RPC 1.1

8.2.5

Abstract ServiceFactory

The j avax. xnl . rpc. Servi ceFact ory is an abstract class that provides a factory for the
creation of instances of the type j avax. xnl . r pc. Ser vi ce. This abstract class follows
the abstract static factory design pattern. This enables a J2SE based client to create a
Servi ce instance in a portable manner without using the constructor of the Servi ce
implementation class.

package javax.xm . rpc;

public abstract class ServiceFactory {

protected ServiceFactory() { ... }
public static ServiceFactory new nstance()
throws ServiceException { ...}

public abstract Service createService(
java. net. URL wsdl Docunent Locat i on,
Nane servi ceNane)
t hrows Servi ceExcepti on;
public abstract Service createService(
Q\anme servi ceNane)
t hrows Servi ceExcepti on;
public abstract Service | oadService(C ass servicelnterface)
t hrows Servi ceExcepti on;
public abstract Service | oadService(
java. net. URL wsdl Docunent Locati on,
Cl ass servicelnterface,
java. util.Properties properties)
t hrows Servi ceExcepti on;
public abstract Service | oadService(
j ava. net. URL wsdl Docunent Locati on,
Q\ame servi ceNane,
java.util.Properties properties)
t hrows Servi ceExcepti on;

}

A client-side JAX-RPC runtime system is required to provide implementation of the
abstract Ser vi ceFact ory class. The Ser vi ceFact ory implementation class is set using
the system property named SERVI CEFACTORY_PROPERTY.

A JAX-RPC implementation that does not use a consistent naming convention for
generated service implementation classes must allow an application developer to specify
sufficient configuration information so that the Ser vi ceFact ory. | oadServi ce(C ass)
method will succeed provided all the generated artifacts are packaged with the
application. Examples of configuration information include: properties- or XML-based
configuration files that are looked up as resources using the j ava. | ang. O assLoader
get Resour ce/get Resour ces APIs, system properties and the preferences APIs
(java.util.prefs) introduces in J2SE 1.4.

A J2SE service client should use this model to get access to the Ser vi ce object. A J2SE
based service client may use the JNDI naming context to lookup a service instance.

A J2EE-based service client should not use the Ser vi ceFact ory APIs to access a
service. Moreover, packaging implementation-specific artifacts (including classes and
configuration information) with an application is strongly discouraged as it would make
the application non-portable. Instead, J2EE-based service clients should use JNDI to
lookup an instance of a Servi ce class as specified in JSR-109 [10].

Example
The following code snippet shows the use of the Servi ceFactory.

Service service = ServiceFactory. newl nstance().createService(...);

Chapter JAX-RPC Core APls JAX-RPC 1.1

8.2.6

8.2.7

8.2.8

ServiceException

The j avax. xm . r pc. Servi ceExcepti on is thrown from the methods defined in the
javax. xm . rpc. Service and j avax. xm . r pc. Servi ceFact ory APIs. The following
code snippet shows the Ser vi ceExcepti on:

package javax.xm .rpc;
public class ServiceException extends java.l ang. Exception {

public ServiceException() { ... }

public ServiceException(String nessage) { ... }

publ i c Servi ceException(Throwabl e cause) { ... }

public ServiceException(String nessage, Throwable cause) { ... }
public Throwabl e getLinkedCause() { ... }

JAXRPCException

The j avax. xm . r pc. JAXRPCExcept i on is thrown from the core APIs to indicate
exceptions related to the JAX-RPC runtime mechanisms. A JAXRPCExcept i on is
mapped to a j ava. r ni . Renot eExcept i on if the former is thrown during the processing
of a remote method invocation.

package javax.xm .rpc;

public class JAXRPCException extends java.lang. Runti neException {

public JAXRPCException() { ... }

publ i c JAXRPCException(String nmessage) { ... }

publ i ¢ JAXRPCException(Throwabl e cause) { ... }

publ i ¢ JAXRPCException(String nessage, Throwable cause) { ... }
public Throwabl e getLinkedCause() { ... }

Additional Classes

The JAX-RPC specification specifies the following additional classes for commonly
used constants:

« javax.xm .rpc. NanespaceConst ant s class for common XML namespace prefixes
and URIs

* javax.xm . rpc. encodi ng. XM.Type class for QNanmes of the supported set of XML
schema types and SOAP encoded types

Chapter Service Client Programming Model JAX-RPC 1.1

Service Client Programming Model

This chapter describes the programming model used by a JAX-RPC service client. This
chapter specifies the following details:

« Requirements for the JAX-RPC client programming model
+ Programming model for a J2EE container based service client

» Programming model for a J2SE based service client

9.1

9.2

Requirements

The JAX-RPC specification specifies the following requirements for the service client
programming model:

« Service client programming model must be independent of how a service endpoint is
realized on the server side. A service client must invoke a service endpoint using the
same client programming model irrespective of whether a service endpoint has been
defined on the J2EE platform or on a non-Java platform.

» Service client environment should be capable of importing a WSDL document and
generating a Java based client side representation for a service described in this
document. A client side representation includes classes generated based on the
mapping of the WSDL definitions to the corresponding Java representation.

+ Service client programming model must not be exposed or tied to a specific protocol,
transport or any JAX-RPC implementation specific mechanism. For example, a JAX-
RPC service client should not be exposed to how a JAX-RPC client side runtime
system invokes a remote method using a specific implementation level interaction
mode and connection management.

The JAX-RPC specification does not address discovery of a JAX-RPC service from a
service registry. A JAX-RPC implementation is not required to support the Java APIs for
XML Registries (JAXR 1.0).

J2EE based Service Client Programming Model

Note — This section is non-prescriptive and is not required to be implemented by a
client side JAX-RPC 1.1 implementation. The standard JAX-RPC client programming
model for J2EE would be specified in the JSR-109, J2EE 1.4, EJB 2.1 and Servlet 2.4
specifications. This section provides input to these specifications.

Chapter Service Client Programming Model JAX-RPC 1.1

9.2.1

This section describes the programming interface and deployment descriptor that allows
a J2EE component (either a servlet, EJB) or a J2EE application client to act as a service
client and invoke a service endpoint. The programming model approach in this section is
consistent with the J2EE programming model for looking up external resources.

Component Provider

The component provider references an external service using a logical name called
service reference. The component provider uses the service reference to get access to the
service ports as follows:

The component provider assigns an entry in the component’s environment to the
service reference. The component provider uses the deployment descriptor to declare
a service reference. Refer to the next section for more details on the deployment
descriptor.

The component provider looks up an instance of a service class using the JNDI
namespace. Refer to the section 4.3.9, “WSDL Service” for the details on the service
class. Note that the service class should implement the j avax. nani ng.

Ref er enceabl e and/or j ava. i 0. Seri al i zabl e interface to support registration and
lookup from the JNDI namespace.

The component provider uses an appropriate method on the looked up service
instance to get one or more proxy objects for the target service endpoint. A proxy for
a service endpoint can be either a dynamic proxy or an instance of a generated stub
class or a j avax. xml . rpc. Cal | object.

Example

The following code snippet illustrates how a component provider looks up a service,
gets a stub instance for a service endpoint and invokes a remote method on the service
endpoint:

Code Example 7 J2EE Programming Model: Getting a stub instance

Context ctx = new Initial Context();
com exanpl e. St ockQuot eServi ce sqs =
ctx. | ookup(*“j ava: conp/ env/ St ockQuot eServi ce”);
com exanpl e. St ockQuot eProvi der sqp =
sqgs. get St ockQuot ePr ovi der Port () ;
float quotePrice = sqgp.getlLastTradePrice(“ACVE");

In the typical case, the component provider calls the getter method on the service
(get St ockQuot ePr ovi der Port method in the above example) with no parameters.
Refer to the Code Example 1 and Code Example 6 for the code snippets for

St ockQuot ePr ovi der and St ockQuot eSer vi ce.

The following example shows the creation of a dynamic proxy.

Code Example 8 J2EE Programming Model: Creating a dynamic proxy

Context ctx = new Initial Context();
javax.xm .rpc. Service sqs = ctx. | ookup(
“j ava: conp/ env/ Dynami cServi ce”) ;
com exanpl e. St ockQuot eProvi der sgp =
(com exanpl e. St ockQuot ePr ovi der) sqgs. get Por t (

port Nane,

St ockQuot eProvi der. cl ass) ;
float quotePrice = sqgp.getlLastTradePrice(“ACVE");

Note that the JAX-RPC specification does not specify a standard JNDI subcontext for
the service references.

Chapter Service Client Programming Model JAX-RPC 1.1

9.2.2

9.2.3

9.3

Deployment Descriptor

The component provider declares all the service references in the deployment descriptor
(for a specific J2EE component) using the servi ce-ref element. Each servi ce-r ef
contains the following elements:

» description: This element describes the referenced service. This information is
meant for the deployer.

» service-ref-name: The name of the logical reference used in the component code.
This name is relative to the j ava: conp/ env subcontext. For example, the name is
St ockQuot eSer vi ce in the Code Example 7 rather than the j ava: conp/ env/
St ockQuot eSer vi ce.

« service-ref-type: This element indicates the fully qualified name of the service
class returned by the JNDI lookup. The Code Example 7 has com exanpl e.
St ockQuot eSer vi ce as the servi ce-ref -t ype, while the Code Example 8 has
javax. xm . rpc. Servi ce as the servi ce-ref-type.

» type- mappi ng: This optional element specifies the requirements for the pluggable
serializers and deserializers.

Deployer

The deployer performs the following steps for each service reference declared in a
component’s deployment descriptor:

» The deployer links a service reference to the actual representation and configuration
of the corresponding service. Such linking of a service reference is specific to the
implementation of a container. For example, the deployer may choose to link the
logical service reference to the imported WSDL based description of the service.
However, JAX-RPC does not mandate any specific linking mechanism.

» The deployer also provides and configures required configuration information for the
service instance and service endpoint proxies. For example, this configuration
information includes target endpoint address, properties specific to a protocol and
underlying transport, security information and type mapping registry.

» The deployer ensures that the configuration of a service and service proxy is based on
the protocol binding specified in the WSDL description of this service. Refer to the
section 8.2.2, “Stub Configuration” for more details.

J2SE based Service Client Programming Model

A J2SE based service client uses one of the following approaches for the invocation of a
JAX-RPC service endpoint:

» The service client uses the generated stub classes. A WSDL to Java mapping tool
imports a WSDL based service description and maps it to the corresponding client
side Java representation. The generated client side artifacts may include serializers,
deserializers, holders and utility classes.

» The service client uses the j avax. xnl . rpc. Servi ce interface to create a dynamic
proxy for the target service endpoint.

« The service client uses the j avax. xm . r pc. Ser vi ce interface to create a Cal |
object. Next, the service client uses the j avax. xm . rpc. Cal | interface to
dynamically invoke an operation on the target service endpoint.

Chapter Service Endpoint Model JAX-RPC 1.1

10

Service Endpoint Model

10.1

10.1.1

This chapter specifies the service endpoint model for a JAX-RPC service developed and
deployed on a servlet container based JAX-RPC runtime system.

The JAX-RPC specification does not specify the service endpoint model for a JAX-RPC
service developed using the EJB component model. Refer to the JSR-109 and EJB 2.1
specifications for the EJB model for JAX-RPC service endpoints.

Service Developer

This section specifies the role of a service developer in the definition of a servlet based
JAX-RPC service endpoint component.

First, the service developer performs one of the following steps depending on whether or
not the service developer has the WSDL document for a service endpoint:

The service developer generates a service endpoint interface from a WSDL document
using a WSDL to Java mapping tool. Refer to the section 4.3, “WSDL to Java
Mapping” for more details.

The service developer defines a service endpoint interface that conforms to the
specification in the section 5.2, “JAX-RPC Service Endpoint Interface”. In this case,
the developer may not have the WSDL document for this service.

Next, the service developer develops a service endpoint component by providing a
service endpoint class as follows:

+ The service endpoint class is required to implement a service endpoint interface.
» The service endpoint class is required to have a default public constructor.

» The service endpoint class may implement the Ser vi ceLi f ecycl e interface. Refer to
the section 10.1.1, “JAX-RPC Service Endpoint Lifecycle” for more details on the
lifecycle of the JAX-RPC service endpoint class.

» The service endpoint class is allowed to obtain references to resources and enterprise
beans by using JNDI to lookup these resources. The deployment elements (env-
entry, ej b-ref, ej b-1ocal -ref, resource-ref and resource-env-ref) are
specified in the web application deployment descriptor. Refer to the Servlet 2.3 and
J2EE 1.3 specifications for more details on the web application environment that is
also available to the service endpoint class.

JAX-RPC Service Endpoint Lifecycle

The service endpoint class may implement the following Ser vi ceLi f ecycl e interface:

Chapter Service Endpoint Model JAX-RPC 1.1

package javax.xml .rpc.server;

public interface ServiceLifecycle {
void init(Cbhject context) throws ServiceException;
voi d destroy();

}

If the service endpoint class implements the Ser vi ceLi f eycl e interface, the servlet
container based JAX-RPC runtime system is required to manage the lifecycle of the
corresponding service endpoint instances. The lifecycle of a service endpoint instance is
realized through the implementation of the i ni t and dest r oy methods of the

Servi celLi f ecycl e interface.

The JAX-RPC runtime system is responsible for loading and instantiation of service
endpoint instances. The JAX-RPC runtime system may choose to load and instantiate a
service endpoint instance during the startup of the runtime system or when a service
endpoint instance is needed to service an RPC request. The JAX-RPC runtime system
loads the service endpoint class using the Java class loading facility. After service
endpoint class is loaded, the JAX-RPC runtime system instantiates the class.

After the service endpoint instance is instantiated, the JAX-RPC runtime system is
required to initialize the endpoint instance before any requests can be serviced. The
JAX-RPC runtime system is required to invoke the Ser vi ceLi f ecycl e.i ni t method (if
this interface is implemented by the endpoint class) for the initialization of the service
endpoint instance. The service endpoint instance uses the i ni t method to initialize its
configuration and setup access to any external resources. The cont ext parameter in the
i ni t method enables the endpoint instance to access the endpoint context provided by
the underlying JAX-RPC runtime system.

Once a service endpoint instance has been initialized (and in a method ready state), the
JAX-RPC runtime system may dispatch multiple remote method invocations to the
service endpoint instance. These method invocations must correspond to the remote
methods in the service endpoint interface implemented by the service endpoint class.

Instances of a specific service endpoint class are considered equivalent when not
servicing a client invoked remote method invocation. A service endpoint instance does
not maintain any client specific state across remote method invocations. So service
endpoint instances are capable of pooling by the JAX-RPC runtime system. The JAX-
RPC runtime system can invoke a remote method on any available and method ready
instances of a specific service endpoint class.

The JAX-RPC runtime system is required to invoke the dest r oy method when the
runtime system determines that the service endpoint instance needs to be removed from
service of handling remote invocations. For example, the JAX-RPC runtime may remove
an endpoint instance from service when the runtime system is shutting down or
managing memory resources.

The service endpoint class releases its resources and performs cleanup in the
implementation of the dest r oy method.

After successful invocation of the dest r oy method, a service endpoint instance is ready
for garbage collection. The JAX-RPC runtime system should not dispatch any remote
method invocations to a destroyed endpoint instance. The JAX-RPC runtime system is
required to instantiate and initialize a new service endpoint instance for servicing new
remote method invocations.

Chapter Service Endpoint Model JAX-RPC 1.1

10.1.2

10.1.3

Servlet based Endpoint

During the deployment of a service endpoint component on a servlet container based
JAX-RPC runtime system, a service endpoint class is associated with a servlet. The
associated servlet class is provided by the JAX-RPC runtime system (not by service
endpoint developer) during the deployment. This association is configured in a manner
specific to a JAX-RPC runtime system and its deployment tool. For example, a JAX-
RPC deployment tool may configure a 1-1 association between a servlet class and
service endpoint class. The associated servlet class corresponds to the configured
transport binding for the service endpoint. For example, the servlet class
javax.servlet. http. HtpServl et is used for the HTTP transport.

The associated servlet typically takes the responsibility of handling transport specific
processing of an RPC request and for initiating dispatch to the target service endpoint
instance. Each Ser vl et .ser vi ce method maps to a single remote method invocation on
the target service endpoint instance. The thread model (whether single threaded or
concurrent) for the remote method invocation on the service endpoint instance depends
on the runtime system specific servlet associated with the corresponding endpoint class.
The Servlet specification [3] provides facility for both concurrent and single threaded
model (the latter through the Si ngl eThr eadModel interface) for the ser vi ce method on
a servlet.

When processing an incoming SOAP request for a one-way operation, the associated
servlet is required to send back an HTTP response code of 200 or 202 as soon as it has
identified the incoming request as being one-way and before it dispatches it to the target
service endpoint instance.

ServletEndpointContext

For service endpoint components deployed on a servlet container based JAX-RPC
runtime system, the cont ext parameter in the Ser vi ceLi f ecycl e.i ni t method is
required to be of the Java type j avax. xnl . r pc. server. Ser vl et Endpoi nt Cont ext .
The Ser vl et Endpoi nt Cont ext provides an endpoint context maintained by the
underlying servlet container based JAX-RPC runtime system.

Note that the JAX-RPC specification specifies the standard programming model for a
servlet based endpoint. The goal of JAX-RPC specification is not to define a more
generic abstraction for the endpoint context or session that is independent of any specific
component model, container and protocol binding. Such generic abstractions and
endpoint model are outside the scope of the JAX-RPC specification.

The following code snippet shows the Ser vl et Endpoi nt Cont ext interface.

package javax.xm .rpc. server;
public interface Servl et Endpoi nt Context {
public java.security.Principal getUserPrincipal();
publ i c bool ean isUserlnRole(String role);
public javax.xm .rpc. handl er. MessageCont ext get MessageCont ext ();
public javax.servlet.http. HtpSession getHtpSession();
public javax.servlet. Servl et Cont ext get Servl et Context();

}

A servlet container based JAX-RPC runtime system is required to implement the
Ser vl et Endpoi nt Cont ext interface. The JAX-RPC runtime system is required to
provide appropriate session, message context, servlet context and user principal
information per method invocation on service endpoint instances.

Chapter Service Endpoint Model JAX-RPC 1.1

10.2

The get Ht t pSessi on method returns the current HTTP session (as a j avax. servl et .
htt p. HTTPSessi on). When invoked by the service endpoint instance within a remote
method implementation, the get Ht t pSessi on returns the HTTP session associated
currently with this method invocation. This method is required to return nul | if there is
no HTTP session currently active and associated with this service endpoint instance. An
endpoint class should not rely on an active HTTP session being always there; the
underlying JAX-RPC runtime system is responsible for managing whether or not there is
an active HTTP session.

The get Ht t pSessi on method throws JAXRPCExcept i on if it is invoked by a non HTTP
bound endpoint. The JAX-RPC specification does not specify any transport level session
abstraction for non-HTTP bound endpoints.

The method get MessageCont ext returns the MessageCont ext targeted for this endpoint
instance per remote method invocation. This enables the service endpoint instance to
access the MessageCont ext propagated by request Handl er Chai n (and its contained
Handl er instances) to the target endpoint instance and to share any SOAP message
processing related context. The endpoint instance can access and manipulate the
MessageCont ext and share the SOAP message processing related context with the
response Handl er Chai n. Refer to the section 12.1, “JAX-RPC Handler APIs” for more
details on the SOAP message handler APIs.

The JAX-RPC runtime system is required to set the appropriate MessageCont ext based
on the Handl er Chai n associated with the target endpoint. If there is no associated
MessageCont ext , this method returns nul | . The get MessageCont ext method is
required to throw the j ava. | ang. | I | egal St at eExcept i on if this method is invoked
outside a remote method implementation by an endpoint class.

The method get Ser vl et Cont ext returns the Ser vl et Cont ext associated with the web
application that contain this endpoint. According to the Servlet specification, there is
one context per web application (deployed as a WAR) per JVM. A servlet based service
endpoint component is deployed as part of a web application.

The method get User Pri nci pal returns a j ava. security. Princi pal instance that
contains the name of the authenticated user for the current method invocation on the
endpoint instance. This method returns nul | if there is no associated principal yet. The
underlying JAX-RPC runtime system takes the responsibility of providing the
appropriate authenticated principal for a remote method invocation on the service
endpoint instance.

The method i sUser | nRol e returns a bool ean indicating whether the authenticated user
for the current method invocation on the endpoint instance is included in the specified
logical “role”. This method returns false if the user has not been authenticated. The
determination of whether the authenticated user is included in the specified role must be
carried out according to the Servlet specification.

Packaging and Deployment Model

The JAX-RPC specification does not specify any normative model for packaging and
deployment of service endpoints on a servlet container based JAX-RPC runtime system.
A JAX-RPC 1.1 implementation is allowed to have a vendor-specific deployment and
packaging model for servlet based service endpoints.

The J2EE 1.4 specification [3] and JSR-109 [10] would standardize the standard web
service deployment model for both EJB and servlet based service endpoints.

Chapter Service Context JAX-RPC 1.1

11

Service Context

The JAX-RPC specification allows service context to be associated with a remote call to
a service endpoint. For example, a service context may carry information corresponding
to the SOAP header entries.

This chapter describes the client programming model for the management and
processing of service context. Note that the JAX-RPC specification does not (nor intends
to, in future) specify the semantic content of the service contexts.

This chapter describes non-prescriptive guidelines for the mapping of the service
context.

11.1

Context Definition

The concrete format of the service context and its transmission between a service client
and service endpoint depends on the protocol binding associated with the JAX-RPC call.
For example, if SOAP over HTTP binding is used, the service context is transmitted in
the SOAP Header. Another example is Basic Authentication information that is carried
in the HTTP request header.

The JAX-RPC programming model is independent of whether service context is carried
in the XML based protocol or the underlying transport.

Note that the SOAP specification [4] does not define any standard formats for the SOAP
headers. Refer to the chapter 14 (“Interoperability”) for the implication of service
context propagation on the interoperability.

The WSDL 1.1 specification includes a soap: header element in the SOAP binding. A
soap: header element defines an header entry transmitted in the SOAP Header. Multiple
soap: header elements can be defined per operation for both input and output. Note that
the WSDL 1.1 specification does not require that SOAP headers be listed exhaustively in
the SOAP binding.

An exported WSDL document (for a JAX-RPC service endpoint definition) includes
soap: header elements for both input and output of each operation. These soap: header
elements may be defined specific to either a service endpoint definition or a JAX-RPC
runtime system or a server-side J2EE container.

On the service client side, a WSDL to Java mapping tool maps soap: header elements
to either implicit or explicit service context. A client side JAX-RPC runtime system or
generated stub class may add service context for a remote method call. This service
context information is in addition to that specified in the WSDL defined soap: header
elements.

Chapter Service Context JAX-RPC 1.1

11.2

11.2.1

11.2.2

Programming Model

The JAX-RPC specification classifies service context as follows based on the JAX-RPC
programming model:

« Implicit service context

» Explicit service context

Implicit Service Context

This form of service context is managed and propagated implicitly by generated stubs or
client and server side JAX-RPC runtime systems. A service client or service
implementation does not need to programmatically manage an implicit service context.

Example

A J2EE container with the JAX-RPC runtime system implicitly propagates the security
context with a remote method invocation. The propagation of the security context does
not require any explicit programming by the service client.

Explicit Service Context

Explicit service context is represented in the form of additional parameters appended
following the service endpoint defined parameters in the remote method signature. The
type of a service context parameter depends on whether the service context is of I N, QUT
or | NOUT type. Explicit service context is typically used to represent application specific
service context.

An explicit service context parameter may be either based on the mapping of a

soap: header element in the WSDL service description or generated specific to a client-
side JAX-RPC implementation. The name of the Java method parameter is mapped from
the name of the part referenced in the soap: header element. If a soap: header is
mapped to a Java method argument, and only in this case, any of its

soap: header f aul t (s) may be mapped to service specific exceptions (see section 6.6).

A Java to WSDL mapping tool is required to provide a facility for specifying metadata
related to the mapping of the explicit service context. This metadata identifies whether a
specific parameter or return type in the Java method signature is mapped to a SOAP
header element instead of an element in the SOAP body. Future versions of the JAX-
RPC specification would consider specifying a standard approach for the specification of
such mapping metadata.

Example

The following Java interface shows example of an explicit service context. In this
example, the cont ext is a service context parameter appended after the service defined
parameters of the get St ockQuot e method. This context parameter is of i nout type and
is mapped to a Hol der class. The generated stub class for this service endpoint interface
represents this cont ext parameter as a SOAP header entry:
package com exanpl e;
public interface StockQuoteProvider extends java.rm .Renote {

/1 Method returns | ast trade price

Chapter Service Context JAX-RPC 1.1

11.3

-100

float getStockQuote(String tickerSynbol, StringHol der context)
throws java.rm . Renpot eExcepti on;

}

Since processing of a SOAP header can generate SOAP faults, a method with an explicit
context parameter may throw a j avax. xn . r pc. soap. SOAPFaul t Except i on that
extends the j ava. | ang. Runt i meExcepti on.

Processing of Service Context

A JAX-RPC runtime system should be capable of processing both inbound or outbound
service contexts. A J2EE container based JAX-RPC runtime system typically processes
the infrastructure related service context. Examples are transaction and security
contexts. The JAX-RPC runtime system uses the container provided services (example:
transaction manager) to process the service context.

The processing of an inbound service context depends on the semantics of the service
context and also on the consumer of the service context-whether context consumer is
server-side JAX-RPC runtime system, J2EE container or the target service endpoint
implementation.

The JAX-RPC specification does not specify any standard server-side model for the
processing of the service context.

Chapter SOAP Message Handlers JAX-RPC 1.1

12

SOAP Message Handlers

12.1

This chapter specifies the requirements and APIs for SOAP message handlers. A SOAP
message handler gets access to the SOAP message that represents either an RPC request
or response. A typical use of a SOAP message handler is to process the SOAP header
blocks as part of the processing of an RPC request or response. A few typical examples
of handlers are:

» Encryption and decryption handler
+ Logging and auditing handler
+ Caching handler

SOAP message handlers are tied to web service endpoints (either on client or server)
and are used to provide additional SOAP message processing facility as an extension to
these components.

An example of a SOAP message handler is as follows:

A secure stock quote service requires that the SOAP body be encrypted and the SOAP
message digitally signed to prevent any unauthorized access or tampering with the RPC
requests or responses for this service. A SOAP message handler on the service client
side encrypts and digitally signs the SOAP message before communicating the request
to the remote service endpoint. On the server side, a SOAP message handler intercepts
the SOAP message, performs verification and decryption steps before dispatching the
RPC request to the target service endpoint implementation. The same steps are repeated
in reverse for the RPC response carried in a SOAP message.

Note that other types of handlers (for example; stream based handlers, post-binding
typed handlers) can be developed for SOAP message processing specific to a JAX-RPC
runtime system and the corresponding container. However, the JAX-RPC specification
specifies APIs for only SOAP message handlers. Any container specific processing of
SOAP message is out of scope for this version of the JAX-RPC specification.

JAX-RPC Handler APIs

The following diagram shows the class diagram for the handler APIs.

-101

Chapter SOAP Message Handlers JAX-RPC 1.1

12.1.1

-102

intertace>> .
Handl er Chai n
n
K<i nterface>> uses <<interface>>
Handl er MessageCont ext

uses <<interface>>
SOAP Message Handler SOAPMessageCont ext

Q
1]

j avax. xm . soap
<<Package>> 0-1

<<interface>>

SOAPMessage

Handler

A JAX-RPC handler is required to implement the j avax. xni . r pc. handl er. Handl er
interface. The following code snippet shows the Handl er interface.
package javax.xmnl . rpc. handl er;
public interface Handl er {
bool ean handl eRequest (MessageCont ext cont ext);
bool ean handl eResponse(MessageCont ext context);
bool ean handl eFaul t (MessageCont ext context);
/1

}

A Handl er implementation class is required to provide a default constructor.

The methods handl eRequest and handl eResponse perform the actual processing work
for a handler. The method handl eRequest processes the request SOAP message, while
the method handl eResponse processes the response SOAP message. The method
handl eFaul t performs the SOAP fault processing.

The MessageCont ext parameter provides access to the message context (for example: a
SOAP message that carries an RPC request or response) that is processed by a handler.
The section 12.2, “Handler Model” specifies more details about the implementation
model for a SOAP message handler.

Chapter SOAP Message Handlers JAX-RPC 1.1

12.1.2

12.1.3

12.1.4

SOAP Message Handler

A SOAP message handler class is required to implement the j avax. xmi . r pc. handl er.
Handl er interface. This handler gets access to the SOAP message (that carries either an
RPC request or response in the SOAP Body element) from the SOAPMessageCont ext .
Refer to the MessageCont ext and SOAPMessageCont ext interfaces for more details.

GenericHandler

The j avax. xmi . rpc. handl er. Generi cHandl er class is an abstract class that
implements the Handl er interface. Handler developers should typically subclass the
Generi cHandl er class unless the Handl er implementation class needs another class as
its superclass.

The Generi cHandl er class is a convenience abstract class that makes writing handlers
easy. This class provides default implementations of the lifecycle methods i nit and
destroy and also different handle methods. A handler developer should only override
methods that it needs to specialize as part of the derived Handl er implementation class.

HandlerChain

The j avax. xm . r pc. handl er. Handl er Chai n represents an ordered list of handlers. All
elements in the Handl er Chai n are of the type j avax. xm . rpc. handl er. Handl er.
package javax.xm . rpc. handl er;
public interface Handl erChain extends java.util.List {

bool ean handl eRequest (MessageCont ext context);

bool ean handl eResponse(MessageCont ext context);

bool ean handl eFaul t (MessageCont ext cont ext);

/1 Lifecycle method
void init(java.util.Mp config);
voi d destroy();

//... Additional nethods not shown

}

A JAX-RPC runtime system implementation is required to provide the implementation
class (or classes) for the Handl er Chai n interface.

An implementation class for the Handl er Chai n interface abstracts the policy and
mechanism for the invocation of the registered handlers. The default invocation policy is
to invoke handlers in the order of registration with the Handl er Chai n instance.
However, a Handl er Chai n implementation class may apply additional handler
invocation policies based on the SOAP message processing model and the processed
SOAP headers.

In the case of a one-way call, only the handl eRequest methods are invoked. Neither
handl eResponse nor handl eFaul t methods are invoked as part of the processing of the
SOAP message Handl er Chai n.

Example

In this example, three Handl er instances H1, H2 and H3 are registered (in this order) in a
single Handl er Chai n instance that is used for both request and response processing. The
default invocation order for these handlers is as follows:

-103

Chapter SOAP Message Handlers JAX-RPC 1.1

* H1. handl eRequest
* H2. handl eRequest

&

. handl eRequest

&

. handl eResponse
* H2. handl eResponse

e Hil. handl eResponse

The implementation of the handle methods in a SOAP message handler may alter this
invocation order. Refer to the section 12.2, “Handler Model” for more details. A
Handl er Chai n implementation class may also provide implementation specific
invocation policy.

12.1.5 HandlerInfo

The Handl er I nf o class represents the configuration data for a Handl er. A Handl erI nfo
instance is passed in the Handl er.i ni t method to initialize a Handl er instance.

The following code snippet shows the Handl er I nf o class:

package javax.xm . rpc. handl er;
public class HandlerInfo inplenments java.io. Serializable {
public Handlerinfo() { }
publi ¢ Handl erl nfo(d ass handl erCl ass, java.util.Mp config,
Manme[] headers) {

oo}
public void setHandl erC ass(C ass handlerCl ass) { ... }
public Cass getHandlerClass() { ... }
public void setHandl erConfig(java.util.Mp config) { ... }
public java.util.Map getHandlerConfig() { ... }
public QNane[] getHeaders() { ... }
public void set Headers(QNanme[] headers) { ... }

}

Refer to the Javadocs for more details on the Handl er | nf o class.

12.1.6 MessageContext

The interface MessageCont ext abstracts the message context that is processed by a
handler in the handl eRequest, handl eResponse or handl eFaul t method.
package javax.xm . rpc. handl er;
public interface MessageContext {

voi d setProperty(String nane, Object val ue);

Chj ect getProperty(String name);

voi d renoveProperty(String nane);

bool ean contai nsProperty(String nane);

java.util.lterator getPropertyNanes();

}

The MessageCont ext interface provides methods to manage a property set. The
MessageCont ext properties enable handlers in a handler chain to share processing
related state. For example, a handler may use the set Pr operty method to set value for
a specific property in the message context. One or more other handlers in the handler
chain may use the get Property method to get the value of the same property from the
message context.

-104

Chapter SOAP Message Handlers JAX-RPC 1.1

12.1.7

Please note that there is no specified relationship between the message context
properties and either the Stub properties described in section 8.2.2, “Stub Configuration”
or the Call properties described in section 8.2.4, “DII Call Interface”.

A Handl er Chai n instance is required to share the same MessageCont ext across
Handl er instances that are invoked during a single request and response or fault
processing on a specific service endpoint.

Handl er instances in a handler chain should not rely on the thread local state to share
state between handler instances. Handler instances in a Handl er Chai n should use the
MessageCont ext to share any SOAP message processing related state.

SOAPMessageContext

The interface SOAPMessageCont ext provides access to the SOAP message for either
RPC request or response. The j avax. xnl . soap. SOAPMessage specifies the standard
Java API for the representation of a SOAP 1.1 message with attachments. Refer to the
JAXM specification [13] for more details on the SOAPMessage interface.
package javax.xm .rpc. handl er. soap;
public interface SOAPMessageCont ext extends MessageCont ext {
SCAPMessage get Message();
voi d set Message(SOAPMessage nessage);
11

12.2

12.2.1

12.2.2

Handler Model

This section specifies the configuration and processing model for the SOAP message
handlers.

Configuration

A JAX-RPC handler may be configured and used on the service client as follows:

» On the service client side, a request handler is invoked before an RPC request is
communicated to the target service endpoint.

* On the service client side, a response or fault handler is invoked before an RPC
response is returned to the service client from the target service endpoint.
A JAX-RPC handler may configured and used on a service endpoint as follows:

« On the service endpoint side, a request handler is invoked before an RPC request is
dispatched to the target service endpoint.

* On the service endpoint side, a response or fault handler is invoked before
communication back to the service client from the target service endpoint.

Processing Model

A SOAP message handler is required to process a SOAP message and generate SOAP
faults based on the processing model specified in the SOAP [4] specification.

-105

Chapter SOAP Message Handlers JAX-RPC 1.1

-106

HandlerChain

A Handl er Chai n is configured to act in the role of one or more SOAP actors, each actor
specified using a URI called SOAP act or name. A Handl er Chai n always acts in the
role of a special SOAP actor next . Refer to the SOAP specification for the URI name for
this special SOAP actor. The following methods in the Handl er Chai n interface support
configuration of the SOAP actor roles:
package javax.xm . rpc. handl er;
public interface Handl erChain extends java.util.List {

...

voi d setRol es(String[] soapActorNanes);

String[] getRoles();

A SOAP message Handl er instance is associated with SOAP header blocks using the
qualified name of the outermost element of each header block. A Handl er indicates that
it would process specific header blocks through this association. The following method
initializes a Handl er instance for this association:
package javax.xm .rpc. handl er;
public interface Handl er {

void init(Handl erinfo config);

11l

}

A SOAP message Handl er instance gets access to the SOAP Actor roles (set for the
Hand! er Chai n instance for this SOAP node) through the SOAPMessageCont ext .

get Rol es method. A Handl er instance uses this information about the SOAP Actor
roles to process the SOAP header blocks. Note that the SOAP actor roles cannot be

changed during the processing of SOAP message through the Handl er Chai n.

A Handl er Chai n (on the SOAP receiver node) performs the following steps during the
SOAP message processing. Refer to the SOAP specification [4] for the normative details
on the SOAP message processing model.:

« Identify the set of SOAP actor roles in which this Handl er Chai n (at this SOAP node)
is to act

+ Identify all header blocks targeted at this node that are mandatory

» If one or more of the header blocks identified in the preceding step are not
understood by this node then generate a single SOAP Must Under st and fault. If such
a fault is generated, any further processing is not done. The Must Under st and fault is
propagated to the client in both cases where Must Under st and fault is generated on
either the server side or client side as part of SOAP message processing.

« Process all header blocks targeted at the node by invoking its configured chain of
handlers.

» If processing is unsuccessful, exactly one SOAP fault is generated by this
Handl er Chai n either by handlers or JAX-RPC runtime system. This SOAP fault is
propagated to the client instead of the response SOAP message.

Handler

A Handl er Chai n delegates processing of the SOAP message to its configured chain of
handlers.

The handl eRequest , handl eResponse and handl eFaul t methods for a SOAP message
handler get access to the SOAPMessage from the SOAPMessageCont ext . The
implementation of these methods can modify the SOAPMessage including the headers
and body elements.

Chapter SOAP Message Handlers JAX-RPC 1.1

The handl eRequest method performs one of the following steps after performing
handler specific processing of the request SOAP message:

Return t r ue to indicate continued processing of the request handler chain. The
Handl er Chai n takes the responsibility of invoking the next entity. The next entity
may be the next handler in the Handl er Chai n or if this handler is the last handler in
the chain, the next entity is the target service endpoint. The mechanism for dispatch
or invocation of the target service endpoint depends on whether the request

Handl er Chai n is on the client side or service endpoint side.

Return f al se to indicate blocking of the request handler chain. In this case, further
processing of the request handler chain is blocked and the target service endpoint is
not dispatched. The JAX-RPC runtime system takes the responsibility of invoking the
response handler chain next with the appropriate SOAPMessageCont ext . The Handl er
implementation class has the responsibility of setting the response SOAP message in
the handl eRequest method and perform additional processing in the

handl eResponse method. In the default processing model, the response handler
chain starts processing from the same Handl er instance (that returned f al se) and
goes backward in the execution sequence.

Throw the j avax. xml . r pc. soap. SOAPFaul t Except i on to indicate a SOAP fault.
The Handl er implementation class has the responsibility of setting the SOAP fault in
the SOAP message in either handl eRequest and/or handl eFaul t method. If
SOAPFaul t Except i on is thrown by a server-side request handler’s handl eRequest
method, the Handl er Chai n terminates the further processing of the request handlers
in this handler chain and invokes the handl eFaul t method on the Handl er Chai n
with the SOAP message context. Next, the Handl er Chai n invokes the handl eFaul t
method on handlers registered in the handler chain, beginning with the Handl er
instance that threw the exception and going backward in execution. The client-side
request handler’s handl eRequest method should not throw the SOAPFaul t -

Except i on. Refer to the SOAP specification for details on the various SOAP

f aul t code values and corresponding specification.

Throw the JAXRPCExcept i on or any other Runti neExcept i on for any handler
specific runtime error. If JAXRPCExcept i on is thrown by a handl eRequest method,
the Handl er Chai n terminates the further processing of this handler chain. On the
server side, the Handl er Chai n generates a SOAP fault that indicates that the message
could not be processed for reasons not directly attributable to the contents of the
message itself but rather to a runtime error during the processing of the message.
Refer to the SOAP specification for details on the various SOAP f aul t code values.
On the client side, the JAXRPCExcept i on or runtime exception is propagated to the
client code as a Renot eExcept i on or its subtype.

The handl eResponse method performs the processing of the SOAP response message.
It does one of the following steps after performing its handler specific processing of the
SOAP message:

Return t rue to indicate continued processing of the response handler chain. The
Handl er Chai n invokes the handl eResponse method on the next Handl er in the
handler chain.

Return f al se to indicate blocking of the response handler chain. In this case, no
other response handlers in the handler chain are invoked. On the service endpoint
side, this may be useful if response handler chooses to issue a response directly
without requiring other response handlers to be invoked.

Throw the JAXRPCExcept i on or any other Runti neExcepti on for any handler
specific runtime error. If JAXRPCExcept i on is thrown by the handl eResponse
method, the Handl er Chai n terminates the further processing of this handler chain.
On the server side, the Handl er Chai n generates a SOAP fault that indicates that the
message could not be processed for reasons not directly attributable to the contents of

-107

Chapter SOAP Message Handlers JAX-RPC 1.1

the message itself but rather to a runtime error during the processing of the message.
On the client side, the JAXRPCExcept i on or runtime exception is propagated to the
client code as a Renot eExcept i on or its subtype.

The handl eFaul t method performs the SOAP fault related processing. The JAX-RPC
runtime system should invoke the handl eFaul t method if a SOAP fault needs to be
processed by either client-side or server-side handlers. The handl eFaul t method does
one of the following steps after performing handler specific processing of the SOAP
fault:

* Return true to indicate continued processing of the fault handlers in the handler
chain. The Handl er Chai n invokes the handl eFaul t method on the next Handl er in
the handler chain.

» Return f al se to indicate blocking of the fault processing in the handler chain. In this
case, no other handlers in the handler chain are invoked. The JAX-RPC runtime
system takes the further responsibility of processing the SOAP message.

« Throw JAXRPCExcept i on or any other Runt i meExcepti on for any handler specific
runtime error. If JAXRPCExcept i on is thrown by the handl eFaul t method, the
Handl er Chai n terminates the further processing of this handler chain. On the server
side, the Handl er Chai n generates a SOAP fault that indicates that the message could
not be processed for reasons not directly attributable to the contents of the message
itself but rather to a runtime error during the processing of the message. On the client
side, the JAXRPCExcept i on or runtime exception is propagated to the client code as a
Renot eExcept i on or its subtype.

Please note that when a JAXRPCException or RuntimeException raised on the server is
converted to a SOAP fault for the purpose of being transmitted to the client, there are no
guarantees that any of the information it contains will be preserved.

Example

The following shows an example of the SOAP fault processing. In this case, the request
handler H2 on the server side throws a SOAPFaul t Except i on in the handl eRequest
method:

* H1. handl eRequest

* H2. handl eRequest ->throws SOAPFaul t Excepti on
* H2. handl eFaul t
* HL1. handl eFaul t

Example: SOAP Message Handler

The following shows an example of a SOAP message handler.

package com exanpl e;
public class MySOAPMessageHand! er
extends javax.xm . rpc. handl er. Generi cHandl er {
public MySOAPMessageHandler() { ... }

publ i ¢ bool ean handl eRequest (MessageCont ext context) ({

try {
SOAPMessageCont ext snt = (SOAPMessageCont ext) cont ext ;
SCAPMessage nsg = snt. get Message();
SOAPPart sp = nsg. get SOAPPart ();
SOAPEnvel ope se = sp. get Envel ope();
SOAPHeader sh = se. get Header ();
/1 Process one or nore header bl ocks
I
/1 Next step based on the processing nodel for this

-108

Chapter SOAP Message Handlers JAX-RPC 1.1

/1 handl er

}
cat ch(Exception ex) {
/1 throw exception

12.3

12.3.1

12.3.2

}
}
/1 Ot her methods: handl eResponse, handl eFault init, destroy
}
Configuration

This section specifies Java APIs for the programmatic configuration of SOAP message
handlers.

Handler Configuration APIs

A developer performs the programmatic configuration of handlers using the
javax. xm . rpc. handl er. Handl er Regi st ry interface.

The Ser vi ce interface provides access to the Handl er Regi st ry instance as shown in
the following code snippet:

package javax.xm . rpc;

public interface Service {

Handl er Regi stry get Handl er Regi stry();
/1 ... Additional methods

}

The method get Handl er Regi st ry returns the Handl er Regi st ry instance for this
Ser vi ce instance.

The following code snippet shows the Handl er Regi st ry interface:

package javax.xm . rpc. handl er;

public interface Handl erRegi stry extends java.io. Serializable {
java. util.List getHandl er Chai n(QNane port Nane);
voi d set Handl er Chai n(QNarme portNane, java.util.List chain);
I

}

A JAX-RPC runtime system is required to provide implementation class for the
Handl er Regi st ry interface.

A handler chain is registered per service endpoint, as indicated by the qualified name of
a port. The get Handl er Chai n returns the handler chain for the specified service
endpoint. The returned handler chain is configured using the j ava. uti | . Li st interface.
Each element in this list is required to be of the Java type j avax. xm . rpc. handl er.
Handl er I nf o. The programmatic registration of Handl er should be performed prior to
the runtime creation of an endpoint proxy or Cal | object using the j avax. xm . r pc.
Ser vi ce methods.

Deployment Model
The JAX-RPC specification does not specify the standard deployment and packaging

model for the SOAP message handlers. This model would be defined as part of the J2EE
1.4 specifications [3].

-109

Chapter SOAP Message Handlers JAX-RPC 1.1

12.4

-110

Handler Lifecycle

A SOAP message handler is required to be implemented as a stateless instance. A SOAP
message handler must not maintain any SOAP message related state in its instance
variables across multiple invocations of the handl e method. In terms of the SOAP
message processing functionality, the JAX-RPC runtime system considers all instances
of a specific handler class as equivalent. The JAX-RPC runtime system may choose any
ready instance of a Handl er class to invoke the handle methods. This makes the

Handl er instances as capable of pooling by the JAX-RPC runtime system per deployed
endpoint component. However, JAX-RPC runtime system is not required to support
pooling of Handl er instances.

A SOAP message handler is required to implement the following lifecycle methods of
the j avax. xnl . r pc. handl er. Handl er interface:
package javax.xm . rpc. handl er;
public interface Handl er {
voi d init(Handl erlnfo config);
voi d destroy();
11

}

The JAX-RPC runtime system is required to manage the lifecycle of Handl er instances
by invoking the i ni t and dest r oy methods.

The following state transition diagram shows the lifecycle of a Handl er instance:

Does Not Exist

1. new nst ance

2 init(..) destroy()

handl e(MessageCont ext)

The JAX-RPC runtime system is responsible for loading the Handl er class and
instantiating the corresponding Handl er object. The lifecycle of a Handl er instance
begins when the JAX-RPC runtime system creates a new instance of the Handl er class.

After a Handl er is instantiated, the JAX-RPC runtime system is required to initialize the
Handl| er before this Handl er instance can start processing the SOAP messages. The
JAX-RPC runtime system invokes the i ni t method to enable the Handl er instance to
initialize itself. The i ni t method passes the handler configuration as a Handl er | nf o
instance. The Handl er I nf o is used to configure the Handl er (for example: setup access
to an external resource or service) during the initialization. The i ni t method also
associates a Handl er instance (using the Handl er | nf o) with zero or more header blocks
using the corresponding QNanes.

Chapter SOAP Message Handlers JAX-RPC 1.1

In the i ni t method, the Handl er class may get access to any resources (for example;
access to an authentication service, logging service) and maintain these as part of its
instance variables. Note that these instance variables must not have any state specific to
the SOAP message processing performed in the various handl e method.

Once the Handl er instance is created and initialized (and is in the Ready state), the
JAX-RPC runtime system may invoke the different handl e method multiple times.

The JAX-RPC runtime system is required to invoke the dest r oy method when the
runtime system determines that the Handl er object is no longer needed. For example,
the JAX-RPC runtime may remove a Handl er object when the runtime system (in an
managed operational environment) is shutting down or managing memory resources.

The dest r oy method indicates the end of lifecycle for a Handl er instance. The Handl er
instance releases its resources and performs cleanup in the implementation of the

dest r oy method. After successful invocation of the dest r oy method, the Handl er
object is available for the garbage collection.

A Runti meExcepti on (other than SOAPFaul t Excepti on) thrown from any method of
the Handl er results in the dest r oy method being invoked and transition to the “Does
Not Exi st” state.

-111

Chapter JAX-RPC Runtime Services JAX-RPC 1.1

13

JAX-RPC Runtime Services

13.1

13.1.1

-112

This chapter specifies requirements for security and session management for the JAX-
RPC runtime system implementations.

Security

The JAX-RPC specification requires that a service client be able to authenticate to the
service endpoint. Note that this section specifies requirements for different
authentication mechanisms when HTTP or HTTP/S is used as the underlying transport.

HTTP Basic Authentication

The JAX-RPC specification requires support for HTTP Basic Authentication for
protocol bindings over the HTTP transport.

The HTTP Basic Authentication uses user name and password for authenticating a
service client. The j avax. xml . rpc. Stub and j avax. xm . rpc. Cal | interfaces are
required to support “j avax. xml . rpc. security. aut h. user nanme” and

“javax.xm . rpc. security. aut h. password” properties for the HTTP Basic
Authentication. For convenience, the properties above can be referenced using resp. the
USERNAME_PROPERTY and PASSWORD PROPERTY constants defined by the St ub and Cal |
interfaces.

During invocation of a remote method, HTTP server (considered part of a JAX-RPC
server side runtime system) uses user name and password to authenticate the service
client. The authentication is performed in a specific security realm.

Example

The following shows an illustrative example of a service client accessing a service
endpoint bound to SOAP over HTTP. The user name and password passed in the

get St ockQuot ePr ovi der method are used for authenticating the service client using the
HTTP Basic Authentication:

St ockQuot eService sqs = // ... Get access to the service
St ockQuot eProvi der sqp = sqs. get St ockQuot eProvi der Port (
"<usernane>", "<password>");

float quote = sqp. getlLastTradePrice("ACVE");

The following shows the same example using the properties mechanism for the
configuration of a stub instance:

Chapter JAX-RPC Runtime Services JAX-RPC 1.1

13.1.2

13.1.3

13.2

St ockQuot eProvi der _Stub sgp = // ... get to the stub;
sqp. _set Property(St ub. USERNAME_PROPERTY, "<username>");
sqp. _set Property(St ub. PASSWORD PROPERTY, "<password>");
float quote = sqp.getlLastTradePrice("ACMVE");

SSL Mutual Authentication

The JAX-RPC specification does not require support for the certificate based mutual
authentication using HTTP/S (HTTP over SSL) mechanism.

SOAP Security Extensions

The JAX-RPC specification does not require support for the SOAP Security Extensions
for digital signature [16].

Session Management

The JAX-RPC specification requires that a service client be able to participate in a
session with a service endpoint.

In the JAX-RPC 1.1 version, the session management mechanisms require use of HTTP
as the transport in the protocol binding. This version of the JAX-RPC specification does
not specify (or require) session management using SOAP headers given that there is no
standard SOAP header representation for the session information. SOAP based session
management may be considered in the future versions of the JAX-RPC specification.

A JAX-RPC runtime system is required to use at least one of the following mechanisms
to manage sessions:

» Cookie based mechanism: On the initial method invocation on a service endpoint, the
server side JAX-RPC runtime system sends a cookie to the service client to initiate a
new session. If service client wants to participate in this session, the client side JAX-
RPC runtime system then sends the cookie for each subsequent method invocation on
this service endpoint. The cookie associates subsequent method invocations from the
service client with the same session.

» URL rewriting involves adding session related identifier to a URL. This rewritten
URL is used by the server-side JAX-RPC runtime to associate RPC invocations to the
service endpoint with a session. The URL that is rewritten depends on the protocol
binding in use.

+ SSL session may be used to associate multiple RPC invocations on a service endpoint
as part of a single session.

A session (in JAX-RPC) is initiated by the server-side JAX-RPC runtime system. The
server-side JAX-RPC runtime system may use HTTPSessi on (defined in the Servlet
specification [3]) to implement support for the HTTP session management.

A service client uses the j avax. xnl . r pc. sessi on. nai nt ai n property (set using the
St ub or Cal | interfaces) to indicate whether or not it wants to participate in a session
with a service endpoint. By default, this property is f al se, so the client does not
participate in a session by default. However, by setting sessi on. mai ntai n property to

-113

Chapter JAX-RPC Runtime Services JAX-RPC 1.1

-114

true, the client indicates that it wants to join the session initiated by the server. In the
cookie case, the client runtime system accepts the cookie and returns the session
tracking information to the server, thereby joining the session.

The client code by setting the sessi on. mai nt ai n property assumes that it would
participate in a session if one is initiated by the server. The actual session management
happens transparent to the client code in the client-side runtime system.

Note that JAX-RPC specification does not require session management as part of the
interoperability requirements (specified in the chapter 14).

Chapter Interoperability JAX-RPC 1.1

14

Interoperability

14.1

The XML based RPC services are typically defined, deployed and used on
heterogeneous environments and platforms. Interoperability of various JAX-RPC
runtime system implementations with other vendor products (including Microsoft .Net)
is an extremely important goal for the JAX-RPC specification.

This chapter specifies scenarios and requirements for the interoperability of a vendor’s
JAX-RPC runtime system implementation with other JAX-RPC implementations and
XML based RPC products.

Interoperability Scenario

The following diagram shows a typical heterogeneous environment for XML based RPC
services. This environment is used to describe various interoperability scenarios later in
this chapter.

An example service endpoint is defined and deployed separately on two products from
vendors C and D. The vendor D has a standard J2EE compatible application server that
supports a JAX-RPC runtime system implementation. The vendor C has a vendor
specific product that supports XML based RPC using SOAP 1.1 and WSDL 1.1.

Service clients are developed and deployed each on vendor A and B products. The
vendor A provides a JAX-RPC runtime system implementation based on either the J2SE
platform or a J2EE compatible application server. The vendor B provides an XML based
RPC product that supports SOAP 1.1 and WSDL 1.1.

WSDL based Service Description

Service Client « — — | Service Endpoint
JAX-RPC Vendor Product

Implementation <Vendor C>
<Vendor A>

Service Client Service Endpoint

J2EE Container
Vendor product with JAX-RPC support

<Vendor B> + — —] <Vendor D>

-115

Chapter Interoperability

14.2

14.3

-116

JAX-RPC 1.1

The following table illustrates interoperability scenario matrix based on the above
heterogeneous environment. In this matrix, a JAX-RPC implementation includes a JAX-
RPC runtime system and deployment tools.

TABLE 14-1 Interoperability Matrix

Service Client
IEnvironment

Service Provider
IEnvironment

JAX-RPC 1.1 Scope

JAX-RPC
implementation based on
either J2SE or J2EE
compatible container

Vendor specific XML based
RPC product with SOAP 1.1
and WSDL 1.1 support

Scenario addressed by the
JAX-RPC Interoperability
requirements

JAX-RPC
implementation based on
either J2SE or J2EE
compatible container

UAX-RPC implementation
based on either J2SE or J2EE
compatible container

Scenario addressed by the
JAX-RPC Interoperability
requirements

Vendor specific XML
based RPC product with
SOAP 1.1 and WSDL
1.1 support

UAX-RPC implementation
based on either J2SE or J2EE
compatible container

Scenario addressed by the
JAX-RPC Interoperability
requirements

Vendor specific XML
based RPC product with
SOAP 1.1 and WSDL
1.1 support

Vendor specific XML based
RPC product with SOAP 1.1
and WSDL 1.1 support

Out of Scope

Interoperability Goals

The JAX-RPC interoperability requirements address the following goals:

» To support an out-of-box interoperability between various JAX-RPC compatible

implementations

+ To specify requirements that are testable for interoperability

« To leverage interoperability work done by standards bodies (example: W3C, WS-I)
and key interoperability initiatives (including the SOAPBuilders [19] community)

» To specify interoperability requirements without any additional requirements on the
JAX-RPC service client and service endpoint model. Service clients and service
developers should not be exposed to the interoperability requirements.

Interoperability Requirements

The following section specifies interoperability requirements for the scenarios identified
as within the scope of the JAX-RPC 1.0 specification.

Please note that the JAX-RPC 1.1 specification added several interoperability
requirements based on the work done in the Web Service Interoperability Organization.
These requirements are detailed in section 14.4, “Interoperability Requirements: WS-I

Basic Profile Version 1.0”.

Chapter Interoperability JAX-RPC 1.1

14.3.1

14.3.2

14.3.3

14.3.4

SOAP based Interoperability

An-interoperable JAX-RPC implementation must be able to support SOAP 1.1 with
attachments [6] as the underlying protocol. A vendor’s implementation of the SOAP 1.1
protocol must be based on the standard SOAP specification [4]. A SOAP based JAX-
RPC runtime system implementation must interoperate with other JAX-RPC
implementations and vendor specific products that support SOAP 1.1 with attachments.

The JAX-RPC specification does not specify interoperability requirements for any
protocol other than the SOAP 1.1 with attachments. However, the JAX-RPC
specification allows a JAX-RPC runtime system implementation to support protocol
bindings other than SOAP. Note that any non-SOAP based JAX-RPC implementation is
not interoperable by definition based on the JAX-RPC interoperability requirements.

SOAP Encoding and XML Schema Support

The JAX-RPC specification requires support for the following representation for remote
call and response in a SOAP message:

* Encoded representation using the SOAP 1.1 encoding: The rules and format of
serialization for the XML data types are based on the SOAP 1.1 encoding [4]. A
JAX-RPC runtime system implementation is required to support the SOAP 1.1
encoding. Interoperability requirements for any other encodings are outside the scope
of the JAX-RPC specification.

Refer to the R0O3 for the XML Schema data types and Java types that an-intereperable
JAX-RPC runtime system implementation is required to support.

The sections 4.2 and 5.3 specify the standard mapping between the XML data types and
Java types. A JAX-RPC implementation is required to support the standard type
mapping between XML data and Java types.

Transport

A JAX-RPC runtime system implementation must be able to support HTTP 1.1 as the
underlying transport. The required SOAP binding to HTTP 1.1 is specified in the SOAP
specification [4].

The interoperability requirements for any other transport are outside the scope of the
JAX-RPC specification. Note that a future version of the JAX-RPC specification may
consider specifying interoperability requirements for additional transports. This support
depends on the standardization (in the SOAP W3C working group) of the SOAP binding
framework for different transports.

WSDL Requirements

For each deployed JAX-RPC service endpoint, a JAX-RPC implementation must be able
to export an equivalent WSDL 1.1 based service description. The mapping to a WSDL
based service description should follow the standard Java to WSDL mapping specified
in the section 5.5, “Java to WSDL Mapping”.

-117

Chapter Interoperability JAX-RPC 1.1

14.3.5

14.3.6

-118

An exported WSDL based service description must not include any vendor specific
extensibility elements. Note that the use of such vendor specific extensibility elements
may constrain interoperability.

An-interoperable JAX-RPC implementation must be capable of importing a WSDL 1.1
based service description. The mapping of an imported WSDL service description to the
equivalent Java representation is required to follow the standard WSDL to Java mapping
as specified in the section 4.3, “WSDL to Java Mapping”. Note that the use of a specific
service client programming model (whether generated stub or dynamic proxy based)
must not impact the interoperability.

Processing of SOAP Headers

An-interoperable JAX-RPC implementation must be able to support the standard
processing model for SOAP headers as specified in the SOAP specification [5]. Note
that the SOAP specification does not define any standard representation for the SOAP
headers.

An explicit goal of the JAX-RPC specification is not to define any SOAP header
representation for transaction, security or session related information. A goal of the
JAX-RPC specification is to leverage work done in other standardization groups for this
aspect. An important point to note is that any JAX-RPC specific definition of SOAP
headers or session related information is against the design goal of achieving SOAP
based interoperability with heterogeneous environments.

Mapping of Remote Exceptions

A remote method in a service endpoint interface is required to throw the standard
java. rni . Renot eExcepti on. A Renot eExcept i on or its subclass maps to a fault in the
corresponding SOAP message. Refer to the SOAP specification [4] for requirements on
the representation of a fault in a SOAP message.

A SOAP fault includes the f aul t code sub-element. The f aul t code must be present in
a SOAP fault and the f aul t code value must be a qualified name. A JAX-RPC
implementation must map a j ava. r ni . Renot eExcepti on or its subclass to a standard
f aul t code. This enables JAX-RPC implementations to interoperate in terms of handling
of the remote exceptions.

TABLE 14-2 Mapping between RemoteException and SOAP Faults

tRnemoteException
ISOAP faultcode Value Error Description apping
soap- env: Server Server cannot handle the message | ava.rm.
because of some temporary Ser ver Except i on
condition. Example: out of
memory condition
soap-env: Parameters are encoded in a data [ava.rm.
Dat aEncodi ngUnknown lencoding unknown to the server. Var shal Excepti on

Chapter Interoperability JAX-RPC 1.1

14.3.7

14.3.8

Security

JAX-RPC specification does not specify requirements for the security interoperability
for the JAX-RPC implementations. This will be specified in a future version of the JAX-
RPC specification.

Transaction

Transaction interoperability is an optional feature in the JAX-RPC specification. A JAX-
RPC implementation is not required to implement support for the transaction context
propagation.

14.4

14.4.1

Interoperability Requirements: WS-I Basic Profile
Version 1.0

The JAX-RPC 1.1 specification adds several interoperability requirements based on the
work done in the Web Service Interoperability Organization.

The WS-I Basic Profile Version 1.0 ([22], henceforth “BP”’) establishes a set of
requirements that instances and consumers of Web Services must satisfy in order to be
declared conformant.

In the rest of this section, the term “conformant” must be assumed to mean “conformant
with the WS-I Basic Profile Version 1.0”. All-uppercase words, such as DESCRIPTION,
MESSAGE, RECEIVER, etc. are used to refer to terms defined in the Basic Profile
specification.

Requirements On Java-to-WSDL Tools

The Java-to-WSDL tools provided by a JAX-RPC implementation must be able to
produce a WSDL 1.1 document containing a conformant DESCRIPTION of the service
when starting from a JAX-RPC service endpoint interface that uses only types for which
chapter 5 (“Java to XML/WSDL Mapping”) provides a standard mapping.

The following BP requirements apply to Java-to-WSDL tools and the DESCRIPTIONs
they produce under the conditions listed in the previous paragraph:
+ (section 3.3) 0002, 0003;

. (section 5.1) 2028, 2029, 2001, 2002, 2003, 2004, 4003, 2005, 2007, 2022, 2023,
4003, 2025, 2026;

+ (section 5.2) 2101, 2105, 2110, 2111, 2112;

« (section 5.3) 2201, 2210, 2202, 2203, 2207, 2204, 2208, 2205, 2209, 2206;
+ (section 5.4) 2301, 2302, 2303, 2304, 2305, 2306;

» (section 5.5) 2401;

+ (section 5.6) 2700, 2701, 2702, 2705, 2706, 2710, 2711, 2716, 2717, 2726, 2718,
2719, 2740, 2741, 2720, 2721, 2754, 2722, 2723;

+ (section 5.7) 2800, 2801;
* (section 7.1) 5001.

-119

Chapter Interoperability JAX-RPC 1.1

14.4.2

14.4.3

-120

Requirements on WSDL-to-Java Tools

The WSDL-to-Java tools provided by a JAX-RPC implementation must be able to
process WSDL 1.1 documents that contain conformant DESCRIPTIONS and that use
any XML Schema feature with the exception of those explicitely excluded in
Appendix 18.

The following BP requirements apply to WSDL-to-Java tools as CONSUMERs of a
conformant DESCRIPTION under the conditions listed in the previous paragraph.

* (section 5.1) 4002, 2008, 2020, 2021, 2024, 2027,
+ (section 5.2) 2114;
* (section 5.6) 2707, 2709, 2713, 2728, 2747, 2748.

Requirements On JAX-RPC Runtime Systems

Since JAX-RPC contains an extensible SOAP Message Handler framework, it is
impossible to guarantee that any JAX-RPC client application or endpoint will always
produce or consume messages which are conformant. Even if, for the purpose of
establishing interoperability requirements, we removed message handlers from JAX-
RPC, there would still be several other possibilities offered by the platform or by
containers to intercept and alter messages, ranging from protocol handlers in J2SE to
servlet filters in J2EE.

The intent of this section is therefore to ensure that, provided that neither user-written
code nor container-specific functionality that is outside the scope of JAX-RPC alters
incoming or outgoing SOAP messages in ways that make them non-conformant or
deliberately produces a non conformant SOAP message, JAX-RPC 1.1-based
applications will indeed behave in a conformant way and produce and accept
conformant messages.

The runtime system of a JAX-RPC 1.1 implementation (henceforth “runtime”) must

satisfy the following BP requirements when operating as either a consumer or a provider
of an INSTANCE whose DESCRIPTION is conformant. The requirements are grouped
in three different categories according to the operations of the runtime that they affect.

« When creating a javax.xml.soap.SOAPMessage starting from a Java method
invocation (on the client) or the result of one (on the server) and before passing it to
the appropriate handler chain for processing:

(section 3.4) 0004, 0005, 0006;

(section 4.1) 1000, 1001, 1004, 1031, 1005, 1006, 1007, 1008, 1009, 1011, 1013,
1014;

(section 5.2) 2113;
(section 5.6) 2712, 2729, 2735, 2737.

» When serializing a javax.xml.soap.SOAPMessage into XML, after the message has
been processed by the appropriate handler chain, and sending it over the wire (this
includes the degenerate case of a server handling a one-way request):

(section 3.4) 0007;
(section 4.1) 1012;

(section 4.3) 1140, 1141, 1132, 1108, 1109, 1117, 1118, 1124, 1111, 1112, 11186,
1126;

(section 5.6) 2714, 2715, 2727, 2744, 2745.

Chapter Interoperability JAX-RPC 1.1

+ When receiving a SOAP message over the wire and deserializing it into a
javax.xml.soap.SOAPMessage object:

(section 4.1) 4001, 1002, 1003, 1016, 1010, 1015, 1017,

(section 4.2) 1025, 1027, 1028, 1029, 1030;

(section 4.3) 1107, 1119, 1125, 1113, 1114, 1115, 1130;

(section 5.6) 2750, 2742, 2743, 2724, 2725, 2739, 2753, 2751, 2752, 2746.

-121

Chapter Extensible Type Mapping JAX-RPC 1.1

15

Extensible Type Mapping

This chapter specifies APIs for supporting an extensible type mapping framework in a
JAX-RPC implementation.

The JAX-RPC specification specifies a standard mapping between XML data types and
Java types. The standard type mapping supports a set of XML data types defined in the
SOAP 1.1 encoding and XML Schema specification. Refer to the “Appendix: XML
Schema Support” for the supported set of XML data types. The standard type mapping
also specifies the XML mapping for the set of Java types supported by the JAX-RPC.
Refer to the section 4.2, “XML to Java Type Mapping” and section 5.3, “Java to XML
Type Mapping” for more details on the standard type mapping.

A JAX-RPC implementation may need to support mapping between XML data types
and Java types beyond that addressed by the standard type mapping specification.

The JAX-RPC specification specifies APIs to support an extensible type mapping
framework. These APIs enable development of pluggable serializers and deserializers to
support an extensible mapping between any Java type and XML data type. The
pluggable serializers and deserializers may be packaged as part of a JAX-RPC
implementation or may be provided by tools vendors, service developers and service
clients.

15.1

-122

Design Goals

The JAX-RPC specification identifies the following design goals for the extensible type
mapping framework:

» The type mapping framework should enable the development of pluggable serializers
and deserializers using different XML processing mechanisms and representations.
Note that the performance of a pluggable serializer or deserializer depends on the
choice of an XML processing mechanism and representation. For example, a DOM
based deserializer is typically less performance efficient than a SAX or streaming
parser based deserializer.

« The type mapping framework should not enforce a specific XML processing
mechanism or representation on a JAX-RPC implementation. A JAX-RPC
implementation should be allowed to use a performance efficient XML processing
mechanism.

+ The application programming model for development and pluggability (into the type
mapping framework) of serializers and deserializers should be simple. The type
mapping framework should enable a JAX-RPC implementation vendor, application
developer and tools vendor to develop pluggable serializers and deserializers.

Chapter Extensible Type Mapping

JAX-RPC 1.1

Note that the portability of pluggable serializers and deserializers across various JAX-
RPC implementations is not addressed in the JAX-RPC 1.1 version. The reasons are as

follows:

+ Existing SOAP implementations typically use either SAX based or streaming pull
parser for the XML processing. The primary motivation is better performance. It will
be difficult (in terms of the time to market for various JAX-RPC implementations) to

enforce any standard portable API for XML processing and representation on all

JAX-RPC implementations.

+ Portability of XML processing mechanism specific serializers and deserializers to a
JAX-RPC implementation that uses a different XML processing mechanism is non-

trivial to implement. For example, a DOM based serializer may not be easily
pluggable on a JAX-RPC implementation that uses a streaming pull parser.

Support for portable serializers and deserializers will be addressed in the next version of

the JAX-RPC specification.

15.2

Type Mapping Framework

The j avax. xm . r pc. encodi ng package defines a set of Java interfaces/classes for the
type mapping framework. The following diagram shows the JAX-RPC type mapping

framework.

]

Package: com.<vendor|developer>

| <JavaType>Serializer |

<XMLType>Deserializer

]

Package: javax.xml.rpc.encoding

V4

<<interface>>
Serializer

<<interface>>
SerializationContext

<<linterface>>
Deserializer

<<interface>>
DeserializationContext

J\g(—RPC Runtime Systja

Adapter

\

/

XML Processing Mechanism

-123

Chapter Extensible Type Mapping JAX-RPC 1.1

-124

The Seri al i zer and Deseri al i zer interfaces enable development of pluggable
serializers and deserializers that support extensible mapping between XML data types
and Java types.

A Serializer serializes a Java object to an XML representation based on the type
mapping defined between the corresponding Java type and the XML data type.
Examples are serializers defined for Java arrays and classes in the standard Java
Collection framework. A serializer typically uses the XML schema definition for an
XML schema instance to generate the corresponding XML representation.

A Deserializer deserializes an XML element or schema instance to a Java object. The
deserialization is based on the type mapping defined between an XML data type and the
corresponding Java type. A deserializer typically uses the XML schema fragment and
the corresponding XML schema instance to map to the corresponding Java object.

The Seri al i zer and Deseri al i zer are the base interfaces defined to be independent of
any XML processing mechanism and XML representation. A JAX-RPC implementation
must extend these two interfaces to support development of serializers and deserializers
based on a specific XML processing mechanism. Examples of various XML processing
mechanisms that may be supported by implementation specific serializers and
deserializers are:

+ DOM based XML processing
+ SAX based XML processing
+ Streaming pull parser

» Object based input and output streams

A JAX-RPC runtime system is also required to implement both Seri al i zati onCont ext
and Deseri al i zati onCont ext interfaces. These two interfaces provide XML
processing and JAX-RPC runtime system related context to the serializers and
deserializers during serialization and deserialization.

Note that the type mapping framework does not require an implementation of a JAX-
RPC runtime system to use a specific XML processing mechanism. For example, a JAX-
RPC implementation may use a streaming pull parser for performance efficient XML
processing. DOM or SAX based deserializers may still be developed and plugged into
the extensible type mapping framework provided by this JAX-RPC implementation. To
support such DOM or SAX based deserializers, this JAX-RPC implementation may
include adapters from the underlying XML processing mechanism (streaming pull parser
in this case) to both SAX and DOM representations.

JAX-RPC specification does not require that a JAX-RPC implementation support
pluggablility of serializers and deserializers of multiple XML processing mechanism
types. A JAX-RPC implementation may choose to support any number but must support
at least one of the XML processing mechanism types for serializers and deserializers.

Chapter Extensible Type Mapping

15.3

15.3.1

API Specification

JAX-RPC 1.1

This section specifies the JAX-RPC APIs for the extensible type mapping framework.
The following diagram shows the j avax. xml . r pc. encodi ng package:

FIGURE 15-1 Class diagram for the Type Mapping framework

javax.xml.rpc.encoding |STinterface>> ,
TypeMappingRegistry
<<interface>>)
TypeMapping
<<interface>> <<interface>>
SerializerFactory DeserializerFactory
T T
| creates | creates
<<interface>> <<interface>>
Serializer Deserializer

TypeMappingRegistry

The interface j avax. xni . r pc. encodi ng. TypeMappi ngRegi stry defines a registry for
the type mappings for various encoding styles.

The following code snippet shows the TypeMappi ngRegi st ry interface:

package javax.xm . rpc. encodi ng;
public interface TypeMappi ngRegi stry extends java.io. Serializable {

void register(String encodi ngStyl eURl,
voi d registerDefaul t (TypeMappi ng nappi ng);

TypeMappi ng get Def aul t TypeMappi ng() ;
TypeMappi ng get TypeMappi ng(String encodi ngStyl eURl) ;
TypeMappi ng unregi st er TypeMappi ng(String encodi ngStyl eURl) ;
bool ean renoveTypeMappi ng(TypeMappi ng) ;

TypeMappi ng creat eTypeMappi ng() ;

String[] getRegi steredEncodi ngStyl eURIs();

void clear();

}

A TypeMappi ng instance is associated with [1-n] encodi ngStyl eURl' s. An

encodi ngStyl eURl is associated with [0-1] TypeMappi ng instance.

TypeMappi ng mappi ng) ;

-125

Chapter Extensible Type Mapping JAX-RPC 1.1

15.3.1.1

-126

The method regi ster(String, TypeMappi ng) registers a TypeMappi ng instance
with the TypeMappi ngRegi st ry. This method replaces any existing registered
TypeMappi ng instance for the specified encodi ngSt yl eURl . The parameter

encodi ngSt yl eURI must be a namespace URI that represent a single encoding style. An
example is the SOAP 1.1 encoding represented by the namespace URI http://
schemas. xni soap. or g/ soap/ encodi ng/ . The "" (zero-length URI) is used to indicate
that there are no claims about the encoding style.

The method unr egi st er TypeMappi ng unregisters a TypeMappi ng instance from the
specified encodi ngStyl eURI .

The method r egi st er Def aul t (TypeMappi ng) registers the default TypeMappi ng for all
encoding styles supported by the TypeMappi ngRegi st ry. Successive invocations of the
regi st er Def aul t method replace any existing registered default TypeMappi ng
instance. A default TypeMappi ng should include serializers and deserializers that are
independent of and usable with any encoding styles.

The JAX-RPC specification does not require that a default TypeMappi ng be registered in
the TypeMappi ngRegi st ry. If the default TypeMappi ng is registered, any other
TypeMappi ng instances registered through the TypeMappi ngRegi st ry.r egi st er method
(for a set of encodi ngSt yl e URISs) is required to override the default TypeMappi ng.

The method get Regi st er edEncodi ngSt yl eURI s returns a list of registered
encodi ngSt yl e URIs in this TypeMappi ngRegi st ry instance.

The method get TypeMappi ng returns the registered TypeMappi ng for the specified
encodi ngSt yl eUR! . If there is no registered TypeMappi ng for the specified
encodi ngSt yl eURI, this method returns nul | .

The method cl ear removes all registered TypeMappi ng instances from this
TypeMappi ngRegi stry.

The method cr eat eTypeMappi ng creates an empty TypeMappi ng object. Refer to the
TypeMappi ng interface for more details.

Configuration of TypeMappingRegistry

In the service client programming model, the j avax. xmi . r pc. Ser vi ce interface
supports the configuration of a TypeMappi ngRegi st ry.
package javax.xm .rpc;
public interface Service {
TypeMappi ngRegi stry get TypeMappi ngRegi stry();
...
}

The method get TypeMappi ngRegi st ry returns the TypeMappi ngRegi st ry for this
service object. The returned TypeMappi ngRegi st ry instance is required to be pre-
configured for supporting the standard type mapping between XML and Java types as
specified in the sections 4.2 and 5.3. This getter method is required to throw the

j ava.l ang. Unsuppor t edOper at i onExcept i on if the Servi ce class does not support
configuration of a TypeMappi ngRegi stry.

Dynamic proxies, Cal | objects or instances of generated stub classes created from the
service class use the configured TypeMappi ngRegi stry to access the extensible type
mapping framework. For example, a dynamic proxy uses the configured

TypeMappi ngRegi st ry to perform serialization and deserialization of the Java and XML
data types.

Chapter Extensible Type Mapping JAX-RPC 1.1

15.3.2

15.3.3

Note that a generated stub class may embed the type mapping support in the generated
code. In this case, a generated stub class is not required to use the configured type
mapping registry.

TypeMapping

The j avax. xnl . r pc. encodi ng. TypeMappi ng is the base interface for the
representation of type mappings. A TypeMappi ng supports a set of encoding styles. The
method get Support edEncodi ngs returns the encodi ngStyl e URIs (as String[])
supported by a TypeMappi ng instance. The method set Suppor t edEncodi ngs sets the
supported encodi ngSt yl e URIs for a TypeMappi ng instance.

The following code snippet shows the TypeMappi ng interface:

package javax.xm . rpc. encodi ng;

public interface TypeMapping {
voi d set SupportedEncodi ngs(String[] encodi ngStyl eURI s);
String[] getSupportedEncodi ngs();

bool ean i sRegi stered(C ass javaType, QNanme xm Type);
void register(d ass javaType, Qane xm Type,
SerializerFactory sf,
Deseri ali zerFactory dsf);
SerializerFactory getSerializer(C ass javaType,

@amre xm Type);
Deseriali zerFactory getDeserializer(C ass javaType,

ame xm Type);
voi d renoveSerializer(C ass javaType, QName xm Type);
voi d renoveDeserializer(Cd ass javaType, QNane xnl Type);

}

The JAX-RPC specification allows serializers and deserializers to be developed
independent of any specific encoding style. Such serializers and deserializers are usable
across multiple encoding styles. A TypeMappi ng that contains only such serializers and
deserializers is required to pass nul | to the set Support edEncodi ngs method and return
nul | from the get Support edEncodi ngs net hod.

For its supported encoding styles, a TypeMappi ng instance maintains a set of tuples of
the type {Java type, Seri al i zer Fact ory, Deseri al i zer Fact ory, XML data type}.

The get Seri al i zer and get Deseri al i zer methods take both j avaType and xm Type
parameters. This enables serializers and deserializers to support a flexible mapping
between the XML data types and Java types. For example, a deserializer can map a
specific XML data type to different Java types based on the application specific
configuration.

Serializer

The j avax. xnl . rpc. encodi ng. Seri al i zer interface defines the base interface for
serializers. A Seri al i zer serializes a Java object to an XML representation using a
specific XML processing mechanism.

A pluggable serializer for a Java type must provide serializer and serializer factory
classes that implement the Seri al i zer and Seri al i zer Fact ory interfaces respectively.

-127

Chapter Extensible Type Mapping JAX-RPC 1.1

15.3.4

-128

The JAX-RPC specification requires that the Seri al i zer Factory and Seri al i zer
interfaces be implemented as JavaBeans components. This enables tools to manage and
configure the serializers.

The following code snippet shows the base Seri al i zer Fact ory interface:
package javax.xm .rpc. encodi ng;
public interface SerializerFactory extends java.io. Serializable {
Serializer getSerializerAs(String mechani sniType);
Iterator getSupportedMechani snilypes();

}
A SerializerFactory is registered with a TypeMappi ng instance as part of the type
mapping registry.

The method get Seri al i zer As returns an XML processing mechanism specific
serializer. The parameter nechani snifype identifies the desired XML processing
mechanism type. This method throws the JAXRPCExcept i on if the Seri al i zer Fact ory
does not support the desired XML processing mechanism type.

The method get Suppor t edMechani sniTypes returns all XML processing mechanism
types supported by this Seri al i zer Fact ory.

The following code snippet shows the base Seri al i zer interface:
package javax.xmnl .rpc. encodi ng;

public interface Serializer extends java.io.Serializable {
String get Mechani sniType() ;

}

An XML processing mechanism specific serializer extends the base Seri al i zer
interface. The method get Mechani sniType returns the type of the XML processing
mechanism and representation used by this serializer.

The j avax. xm . rpc. encodi ng. Seri al i zati onCont ext interface is implemented by
the JAX-RPC runtime system in an XML processing mechanism specific manner. A
serializer uses the Seri al i zati onCont ext interface during the serialization to get the
context information related to the XML processing mechanism and to manage
information specific to serialization.

The following code snippet shows the Seri al i zat i onCont ext interface:

package javax.xm .rpc. encodi ng;
public interface SerializationContext {

}

Deserializer

A deserializer converts an XML element or schema instance to a Java object. The
deserialization is based on the type mapping defined between an XML data type and the
corresponding Java type. The j avax. xm . r pc. encodi ng. Deseri al i zer defines the
base interface for different types of deserializers.

A pluggable deserializer for an XML type must provide deserializer and deserializer
factory classes that implement Deseri al i zer and Deseri al i zer Fact ory interfaces
respectively. Examples of such deserializers are for complex types defined in the XML
Schema specification.

JAX-RPC specification requires that the Deseri al i zer Fact ory and Deseri al i zer
interfaces be implemented as JavaBeans components. This enables tools to manage and
configure the deserializers.

Chapter Extensible Type Mapping JAX-RPC 1.1

The following code snippet shows the Deseri al i zer Fact ory interface:

package javax.xm . rpc. encodi ng;

public interface DeserializerFactory extends java.io. Serializable {
Deseriali zer getDeserializerAs(String nechani sniType);
java.util.lterator getSupportedMechani sniTypes();

}

A Deserial i zer Fact ory is registered with a TypeMappi ng instance as part of the type
mapping registry.

The method get Deseri al i zer As returns an XML processing mechanism specific
deserializer. The parameter mechani snType identifies the desired XML processing
mechanism type. The method get Deseri al i zer As throws the JAXRPCExcept i on if this
Deseri al i zer Fact ory does not support the desired XML processing mechanism type.

The method get Suppor t edMechani snTypes returns all XML processing mechanism
types supported by this Deseri al i zer Fact ory.

The following code snippet shows the Deseri al i zer interface:

j avax. xm . rpc. encodi ng;
public interface Deserializer extends java.io.Serializable {
String get Mechani snilype() ;

}

An XML processing mechanism specific deserializer extends the base Deseri al i zer
interface. The method get Mechani sniType returns the type of the XML processing
mechanism supported by this deserializer. Such mechanism specific deserializer may be
either DOM based, SAX based, streaming parser based or stream based.

<<interface>> | __ __ __ __ > <<interface>>

DeserializerFactoryj creates Deserializer
<<interface>>
<MechanismSpecific>Deserializer

<XMLType>Deserializer

The j avax. xm . rpc. encodi ng. Deseri al i zati onCont ext interface is implemented by
the JAX-RPC runtime system in an XML processing mechanism specific manner. A
deserializer uses this interface to access and maintain context information during the
deserialization. The following code snippet shows the Deseri al i zat i onCont ext
interface:

package javax.xm . rpc. encodi ng;
public interface DeserializationContext {

}

-129

Chapter Extensible Type Mapping JAX-RPC 1.1

15.4 Example: Serialization Framework

Refer to the “Appendix: Serialization Framework” for an illustrative implementation of
the serialization framework. This API design is based on the JAX-RPC reference
implementation.

-130

Chapter Futures

16

JAX-RPC 1.1

Futures

The following features would be considered in the future versions of the JAX-RPC
specification. The technical details of these features would be resolved in the expert
group of the corresponding JSR. The following is a brief overview of these features:

Support for SOAP 1.2 [5]

Extended support for customization and toolability aspects of JAX-RPC value types.
This would enable tools to customize serialization semantics and representation of
the JAX-RPC value types.

Extended support for XML schema types and Java types

Design of portable serializers and deserializers. This will enable custom serializers to
be portable across JAX-RPC implementations.

Enhanced support for security. For example, mutual authentication using HTTP/S
Design of portable stubs.

Support for WSDL 1.2. This depends on the schedule of the W3C Web Services
Description Working Group [21].

Alignment with the JAXB [14] specification.

-131

Chapter References JAX-RPC 1.1

17

References

-132

[1] Java Language Specification: http://java.sun.com/docs/books/jls/
[2] J2SE: http://java.sun.com/j2se/

[3] J2EE Specifications: http://java.sun.com/j2ee/

[4] W3C Note: SOAP 1.1: http://www.w3.0org/TR/SOAP/

[5] W3C: SOAP 1.2: http://www.w3.0rg/TR/2002/CR-soap12-part1-20021219/ and
http://www.w3.org/TR/2002/CR-soap12-part2-20021219/

[6] W3 Note: SOAP Messages with Attachments: http://www.w3.org/TR/SOAP-
attachments

[7] Web Services Description Language (WSDL) 1.1: http://www.w3.org/TR/wsdl

[8] W3C Recommendation “XML Schema Part 1: Structures”: http://www.w3.org/TR/
xmlschema-1/

[9] W3C Recommendation “XML Schema Part 2: Datatypes”: http://www.w3.org/TR/
xmlschema-2/

[10] JSR 109: Implementing Enterprise Web Services: http://jcp.org/jst/detail?id=109
[11] JSR for J2EE 1.4: http://jcp.org/jst/detail?id=151

[12] JSR 110: Java APIs for WSDL http://jcp.org/jsr/detail/110.jsp

[13] JAXM specification: http://java.sun.com/xml/jaxm/

[14] JAXB specification: http://java.sun.com/xml/jaxb/

[15] RMI specification: http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html
[16] SOAP Security Extensions: Digital Signature http://www.w3.org/TR/SOAP-dsig/
[17] RMI-IIOP Specification: http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/

[18] JavaBeans Activation Framework: http://java.sun.com/products/javabeans/glasgow/
jaf.html

[19] SOAPBuilders Interoperability Lab
[20] XML Information Set: http://www.w3.0rg/TR/2001/REC-xml-infoset-20011024/
[21] W3C Web Services Description Working Group: http://www.w3.org/2002/ws/desc

[22] WS-I Basic Profile Version 1.0: http://www.ws-i.org/Profiles/Basic/2003-08/
BasicProfile-1.0a.html

Chapter Appendix: XML Schema Support JAX-RPC 1.1

18

Appendix: XML Schema Support

This chapter specifies the JAX-RPC support for the XML schema data types. This
chapter uses the XML Schema specifications, Part 1 [8] and Part 2 [9], and SOAP 1.1
encoding specification [4].

Note that the XML data types listed in this section are not exhaustive. Refer to the XML
Schema specification for the normative specification and examples of the XML Schema
language. Any XML data types not listed in this section are not required to be supported
by a JAX-RPC implementation.

The following definitions are used to indicate the JAX-RPC support:

+ Required: A JAX-RPC implementation is required to support the Java mapping of an
XML data type by using one or more of the following options:

The standard Java mapping of the XML data types as specified in the section 4.2,
“XML to Java Type Mapping”

Java binding for the XML data types using the JAXB APIs (Java APIs for XML
data binding) [14] or an implementation specific Java binding for the XML data

types.
Pluggable serializer and deserializer framework specified in the chapter 15

* Optional: A JAX-RPC implementation is not required to support the Java mapping of
a specific XML data type. A service using this XML data types may not be supported
and interoperate with a JAX-RPC implementation.

WSDL to Java mapping tools must be able to process WSDL documents that use any of
the features listed below, including those marked as optional. Tools should map XML
types that use any of the optional features to javax.xml.soap.SOAPElement when used in
literal parts (see section 6.4.1). Additionally, tools must be able to process schemas that
use the xsd: i ncl ude and xsd: i nport constructs.

The following XML Schema features are not required to be supported and WSDL to
Java mapping tools are allowed to reject documents that use them: xsd: r edef i ne,
xsd: not at i on, substitution groups.

The examples in the following table use the following namespaces:

xm ns: xsd="htt p:// ww. w3. or g/ 2001/ XM_Schenm”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”
xm ns: soapenc="http://schemas. xrm soap. or g/ soap/ encodi ng/”

-133

Chapter Appendix: XML Schema Support

xm ns: wsdl =" http://schemas. xm soap. org/ wsdl /”

JAX-RPC 1.1

TABLE 18-1 XML Schema support in JAX-RPC specification
Example of XML Schema fragment and/or
XML Schema XML Schema instance Support in JAX-RPC 1.1
Built-in datatypes xsd:string Required
specified in XML xsd:integer
Schema Part 2: xsd:int
Datatypes xsd:long
specification: xsd:short
xsd:decimal
xsd:float
xsd:double
xsd:boolean
xsd:byte
xsd:QName
xsd:dateTime
xsd:base64Binary
xsd:hexBinary
Built-in datatypes Remaining simple types, with the Required
specified in XML exception of xsd:NOTATION and
Schema Part 2: xsd:ENTITY.
Datatypes
specification:
Built-in datatypes xsd:ENTITY Optional
specified in XML xsd:NOTATION
Schema Part 2: xsd:IDREF
Datatypes
specification:
Enumeration xsd:element name="EyeColor" Required

type="EyeColorType" />
xsd:simpleType
name="EyeColorType" >
xsd:restriction base="xsd:string" >
xsd:enumeration value="Green" />
xsd:enumeration value="Blue" />
xsd:enumeration value="Brown" />
/xsd:restriction>

/xsd:simpleType>

Array of Bytes

picture xsi:type="soapenc:base64">
aG93IG5vDyBicm73biBjb3cNCg==
/picture>

Required support for:
* soapenc: base64

* xsd: base64Bi nary
* xsd: hexBinary

-134

Chapter Appendix: XML Schema Support

JAX-RPC 1.1

TABLE 18-1 XML Schema support in JAX-RPC specification
LE(xampIe of XML Schema fragment and/or
XML Schema ML Schema instance Support in JAX-RPC 1.1

SOAP Encoding:
Struct

Refer to the <xsd:complexType>

<xsd:complexType>
with elements of both
simple and complex

types

Refer <xsd:all> and
xsd:sequence> for
additional
requirements

xsd:complexType
name="USAddress" >
xsd:sequence>
xsd:element name="name"
type="xsd:string"/>
xsd:element name="street"
type="xsd:string"/>
xsd:element name="city"
type="xsd:string"/>
xsd:element name="state"
type="xsd:string"/>
xsd:element name="zip"
type="xsd:decimal"/>
/xsd:sequence>

xsd:attribute name="country"

type="xsd:NMTOKEN" fixed="US"/

/xsd:complexType>

Required support for
e multi-reference
* single-reference
* external reference

Refer to the SOAP
1.1 specification for
more details

<xsd:attribute> in
xsd:complexType>

See <xsd:attribute> in the previous
example

Required

Occurence
Constraints for
xsd:element:

* minOccurs

* maxQOccurs

» default

e fixed

xsd:complexType
name="PurchaseOrderType">
xsd:sequence>

xsd:element name="shipTo"
type="USAddress"/>
xsd:element name="billTo"
type="USAddress"/>
xsd:element ref="comment"
minOccurs="0"/>
xsd:element name="items"
type="Items"/>
/xsd:sequence>
xsd:attribute name="orderDate"
type="xsd:date"/>
/xsd:complexType>

Refer to the section
section 4.2.3, “XML
Struct and Complex
Type” for support of
occurance constraints.

-135

Chapter Appendix: XML Schema Support

-136

TABLE 18-1 XML Schema support in JAX-RPC specification

JAX-RPC 1.1

Example of XML Schema fragment and/or

XML Schema XML Schema instance Support in JAX-RPC 1.1
<xsd:ref> attribute xsd:element ref="comment" Required
for reference to global ~ minOccurs="0"/>
elements
Derivation of new xsd:simpleType Required
simple types by name="mylInteger">
restriction of an xsd:restriction base="xsd:integer">
existing simple type xsd:minInclusive value="10000"/>
xsd:maxInclusive value="99999"/>
/xsd:restriction>
/xsd:simpleType>
IFacets used with Refer XML Schema Part 2: Required.
restriction element Datatypes for details on the facets
List Type <xsd:list> xsd:simpleType Required
name="1istOfMyIntType">
xsd:list itemType="myInteger"/>
/xsd:simpleType>
listOfMyInt>20003 15037 95977
05945</listOfMyInt>
\Union Type xsd:simpleType name="zipUnion"> |Optional
xsd:union> xsd:union memberTypes="USState

listOfMyIntType"/>
/xsd:simpleType>

Chapter Appendix: XML Schema Support

JAX-RPC 1.1

TABLE 18-1 XML Schema support in JAX-RPC specification
LE(xampIe of XML Schema fragment and/or
XML Schema ML Schema instance Support in JAX-RPC 1.1

SOAP Encoding

Array defined using
the type

soapenc: ar rayType
in the schema instance

Refer to the SOAP
specification for more
details

xsd:element
name="myFavoriteNumbers"
type="soapenc:Array"/>

Schema instance:
myFavoriteNumbers

soapenc:array Type="xsd:int[2]" >
number>3</number>
number>4</number>
/myFavoriteNumbers>

Required support:

* Array with complex
types

* Multi-dimension
arrays

* Single-reference or
multi-reference values
* Sparse arrays
 Partially transmitted
arrays

Optional support:

* Nested arrays

e Array with
instances of any
subtype of the
specified arrayType

-137

Chapter Appendix: XML Schema Support

-138

TABLE 18-1 XML Schema support in JAX-RPC specification

JAX-RPC 1.1

Example of XML Schema fragment and/or

Array derived from
soapenc: Array by
restriction

—n"

name="phoneNumberType" >

xsd:restriction base="xsd:string" />
/xs:simpleType>

xsd:complexType
name="ArrayOfPhoneNumbersType"

xsd:complexContent>
xsd:restriction
base="soapenc:Array" >
xsd:sequence>
xsd:element name="phoneNumber"
type="phoneNumberType"
maxOccurs="unbounded" />
/xsd:sequence>
/xsd:restriction>
/xsd:complexContent>
/xsd:complexType>

/xsd:schema>

XML Schema XML Schema instance Support in JAX-RPC 1.1
SOAP Encoding complexType Required
name="ArrayOflnteger">
AArray derived from complexContent>
soapenc: Array by restriction base="soapenc:Array">
restriction using the attribute ref="soapenc:arrayType"
wsdl : arrayType wsdl:array Type="xsd:int[]"/>
ttribute /restriction>
/complexContent>
/complexType>
SOAP Encoding xsd:simpleType Required

Chapter Appendix: XML Schema Support

TABLE 18-1

XML Schema support in JAX-RPC specification

JAX-RPC 1.1

XML Schema

LE(xampIe of XML Schema fragment and/or
ML Schema instance

[Support in JAX-RPC 1.1

Derivation of a
complex type from a
simple Type

xsd:element
name="internationalPrice">
xsd:complexType>
xsd:simpleContent>
xsd:extension base="xsd:decimal">
xsd:attribute name="currency"
type="xsd:string"/>
/xsd:extension>
/xsd:simpleContent>
/xsd:complex Type>
/xsd:element>

Required

<xsd:anyType>

xsd:element name="anything"
type="xsd:anyType"/>

Optional

<xsd:sequence>

xsd:complexType
name="PurchaseOrderType">
xsd:sequence>

xsd:element name="shipTo"
type="USAddress"/>

xsd:element name="billTo"
type="USAddress"/> <xsd:element
name="items" type="Items"/>
/xsd:squence>
/xsd:complexType>

Required

<xsd:choice>

xsd:complexType
name="PurchaseOrderType">
xsd:sequence>

xsd:choice>

xsd:group ref="shipAndBill"/>
xsd:element
name="singleUSAddress"
type="USAddress"/>
/xsd:choice>

xsd:element name="items"

type="Items"/>

/xsd:sequence>

Optional

-139

Chapter Appendix: XML Schema Support

-140

TABLE 18-1 XML Schema support in JAX-RPC specification

JAX-RPC 1.1

txample of XML Schema fragment and/or
XML Schema ML Schema instance Support in JAX-RPC 1.1
<xsd:group> xsd:group name="shipAndBill"> Optional
xsd:sequence>
xsd:element name="shipTo"
type="USAddress"/>
xsd:element name="billTo"
type="USAddress"/>
/xsd:sequence>
/xsd:group>
<xsd:all> xsd:complexType Required
name="PurchaseOrderType">
xsd:all>
xsd:element name="shipTo"
type="USAddress"/>
xsd:element name="billTo"
type="USAddress"/> <xsd:element
name="items" type="Items"/>
/xsd:all>
/xsd:complexType>
<xsd:nil> and xsd:element name="shipDate" Required
<xsd:nillable> type="xsd:date" nillable="true"/>
attribute
shipDate xsi:nil="true"></
shipDate>

Chapter Appendix: XML Schema Support JAX-RPC 1.1

TABLE 18-1 XML Schema support in JAX-RPC specification

LE(xampIe of XML Schema fragment and/or

XML Schema ML Schema instance Support in JAX-RPC 1.1
Derivation of complexType name="Address"> Required

complex Types by sequence>

lextension element name="name"

type="string"/>

element name="street"
type="string"/>
element name
type="string"/>
/sequence>
/complexType>

)

city"

complexType name="USAddress">

complexContent>
extension base="Address">
sequence>

element name="state"
type="USState"/>
element name="zip"
type="positivelnteger"/>
/sequence>
/extension>
/complexContent>

/complexType>

complexType
name="UKAddress">
complexContent>
extension base="Address">
sequence>

element name="postcode"
type="UKPostcode"/>
/sequence>

/extension>
/complexContent>
/complexType>

—n

-141

Chapter Appendix: XML Schema Support

TABLE 18-1 XML Schema support in JAX-RPC specification

JAX-RPC 1.1

XML Schema

txample of XML Schema fragment and/or
ML Schema instance

Support in JAX-RPC 1.1

Derivation of
complex types by
restriction

complexType
name="ConfirmedItems">
complexContent>
restriction base="Items">
sequence>
1-- item element is different than in
[tems -->
element name="item"
minOccurs="1"
maxOccurs="unbounded">
I-- remainder of definition is same
as Items -->
complexType>
sequence>
element name="productName"
type="string"/>
element name="quantity"
type="positivelnteger":>
/sequence>
/complexType>
/element>
/sequence>
/restriction>
/complexContent>
/complexType>

Optional

Abstract Types

complexType name="Vehicle"
abstract="true"/>

complexType name="Car">
complexContent>

extension base="target: Vehicle"/>
/complexContent>
/complexType>

complexType name="Plane">
complexContent>

extension base="target: Vehicle"/>
/complexContent>
/complexType>

Optional

Creation and use of
derived types:

* final attribute
 fixed attribute

* block attribute

complexType name="Address"
final="restriction">
sequence>

element name="name"
type="string"/>
element name="street"
type="string"/>

element name="city"
type="string"/>
/sequence>
/complexType>

Optional

-142

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19

Appendix: Serialization Framework

19.1

This chapter describes the serialization framework that is part of the JAX-RPC
Reference Implementation (JAX-RPC RI). Note that this design is non-prescriptive and
serves as an illustration of how the base type mapping framework can be extended in an
implementation specific manner.

The serialization framework includes the interfaces, classes, and algorithms used by the
JAX-RPC RI to serialize and deserialize SOAP messages using SOAP 1.1 Section 5
encoding. It is used to serialize and deserialize all Java types that are subtypes of

j ava.l ang. Qbj ect, including JavaBeans, structures, arrays, boxed primitives, and any
other kind of object. Primitive Java types (i.e., int, float, etc.) are handled by a similar
but much simpler serialization framework that is only briefly described here.

The SOAP 1.1 encoding allows arbitrary graphs of Java objects to be serialized as XML.
The most interesting case is when an object graph contains multiple references to the
same object. In this case, the HREF mechanism of the SOAP encoding may be used to
preserve object identity, thus making it possible to restore an object graph exactly as it
was before serialization. By far, the main complicating factor in serializing and
deserializing object graphs using SOAP encoding is ensuring that HREFs are handled
correctly. As will become clear, most of the JAX-RPC RI serialization framework is
motivated by the need to correctly process HREFs.

This chapter is divided into two main sections:

 Serialization section describes how the framework serializes a graph of Java objects
as XML using SOAP encoding.

» Deserialization section describes how the framework deserializes SOAP-encoded
object graphs into corresponding Java object graphs.

Serialization

A serializer is a class that knows how to encode instances of a particular Java type as
XML using SOAP encoding. When a client of the serialization framework (e.g., a stub)
needs to serialize a Java object, it obtains a reference to a serializer for the object’s type
and invokes the seri al i ze method on it, passing as parameters the object to be
serialized, an XML.W i t er, and a SOAPSeri al i zat i onCont ext . The seri al i ze method
creates the XML representation of the Java object by using the passed-in XMW i t er,
which provides methods for writing XML elements to a stream.

Serializing a particular object consists of opening a new XML element that represents
the object, and then creating sub-elements for each of the object’s members. Each
member is serialized by invoking the seri al i ze method on an appropriate serializer,

-143

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.1.1

19.1.2

-144

passing in the same XMLW it er and SOAPSeri al i zati onCont ext that was used to
serialize the parent object. After serializing each of its members, the seri al i ze method
closes the XML element for the object and returns.

For example, suppose that we want to serialize an instance of a Java class named
Addr ess. The code to do this would be:

Addr ess address = new Address("1234 Riverside Drive",
"Gai nesville",
"Ceorgia", "30506");
XMWiter witer = new XMWiter(...);
SOAPSeri al i zati onCont ext ser Context =
new SOAPSeri al i zati onContext(...);
AddressSerializer addressSer = new AddressSerializer(...);
addressSer. seriali ze(address, new QNane(null, "hone-address"),
witer, serContext);
serContext.serializeTrailingBlocks(witer);

The XML emitted by this code might look like this:

<hone- address href="#ID 1"/ >
<tns: Address xsi:type="tns: Address" id="ID1">
<street href="#ID2"/>
<city href="#1D3"/>
<state href="#D4"/>
<zip href="#D5"/>
</tns: Addr ess>
<soapenc:string xsi:type="xsd:string" id="1D2">1234 Riverside Drive
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="1D3">Ginesville
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="1D4">Ceorgia
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="1D5">30506
</ soapenc: string>

Serializers

A serializer is a Java class with the following characteristics:
+ A serializer must implement the SOAPSer i al i zer interface

+ A serializer must be stateless. This allows the JAX-RPC runtime to create and reuse
a single serializer instance for each XML Schema data type in the system, thus
minimizing the number of serializer objects that are created. Alternatively, a serializer
may store immutable state that is initialized when the serializer instance is
constructed.

» A serializer must be multi-thread safe, thus allowing the JAX-RPC runtime to use a
single serializer instance across multiple threads simultaneously.

SOAPSerializationContext

The SOAPSeri al i zati onCont ext class contains information that must be shared among
and passed between the serializers that participate in the serialization of a graph of Java
objects. As an object graph is being serialized, the same SOAPSeri al i zat i onCont ext
instance is passed to each serializer that participates. Each method in the

SOAPSer i al i zer interface accepts a parameter of type SOAPSeri al i zat i onCont ext
which is used to propagate the context between the various serializers.

Chapter Appendix: Serialization Framework JAX-RPC 1.1

The primary (and currently only) purpose of the SOAPSeri al i zati onCont ext is to
ensure correct processing of HREFs. A SOAPSeri al i zat i onCont ext contains a map
from object references to SOAPSeri al i zat i onSt at e objects. The first time a new object
is encountered in the serialization process, a SOAPSeri al i zat i onSt at e object is
created for that object and added to the map. The SOAPSer i al i zati onSt at e for an
object stores a unique ID assigned to that object and a reference to the serializer for that
object. The class SOAPSeri al i zati onSt at e is defined as follows:
package com sun. xnl . rpc. encodi ng. soap;
public class SOAPSerializationState {

...

public SCOAPSeri al i zati onSt at e(Cbj ect obj, String id,

SQAPSeri al i zer serializer) {...}

public Object getObject() {...}

public String getID() {...}

public SOAPSerializer getSerializer() {...}
}

Associating a unique ID with each object allows the serialization framework to preserve
object identity in the SOAP encoded object graph by always using the same ID for an
object as it encodes href and id attributes. Associating a serializer with each object
allows the serialization framework to know which serializers to call as it serializes the
independent elements that represent multiple-reference objects (i.e., the trailing blocks).

With an understanding of SOAPSeri al i zati onSt at e, we are prepared to look at the
definition of SOAPSeri al i zat i onCont ext :

package com sun. xnl . rpc. encodi ng. soap;
public class SOAPSeri al i zati onCont ext
i mpl enents javax. xm .rpc. encodi ng. Seri al i zati onCont ext {
...
publ i c SCAPSeri al i zati onCont ext ()
throws Serializati onException {...}

public SOAPSeri alizationContext(String prefix)
throws SerializationException {...}

public SOAPSeri al i zati onState registerCbject(CObject obj,
SQAPSeri al i zer serializer)
throws SerializationException {...}

public SCAPSeri al i zati onState | ookupQhj ect (Obj ect obj)
throws SerializationException {...}

public void serializeTrailingBlocks(XMWiter witer)
throws SerializationException {...}

}

The r egi st er Obj ect method is called by serializers to add an object to the serialization
context. References to the object and its serializer are passed as parameters to

r egi st er Obj ect, which generates a unique ID for the object and adds a

SOAPSeri al i zati onSt at e for the object to its internal map. If the object has already
been registered, r egi st er Obj ect simply returns the existing

SOAPSeri al i zati onSt at e for the object.

The | ookupObj ect method is used by serializers to determine if an object already exists
in the serialization context, and, if so, to gain access to the SOAPSeri al i zati onSt at e
for the object. If the object is unknown to the serialization context, | ookupQbj ect
returns nul | .

145

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.1.3

-146

The seri ali zeTrai | i ngBl ocks method is called at the end of the serialization process
to serialize independent elements (or trailing blocks) for each of the multi-reference
objects encountered during the serialization process.

SOAPSerializer Interface

All serializers implement the SOAPSeri al i zer interface. The definition of the
SOAPSer i al i zer interface is shown below:

package com sun. xm . rpc. encodi ng. soap;
public interface SOAPSeri alizer
extends javax.xml .rpc. encoding. Serializer {

I
voi d serializeReference(hject obj, QName nane,
XMWiter witer,
SOAPSeri al i zat i onCont ext cont ext)
throws SerializationException;

voi d serializelnstance(Object obj, QNanme nane,
bool ean i sMul ti Ref,
XMWiter witer,
SOAPSeri al i zat i onCont ext cont ext)
throws Serializati onException;

voi d serialize(Object obj, QNane nane,
XM Witer witer,
SOAPSeri al i zat i onCont ext cont ext)
throws SerializationException;

}

The seri al i zeRef er ence method serializes a HREF to the passed-in object. The obj
parameter is a reference to the object that is to be serialized. The name parameter is the
name to be used for the XML element that represents the object. The wri t er parameter
is the XMW i t er that should be used to write the XML representation of the object. The
cont ext parameter is the SOAPSeri al i zat i onCont ext to be used during serialization
of the object. As an example, the following code would be used to serialize an HREF to
an object (as opposed to serializing the object itself):

Addr ess address = new Address("1234 Riverside Drive",

"Gai nesville",

"CGeorgia", "30506");
XMWiter witer = new XM\Witer(...);
SOAPSeri al i zati onCont ext ser Context =

new SCAPSeri al i zati onContext(...);

AddressSerializer addressSer = new AddressSerializer(...);
addr essSer. seri al i zeRef erence(address,

new QNane(null, "hone-address"),

witer, serContext);
ser Context.serializeTrailingBl ocks(witer);

The XML emitted by this code might look like this:
<home- address href="#ID-1"/>

Pseudo-code for a serializer’s seri al i zeRef er ence method is shown below:

public void serializeReference(Object obj, QNane nane,
XM Witer witer,
SOAPSeri al i zat i onCont ext cont ext)
throws SerializationContext {
if (obj == null) {

Chapter Appendix: Serialization Framework JAX-RPC 1.1

create a new elenent with the specified nane
set the elenent’s xsi:null attribute to "true"
set the elenment’s xsi:type attribute to the appropriate XSDtype
cl ose the el enent
}
el se {
create a new elenent with the specified nane
SQAPSeri al i zti onState state= context.registerCbject(obj,this);
set the elenment’s href attribute to state.getlX)
cl ose the el enent

}

The seri al i zel nst ance method serializes the object instance itself (not an reference to
it). The obj parameter is a reference to the object that is to be serialized. The name
parameter is the name to be used for the XML element that represents the object. The

i sMul ti Ref parameter indicates whether the object is a single-reference or a multiple-
reference instance (multiple-reference instances have an id attribute, single-reference
instances do not). The wri t er parameter is the XMW i t er that should be used to write
the XML representation of the object. The cont ext parameter is the

SQOAPSeri al i zati onCont ext to be used during serialization of the object. As an
example, the following code would be used to serialize a multiple-reference object:

Addr ess address = new Address("1234 Riverside Drive",
"Gai nesville",
"Georgia", "30506");
XMWiter witer = new XM Witer(...);
SOAPSeri al i zat i onCont ext ser Context =
new SCAPSeri al i zati onContext(...);
AddressSerializer addressSer = new AddressSerializer(...);
addressSer. seri al i zel nst ance(addr ess,
new QName(nul |, "hore-address"),
true, witer, serContext);
serContext.serializeTrailingBlocks(witer);

The XML emitted by this code might look like this:

<homne- address href="#1 D 1"/>
<tns: Address xsi:type="tns: Address" id="ID1">
<street href="#D2"/>
<city href="#1D3"/>
<state href="#1D4"/>
<zip href="#ID5"/>
</tns: Addr ess>
<soapenc: string xsi:type="xsd:string" id="1D2">1234 Riverside Drive
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="I1D 3">Ginesville
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="1D4">Ceorgia
</ soapenc: string>
<soapenc:string xsi:type="xsd:string" id="I1D5">30506
</ soapenc: string>

Pseudo-code for a serializer’s serializelnstance method is shown below:

public void serializelnstance(Cbject obj, QNane nane,
bool ean i sMul ti Ref,
XM.Witer witer,
SCQAPSer i al i zat i onCont ext cont ext)
throws SerializationContext {
if (obj == null) {
create a new el enent with the specified nane
set the elenent’s xsi:null attribute to "true"
set the element’s xsi:type attribute to the appropriate XSDtype

-147

Chapter Appendix: Serialization Framework JAX-RPC 1.1

-148

cl ose the el enent

}

el se {
create a new el ement with the specified nane
set the elenment’s xsi:type attribute tothe appropriate XSDtype
if (isMiltiRef) {
SOAPSerializtionState state =
cont ext.regi sterQbject(obj, this);
set the elenment’s id attribute to state.getlD()

}

for each menber M of this object {
create a sub-elenment for Mby calling the serialize nmethod
on the serializer for Ms type

}

cl ose the el enent

}

The seri al i ze method of a serializer performs "default" serialization of the passed-in
object. Each serializer is allowed to decide whether its data type should be serialized as
single-reference or multiple-reference instances by default. If a serializer chooses single-
reference to be the default, then calling seri al i ze will have the same effect as calling
seri al i zel nstance with the i sMiul ti Ref parameter set to false. Alternatively, if a
serializer chooses multiple-reference as its default serialization mode, then calling

seri al i ze will have the same effect as calling seri al i zeRef er ence. Of course, the
code invoking a serializer may choose to explicitly call seri al i zeRef erence or
serial i zel nstance if it knows exactly how it wants to serialize the object. However,
in most cases it is best to let the serializer for a particular data type decide how instances
of that data type are serialized by default.

Pseudo-code for a serializer’s seri al i ze method is shown below:

public void serialize(Ohject obj, QName nane,
XMWiter witer,
SOAPSeri al i zati onCont ext cont ext)
throws SerializationContext {
if (multiple-reference is the default serialization node) {
seriali zeRef erence(obj, name, witer, context);

}
el se {

serializelnstance(obj, nane, false, witer, context);
}

}
Serializing Trailing Blocks

When a graph of Java objects is serialized, references between objects are normally
serialized as HREFs by calling the seri al i zeRef er ence method (perhaps indirectly
through seri al i ze). As the serialization process proceeds, the

SOAPSer i al i zati onCont ext creates a SOAPSeri al i zat i onSt at e for each object that
is referenced. In addition to the object’s unique ID, the SOAPSeri al i zati onSt ate
stores a reference to the object’s serializer, which is determined when the first reference
to the object is serialized. In addition to storing a map from object references to
SOAPSeri al i zati onSt at es, the SOAPSer i al i zat i onCont ext also stores a list of
objects that have been referenced during serialization but have yet to be serialized
themselves (i.e., a list of multiple-reference objects). After explicitly invoking the
serializers for each root of an object graph, it is necessary to call the
serializeTrailingBl ocks method on the SOAPSeri al i zat i onCont ext in order to
finish serializing all of the objects that have been referenced but not yet serialized. The
serializeTrailingBl ocks method proceeds by serializing each multiple-reference

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.1.4

object in the list as a top-level independent element with its id attribute set to the
appropriate value. Of course, each multiple-reference object may in turn contain
references to other objects, which means that the list of objects that need to be serialized
can grow even as seri al i zeTr ai | i ngBl ocks proceeds; it simply continues until the list
is empty, at which point the object graph has been completely serialized.

Primitive Serializers

The serialization framework as described thus far can only handle Java types that are
subtypes of java.lang.Object. Of course, primitive types play a very important role and
must also be serialized. The JAX-RPC RI also includes serializers for all of the primitive
Java data types such as int, float, etc. These primitive serializers are much simpler than
the object serializers because they don’t have to deal with HREFs or nulls. Each primitive
serializer has a single method of the following form:

public void serialize(TYPE val ue, QNane narne,

XM.Witer witer)
throws SerializationException;

where TYPE is a primitive type such as int, float, etc. The serialize method simply writes
the XML representation for the primitive value to the XMW t er.

19.2

Deserialization

A deserializer is a class that knows how to recreate instances of a particular Java type
that have been serialized using SOAP encoding. When a client of the serialization
framework (e.g., a tie) needs to deserialize an object, it obtains a reference to a
deserializer for the object’s type and invokes the deseri al i ze method on it, passing as
parameters the XM_Reader that contains the SOAP encoded XML representation of the
object and a SOAPDeser i al i zati onCont ext . The deseri al i ze method reconstructs the
object from the XML representation and returns a reference to the object as its result.
Deserializing an object involves the following steps:

1. Open the XML element that represents the object

2. Recursively deserialize each of the object’s members which are encoded as sub-
elements

3. Create a new instance of the Java type, initializing it with the deserialized members
4. Return the new object as the result of deseri al i ze

Each member is deserialized by invoking the deseri al i ze method on an appropriate
deserializer, passing in the same XM_Reader and SOAPDeser i al i zati onCont ext that
was used to deserialize the parent object.

The deserialization problem is made significantly more complex by the HREF mechanism
supported by SOAP encoding. Ideally, whenever the deseri al i ze method is called, the
deserializer would be able to completely instantiate and initialize the object being
deserialized and return it as the result of deseri al i ze. Unfortunately, if the SOAP
encoded representation of the object contains HREFs to other objects, deseri al i ze will
not be able to fully reconstitute the object if member objects to which it refers have not
been deserialized yet. Only when all member objects have been deserialized will it be
possible to finish deserializing the parent object, and this condition might not be
satisfied until much later in the deserialization process. For this reason, the serialization

-149

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.2.1

19.2.2

-150

framework allows the deseri al i ze method to only partially deserialize an object, and
then register listeners that allow it to be notified later when its incomplete member
objects become available, thus allowing it to complete deserialization of the parent
object. The details of these mechanisms are provided in the following sections.

Deserializers

A deserializer is a Java class with the following characteristics:
* A deserializer must implement the SOAPDeser i al i zer interface

* A deserializer must be stateless. This allows the JAX-RPC runtime to create and
reuse a single deserializer instance for each XML Schema data type in the system,
thus minimizing the number of deserializer objects that are created. Alternatively, a
deserializer may store immutable state that is initialized when the deserializer
instance is constructed.

« A deserializer must be multi-thread safe, thus allowing the JAX-RPC runtime to use
a single deserializer instance across multiple threads simultaneously.

All deserializers implement the SOAPDeser i al i zer interface. The definition of
SOAPDeser i al i zer is shown below:
package com sun. xm . rpc. encodi ng. soap;
public interface SOAPDeseri ali zer
ext ends javax.xm . rpc. encodi ng. Deserializer {
hj ect deserialize(QName nane, XM_Reader reader,
SQAPDeser i al i zati onCont ext cont ext)
throws DeserializationException;

}

The deseri al i ze method is called to deserialize an object. The name parameter is the
expected name of the XML element that contains the object. If the actual element name
does not match the expected element name, deseri al i ze will throw an exception. The
r eader parameter contains the SOAP encoded XML data that is to be deserialized. The
cont ext parameter contains information that must be shared among and passed between
the deserializers that participate in the deserialization of an object graph. As an object
graph is deserialized, the same SOAPDeseri al i zati onCont ext instance is passed to
each deserializer that participates. If all goes well, deseri al i ze will return a reference
to a completely deserialized Java object. As explained in the next section, this might not
always be the case.

SOAPDeserializationContext

The SOAPDeseri al i zat i onCont ext class stores information that is necessary to
properly reconstruct object graphs that make use of the SOAP encoding HREF
mechanism. Specifically, it stores a SOAPDeser i al i zati onSt at e object for each object
encountered during the deserialization process that cannot be completely deserialized by
its deserializer’s deseri al i ze method. Ideally, when the deseri al i ze method is done,
it returns a reference to the object that it was asked to deserialize. However, there are
two scenarios in which deserialize is unable to completely deserialize the object:

» The deserializer has been asked to deserialize an HREF to the object, and the object
itself has not been completely deserialized yet

» The object being deserialized contains references (either directly or indirectly) to
other objects which have not yet been completely deserialized

Chapter Appendix: Serialization Framework JAX-RPC 1.1

In these cases, instead of returning a reference to the object itself, it returns a reference
to the SOAPDeseri al i zati onSt at e for the object. The SOAPDeseri al i zati onSt at e
returned by deseri al i ze will have been registered with the SOAPDeser i al i zati on
Cont ext so that it can be accessed by other deserializers that participate in
deserialization of the object graph.

SOAPDeser i al i zat i onSt at e stores several pieces of information that track the progress
of an object as it is being deserialized:
» A reference to the object, which is nul | if it has not yet been instantiated

« The current state of the object: None, Creat ed, I nitial i zed, Conpl et e (more on
this later)

+ Information about other objects that this object depends on
+ Information about other objects that depend on this object
» A reference to the deserializer for this object.

» A reference to the SOAPI nst anceBui | der for this object (more on this later)

A partial definition of SOAPDeseri al i zti onSt at e is shown below:

package com sun. xnl . rpc. encodi ng. soap;
public class SOAPDeserializationState {

..
public SOAPDeserializationState(){...}
public void setlnstance(Qbject instance){...}
public Object getlnstance(){...}
public bool ean isConplete(){...}
public void doneReading(){...}
c

public void setDeserializer(SOAPDeseri alizer deserializer)

throws DeserializationException {...}
public void registerlListener(
SCAPDeseri al i zati onStat e parent State,
int menberlndex){...}
public void setBuil der (SOAPI nst anceBui | der builder){...}
/1

}

The set I nst ance method is called by a deserializer when the object that is being
deserialized is instantiated (i.e., when "new" is called). The object need not have been
completely deserialized in order to call set I nst ance; it only needs to have been
constructed. The get | nst ance method can be used by deserializers to obtain a reference
to the object during the deserialization process.

The i sConpl et e method can be called to determine whether or not the object has been
completely deserialized yet.

The doneReadi ng method is called by an object’s deserializer to notify the serialization
framework that it is finished deserializing the object’s data members. This does not
imply that the object is entirely complete because it may still have unresolved
dependencies on other objects. It does mean, however, that the XML element
representing the object has been completely processed.

The set Deseri al i zer method is called to tell the serialization framework which
deserializer to use for this object. This information is required by the framework when it
comes time to deserialize the trailing blocks that represent multiple-reference objects.

The regi st er Li st ener method is used by the deserializer of a parent object to declare
a dependency on a member object that has not yet been completely deserialized (and is
thus unavailable), and to request that it be notified as the deserialization of the member
object progresses. Specifically, the deserializer for the parent object calls

regi sterListener onthe SOAPDeseri al i zati onSt at e for the member object, passing

-151

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.2.3

-152

as parameters a reference to the parent’s SOAPDeseri al i zat i onSt at e and an index that
uniquely identifies the member within the parent. This call sets up the necessary
callback relationship that allows the parent deserializer to be notified when the member
object has been completely deserialized, thus allowing it to complete serialization of the
parent object.

The set Bui | der method is described later in this section.

With this understanding of SOAPDeser i al i zati onSt at e, we are ready to look at the
definition of SOAPDeseri al i zat i onCont ext :
public class SOAPDeseri al i zati onCont ext
i mpl ements javax. xm . rpc. encodi ng. Deseri al i zati onCont ext {
1.
publ i c SOAPDeseri al i zati onCont ext ()
throws DeserializationException {...}
publ i c SOAPDeserializationState getStateFor(String id) {...}

public void deserializeRenai ni ngEl enent s(XM_Reader reader)
throws DeserializationException {...}

}

The get St at eFor method is used to obtain a reference to the SOAPDeseri al i zati on
St at e for the object with a particular ID. The first time the state for a particular ID is
requested, the context creates a new SOAPDeseri al i zati onSt at e for that object and
adds it to the internal state map.

The deseri al i zeRemai ni ngEl ement s method is called at the end of the deserialization
process to deserialize the independent elements (or trailing blocks) that represent the
multiple-reference objects.

The deserialize Method

The workhorse of the deserialization process is the deseri al i ze method. The
deserializer for each Java type implements deseri al i ze in a way that is appropriate for
that type. For example, the deserializer for a JavaBean would deserialize each of the
bean’s properties, set these properties on a new instance of the bean, and return the new
bean instance as the result of the deseri al i ze method.

As has been mentioned previously, the ideal case occurs when deseri al i ze is able to
instantiate and completely initialize the object, thus allowing it to return the object itself
as the result. However, in those cases where the object cannot be completely
deserialized, the deseri al i ze method returns the SOAPDeser i al i zati onSt at e for the
object instead of the object itself. This allows whoever called deseri al i ze (usually the
deserializer of a parent object), to register for events that will allow it to eventually
complete its deserialization. Therefore, it is the responsibility of the code that calls
deseri al i ze to check the return value to determine whether it’s the object itself or the
SOAPDeser i al i zati onSt at e that represents the incompletely deserialized object (this
check is performed using Java’s i nst anceof operator).

When the deseri al i ze method completes, the object being deserialized can be in one
of four states. The first state occurs when the deserializer was able to completely
deserialize the object, in which case the object is referred to as being COWLETE. In the
other three states, the object has dependencies on at least one member object that is not
yet completely deserialized, thus preventing the complete deserialization of the parent
object. The first incomplete state occurs when at least one of the incomplete member
objects is required as a constructor parameter for the parent object, thus preventing the
deserializer from instantiating the parent object until the member is complete; this state

Chapter Appendix: Serialization Framework JAX-RPC 1.1

is referred to as NONE. The second incomplete state occurs when the deserializer is able
to instantiate the object by calling "new", but it is not able to completely initialize the
other members of the object due to one or more incomplete member objects; this state is
referred to as CREATED. The third incomplete state occurs when the deserializer is able to
instantiate the object and initialize all of its members, but at least one of the object’s
members is still not entirely complete (although it has been instantiated); this state is
referred to as | NI TI ALI ZED. If the object is COMPLETE, deseri al i ze returns the actual
object as its return value. If the object is NONE, CREATED, or | NI TI ALI ZED, deseri al i ze
returns the object’s SOAPDeseri al i zati onSt at e as its return value.

Pseudo-code for a deserializer’s deseri al i ze method is shown below:
public Ooject deserialize(QNane nane, XM.Reader reader,

SQAPDeseri al i zati onCont ext cont ext)
throws DeserializationException {

if (the element’s nane doesn’t match the expected nane) ({
t hr ow exception

}

if (the element is an HREF) {
String href = the value of the elenent’s href attribute
SCAPDeseri al i zati onState state = context. get Stat eFor(href);
state.setDeserializer(this);

if (state.isComplete()) {
return state.getlnstance();

}
el se {

return state;
}

}

if (the element has an xsi:type attribute) {
if (the xsi:type attribute doesn’t have the expected val ue) {
t hr ow exception

}
}
if (the element has an xsi:null attribute &% xsi:null == "true") {
if (the element has an id attribute) {
String id = the value of the element’s id attribute
SQAPDeseri al i zati onState state = context.get StateFor (id);
state. setDeserializer(this);
state.setlnstance(null);
st at e. doneReadi ng() ;
}
return null;
}

oj ect[] nenbers = new Obj ect[nunber of nenbers];
SOAPDeseri al i zationState state = nul |;
bool ean i sConpl ete = true;

if (the elenent has an id attribute) {
String id = the value of the elenment’s id attribute
state = context.getStateFor(id);
state. set Deserializer(this);

}

for each nenber of this object {

-153

Chapter Appendix: Serialization Framework JAX-RPC 1.1

SQAPDeseri al i zer nenber Deser = the deserializer for the nenber
Q\ane nmenber Name = t he expected QNAME of menber’s sub-el ement
XM_.Reader nenber Reader =

XM_Reader for the nenber’s sub-el enent
bj ect nenber[i] = nenberDeser. deserial i ze(menber Nane,
nmenber Reader ,
context);

if (menber[i] instanceof SOAPDeserializationState) {
i sConpl ete = fal se;

if (state == null) {
/1l it’s a single-reference object (i.e., noid attribute)
state = new SOAPDeserializationState();

}

SOAPDeseri al i zati onState nenberState =
(SOAPDeseri al i zati onSt at e) nenber[i];

menber St at e. regi sterLi stener(state, i);

}

if (isConplete) {
instantiate and conpletely initialize a new instance

if (state !'=null) {
state. setlnstance(instance);
st at e. doneReadi ng() ;

}

return instance;
}
el se {

if (all constructor argunents are available) {

instantiate a new i nstance
initialize the new instance as conpletely as possible
state. setlnstance(instance);

}

SOAPBuUI | der builder = a new builder initialized with whatever
state will be needed later to finish
deserializing the object

st at e. set Bui | der (bui I der);

st at e. doneReadi ng() ;

return state;

}

}

This pseudo-code demonstrates the logic of the deseri al i ze method, but it does not
impose a particular implementation on deserializers. Although the algorithm looks
complicated, it is actually quite simple to write deserializers for many Java types,
especially those that have no-argument constructors (e.g., structures and arrays). It is
also possible to write generic deserializers that can handle entire classes of types such as
arrays and JavaBeans. In addition, much of the code for serializers can be placed in
library base classes, greatly simplifying development of new serializers.

-154

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.2.4

Instance Builders

When a deserializer is unable to completely deserialize an object, it must do two things:

1. Register the SOAPDeser i al i zati onSt at e for the parent object as a listener with the
SOAPDeser i al i zati onSt at e of the incomplete member object. This allows the
deserializer to be notified of progress made in the deserialization of the member
object.

2. The deserializer needs to remember any state that it accumulated during
deseri al i ze that it will need later to finish deserializing the parent object when the
member object is complete. For example, it might need to remember the values of
some members that were completely deserialized during the call to deseri al i ze and
will be needed later to complete initialization of the object.

The problem with (2) is that we have assumed that deserializers are stateless and are
thus incapable of storing state that will be needed later to complete deserialization of the
object when its members are complete. Instance builders are the mechanism used to
overcome the limitations on stateless deserializers. In effect, instance builders allow
deserializers to become stateful when they need to. When a deserializer is only able to
partially deserialize an object, it creates an instance builder and stores a reference to it in
the object’s SOAPDeser i al i zati onSt at e. The instance builder is initialized to store any
state that the deserializer will need later to complete the task of deserializing the object
once its members have been deserialized.

In addition to storing state, instance builders are actually responsible for completing
deserialization of the parent object (thus the name "instance builder"). The serialization
framework will notify the instance builder when deserialization of its members has
progressed to the point that it should be able to construct the parent object and complete
its initialization. Therefore, the instance builder is really an extension of the stateless
deserializer that originally began deserializing of the parent object.

An instance builder is a Java class that implements the SOAPI nst anceBui | der interface.
The definition of this interface is:
package com sun. xnl . rpc. encodi ng. soap;
public interface SOAPInstanceBuil der {
int menber Gat eType(i nt nenber| ndex);
voi d set Menmber (i nt i ndex, Object nenberVal ue);
void construct();
void initialize();
voi d setlnstance(Cbject instance);
Ooj ect getlnstance();
}

The menber Gat eType method is called by the serialization framework to query the
instance builder about the types of dependencies it has on incomplete member objects.
The value returned by this method for a particular member tells the framework what the
instance builder needs that member for (construction or initialization), and how
complete the member must be before the instance builder can make use of it (created,
initialized, or complete). This information allows the framework to determine when
deserialization has progressed far enough that the instance builder should be able to
instantiate or initialize the object.

The set Menber method is called by the framework to notify the instance builder
whenever one of its member objects has been instantiated (it still might not be entirely
complete, but at least it’s been instantiated).

The const ruct method is called by the framework when all members needed for
construction are ready, thus allowing the instance builder to instantiate the object.

-155

Chapter Appendix: Serialization Framework JAX-RPC 1.1

19.2.5

19.2.6

-156

The i ni tial i ze method is called by the framework when all members needed to
complete initialization of the object are ready.

The set | nst ance method is called to provide the instance builder with a reference to
the object, which is useful when the object was instantiated by the deserializer before
the instance builder was created (e.g., during deseri al i ze).

The get | nst ance method is called by the framework to get a reference to the object
after it has been instantiated by the instance builder (e.g., after a call to i ni ti al i ze).

Deserializing Trailing Blocks

In order to completely deserialize an object graph, it is necessary to explicitly invoke the
deserializer for each root of the graph in the same order that the roots were originally
serialized. After doing this, it is also necessary to call the

deseri al i zeRemai ni ngEl enment s method on the SOAPDeser i al i zati onCont ext to
complete deserialization of the trailing blocks that represent multiple-reference objects.

For example, the code required to deserialize this SOAP encoded object graph:

<homne- address href="#1D-1"/>
<tns: Address xsi:type="tns: Address" id="ID1">
<street href="#ID2"/>
<city href="#1D3"/>
<state href="#1D4"/>
<zip href="#D5"/>
</tns: Address>

<xsd:string xsi:type="xsd:string" id="1D2">1234 Riverside Drive</
xsd: string>

<xsd:string xsi:type="xsd:string" id="1D 3">Gai nesville</xsd:string>
<xsd:string xsi:type="xsd:string" id="ID4">Georgia</xsd:string>
<xsd:string xsi:type="xsd:string" id="ID5">30506</xsd: string>

would be as follows:

XM_Reader reader = new XM_Reader(...);
SQAPDeseri al i zati onCont ext deser Context =
new SCAPDeseri al i zati onContext(...);
Addr essDeseri al i zer addressDeser = new AddressDeserializer(...);
hj ect obj = addressDeser. deserialize(
new QNane(null, "hone-address"),
reader, deserContext);
deser Cont ext . deseri al i zeRemai ni ngEl emrent s(r eader) ;
Address address = null;
if (obj instanceof SOAPDeserializationState) {
address = (Address) (((SOAPDeseri al i zati onState)obj).getlnstance());
}
el se {
address = (Address)obj;

}

Primitive Deserializers

Just as for serialization, deserialization of primitive Java types are handled by a separate
framework because they are not subtypes of j ava. | ang. Qbj ect . The JAX-RPC RI also
includes deserializers for all of the primitive Java data types such as int, float, etc. These

Chapter Appendix: Serialization Framework JAX-RPC 1.1

primitive deserializers are much simpler than the object deserializers because they don’t
have to deal with HREFs or nulls. Each primitive deserializer has a single method of the
following form:

public TYPE deserialize(@ane nanme, XM.Reader reader)
throws DeserializationException;

where TYPE is a primitive type such as int, float, etc.

19.3

XMLWriter

The XMW i t er interface is used to write XML documents. The following code snippet
shows the XMW i t er interface with a brief description of the methods. Note that this
interface is specific to the JAX-RPC reference implementation.

package com sun. xnl . rpc. streani ng;
public interface XM\Witer {
/1 The following methods wite the start tag for an el ement
voi d startEl ement (QNane nanme) throws XMLWiter Exception;
voi d startEl enent (QNanme nane, String prefix)
throws XM.WiterException;
void startEl ement (String | ocal Nane)
throws XM.WiterException;
void startEl ement (String | ocal Nane, String uri)
throws XM.Witer Exception;
void startEl enment(String | ocal Nane, String uri,
String prefix)
throws XM.WiterException;

/1 The followi ng nmethods wite an attribute of the current el ement
void witeAttribute(QName nanme, String val ue)
throws XMLWiterException;
void witeAttribute(String | ocal Nane, String val ue)
throws XM.WiterException;
void witeAttribute(String | ocal Name, String uri,
String value) throws XM.WiterException;

/! Wite a nanespace declaration of the current el enent.

voi d writeNamespaceDeclaration(String prefix, String uri)
throws XM.WiterException;

/!l Wite character data within an el ement.

void witeChars(String chars) throws XM.WiterException;

void writeChars(CDATA chars) throws XM.WiterException;

/!l Wite a cooment within an el enent.
void witeComrent (String coment)
throws XM.WiterException;

/1 Wite the end tag for the current elenent.
voi d endEl enent () throws XM.Wi terException;

/1 Return the prefix factory in use by this witer.
Prefi xFactory getPrefixFactory();

/1l Set the prefix factory to be used by this witer.
voi d setPrefixFactory(PrefixFactory factory);

/'l Return the URI for a given prefix. If the prefix is undeclared,

/1 return null.
String getURI(String prefix) throws XM.WiterException;

-157

Chapter Appendix: Serialization Framework JAX-RPC 1.1

/1 Return a prefix for the given URI. If no prefix for the given
/1 URl is in scope, return null
String getPrefix(String uri) throws XMLWiterException;

/1 Flush the witer and its underlying stream
void flush() throws XM.WiterException;

[/l Close the witer and its underlying stream
void close() throws XM.WiterException;

19.4

-158

XMILReader

The XM_Reader interface provides a high-level streaming parser interface for reading
XML documents. The following code snippet shows the XM_Reader interface with a

brief description of the methods. Note that this interface is specific to the JAX-RPC

reference implementation.

package com sun. xml . rpc. streani ng;
public interface XM.Reader {
/1l The initial state of a XM.Reader.
public static final int INNTIAL = O;

/1l The state denoting the start tag of an el enment.
public static final int START = 1;

/1l The state denoting the end tag of an el ement.
public static final int END = 2;

/1 The state denoting the character content of an el enment.
public static final int CHARS = 3;

/1 The state denoting a processing instruction.
public static final int Pl = 4;

/1 The state denoting that the end of the docunment has been reached.
public static final int EOF = 5;

/* Return the next state of the XM_.Reader. The return value is
* one of: START, END, CHARS, PI, ECF.

**/

int next() throws XM.Reader Excepti on;

/* Return the next state of the XM_LReader. The return value is
* one of: START, END, CHARS, ECF.

**/

int nextContent() throws XM.Reader Excepti on;

/* Return the next state of the XM_.Reader. The return value is
* one of: START, END, ECF

**/

i nt nextEl ement Content () throws XM_Reader Excepti on;

/!l Return the current state of the XM.Reader.
int getState();

/* Return the current qualified name. Meani ngful only when
* the state is one of: START, END.

Chapter Appendix: Serialization Framework JAX-RPC 1.1

**/

QNamre get Name() ;

/* Return the current URI. Meaningful only when the state is
* one of: START, END.

**/

String getURI();

/* Return the current l|ocal nanme. Meaningful only when the
* state is one of: START, END, PI.

**/

String getLocal Nane();

/* Return the current attribute list. Meaningful only when
* the state is one of: START. The returned Attributes object
* belong to the XM_.Reader and is only guaranteed to be valid
* until the next nethod is called directly or indirectly

**/

Attributes getAttributes();

/* Return the current value. Meaningful only when the state
* is one of: CHARS, PI.

**/

String getVal ue();

/! Return the current elenent |ID.
int getEl enentld();

/! Return the current |ine nunber
int getLineNunber();

/[** Return the URI for the given prefix. If there is no nanespace
* declaration in scope for the given prefix, return null.

**/

String getURI (String prefix);

/**

* Return an iterator on all prefixes in scope.
**/
Iterator getPrefixes();
/* Records the current el ement.
The XM_Reader must be positioned on the start tag of the
el ement. The returned reader will play back all events
starting with the start tag of the elenent and ending with
* jts end tag.

**/

XM_Reader recordEl enent () throws XM_Reader Excepti on;

E I I T

/1 Skip to the end tag of the elenent with the current el enent ID.
voi d ski pEl ement () throws XM_Reader Excepti on;

/1 Skip to the end tag for the elenment with the given element ID
voi d ski pEl ement (int elementld) throws XM_Reader Excepti on;

/1l Close the XM.Reader.
void close() throws XM.Reader Excepti on;

-159

Chapter Appendix: Serialization Framework JAX-RPC 1.1

-160

The next method is used to read events from the XML document. Each time it is called,
the next method returns the new state of the reader. Possible states are: | NI TI AL (the
initial state), START (denoting the start tag of an element), END (denoting the end tag of
an element), CHARS (denoting the character content of an element), Pl (denoting a
processing instruction) and EOF (denoting the end of the document).

An XM_Reader is always namespace-aware and keeps track of the namespace declaration
which are in scope at any time during streaming. The get URI method can be used to find
the URI associated to a given prefix in the current scope.

Chapter Appendix: Mapping of XML Names JAX-RPC 1.1

20

Appendix: Mapping of XML Names

Note that this section has been taken from the JAXB (Java APIs for XML data binding)
[14] specification. There are some minor changes and clarifications.

XML schema languages use XML names. The character set supported in the XML name
is much larger than the character set defined for valid identifiers for Java class, interface
and method.

This chapter defines recommended mapping of XML names to Java identifiers in a way
that adheres to the standard Java API design guidelines, generates identifiers that retain
mapping from the source schema and is unlikely to result in collisions.

20.1

Mapping

Java identifiers are based on the following conventions:

+ Class and interface names always begin with an upper-case letter. The remaining
characters are either digits, lower-case letters or upper-case letters. Upper-case letters
within a multi-word name serve to identify the start of each non-initial word or
sometimes to stand for acronyms. These names may contain an ‘_’ underscore.

* Method names always begin with a lower-case letter, and otherwise are exactly like
class and interface names.

« Constant names are entirely in upper case, with each pair of words separated by the
underscore character (* _', \uO05F, LOW LINE).

XML names are much richer than Java identifiers: They may include not only the
standard Java identifier characters but also various punctuation and special characters
that are not permitted in Java identifiers. Like most Java identifiers, most XML names
are in practice composed of more than one natural-language word. Non-initial words
within an XML name typically start with an upper-case letter followed by a lower-case
letter (as in Java) or are prefixed by punctuation characters (not usual in Java and for
most punctuation characters are in fact illegal).

In order to map an arbitrary XML name into a Java class, method, or constant identifier,
the XML name is first broken into a word list. For the purpose of constructing word lists
from XML names, the following definitions are used:

A punctuation character (punct) is one of the following:

e Hyphen (’-', \u002D, HYPHEN-M NUS)
e Period ('.’, \uOO2E, FULL STOP)
e Colon (’':’, \u003A, COLON

e Dot ('<', \uOOB7, M DDLE DOT)
* \u0387, GREEK ANO TELEI A

-161

Chapter Appendix: Mapping of XML Names JAX-RPC 1.1

-162

* \uO6DD, ARABIC END OF AYAH
* \UuO6DE, ARABIC START OF RUB EL H ZB

These are all legal characters in XML names.

e Aletter is a character for which the method Character.isLetter returns true;
identifying a letter based on the Unicode standard. Every letter is a legal Java
identifier character, both initial and non-initial.

e A digit is a character for which the method Character.isDigit returns true,
identifying a digit according to the Unicode Standard. Every digit is a legal non-
initial Java identifier character.

* A nark is a character that is in none of the previous categories but for which the
method Char acter. i sJaval dentifierPart returns true. This category includes
numeric letters, combining marks, non-spacing marks, and ignorable control
characters.

Every XML name character falls into one of the above categories. Letters are further
divided into sub-categories:

e An upper-case | etter is a letter for which the method Char act er . i sUpper Case
returns t r ue

« Alower-caseletter is a letter for which the method Character.isLower Case
returns true

« All other letters are uncased.

An XML name is split into a word list by removing any leading and trailing punctuation
characters and then searching for word breaks. A word br eak is defined by three regular
expressions: A prefix, a separator, and a suffix. The prefix matches part of the word that
precedes the break, the separator is not part of any word, and the suffix matches part of
the word that follows the break. The word breaks are defined as:

TABLE 20-1

Prefix Separator Suffix Example
[“punct] punct+ ["punct] foo|--|bar
digit [~digit] foo22|bar
["digit] digit foo|22
lower [Mower] foo|Bar
upper upper lower FOO|Bar
letter ["letter] Foo\\u2160
[“etter] letter u2160|Foo

The character \u2160 is ROMAN NUMERAL ONE, a numeric letter.

After splitting, if a word begins with a lower-case character then its first character is
converted to an upper case. The final result is a word list in which each word is one of
the following:

» A string of upper- and lower-case letters, the first character of which is upper case
+ A string of digits

* A string of uncased letters and marks

Given an XML name in a word-list form, Java identifiers are mapped as follows:

Chapter Appendix: Mapping of XML Names

JAX-RPC 1.1

» A class or interface identifier is constructed by concatenating the words in the list

* A method identifier is constructed by concatenating the words in the list.

+ A prefix verb (example: get, set, is) is prepended to the result or if no prefix is

required, the first character is converted to lower case.

This mapping does not change an XML name that is already a legal and conventional
Java class, method, or constant identifier, except perhaps to add an initial verb in the
case of a property access method.

TABLE 20-2 Illustrative Examples

XML Name IClass Name Method Name
mixedCaseName MixedCaseName mixedCaseName
name-with-dashes INameWithDashes name WithDashes

name_with_underscore

IName_with_underscore

name_with_underscore

other_punctechars

Other_punctChars

other_punctChars

IAnswer42

IAnswer42

answer42

-163

Chapter Appendix: Change Log JAX-RPC 1.1

21 Appendix: Change Log

21.1 Changes for the JAX-RPC 1.1 Maintenance Release

-164

Section 8.2.5: Added ServiceFactory.loadService(Class) method and a requirement on
implementations so that applications can use it reliably and not depend on any
particular implementation being used (modulo packaging/configuration, that is).

Section 14.4: Updated this section to align it with the WS-I BP 1.0 Board Approval
Draft. Detailed changes are: added R2028, R2029, R4003, R2754 to 14.4.1; added
R2114 to 14.4.2; added R1141, R1132, R2250 to 14.4.3; moved R1125, R1113,
R1114, R1115, R1130 from the second to the third group in 14.4.3.

Section 4.2.4: Added “the enclosing xsd:attribute” as a basis for creating a name for
the class corresponding to an anonymous enumeration type. Added a new clause
requiring implementations to support, in addition to the default mapping, a JAXB-
compatible mapping that treats an anonymous enumeration as a derivation by
restriction. Also added an example for the anonymous case.

Section 4.2.6: Changed the mapping of simple types derived using xsd:list to use
arrays instead of java.util.List objects.

Section 4.2.1: Modified the provision about “element declarations with nillable
attribute set to true” to cover two more cases: (a) element declarations with
minOccurs="0" and maxOccurs="1" or absent, and (b) attribute declarations with
use="optional” or absent and not specifying a default or fixed value.

Section 4.2.3: Changed the name of the property corresponding to the content of a
complex type defined using xsd:simpleContent to “_value”. Previously it was
“value”.

Section 4.2.3: Changed the name of the property corresponding to a wildcard to
“_any”. Previously it was “any”.

Section 4.2.3: Changed the mapping of wildcards (xsd:any) to
javax.xml.soap.SOAPElement. Previously they were mapped to java.lang.Object.
Also added an example.

Section 14.3: Clarified that the interoperability requirements inherited from JAX-
RPC 1.0 have been extended in this revision to include new ones motivated by the
WS-I Basic Profile 1.0.

Section 3.R01 and Chapter 14: Changed all references to “an interoperable JAX-RPC
implementation” to “a JAX-RPC implementation”. Rationale: interoperability
requirements are, quite simply, requirements that a// JAX-RPC implementations must
satisfy.

Section 4.2.1: Removed note on javax.xml.namespace.QName being “a placeholder”.

Chapter Appendix:

Change Log JAX-RPC 1.1

Section 4.2.1: Added table 4-2 to clarify the mapping of the remaining built-in XSD
simple types

Appendix 18: Specified that tools must be able to handle the xsd:import and
xsd:include schema constructs.

Section 4.3.12: Added name collision rules for Java enumeration classes.

Section 4.3.12: Added name collision rules for Java classes derived from an
xsd:element.

Section 5.4.1: Added mapping of value types to complex types that use the
xsd:sequence compositor. Fixed the example accordingly since it wasn’t valid
according to the XML Schema specification.

Section 5.3.3: Deprecated the mapping of Byte[] to xsd:base64Binary.

Section 8.2.5: Added the two new loadService() methods to
javax.xml.rpc.ServiceFactory.

Section 14.4 (new): Added WS-I BP 1.0 interoperability requirements.
Section 14.3.6: Removed mapping to/from tentative SOAP 1.2 fault codes.
Section 14.3.2: Removed literal representation from 1.0 interop requirements section.

Section 12.1.4: Clarified that for one-way operations only the handleRequest methods
are called.

Section 10.1.2: Specified that, in the servlet-based case, implementations must return
a HTTP response code before dispatching a one-way request to a servlet endpoint
instance.

Section 5.5.5: Specified which Java methods can be mapped to one-way operations.

Section 8.2.4.1: Added a requirement that, in the case of SOAP/HTTP,
invokeOneWay block until an HTTP response code has been received from the server
Or an error occurs.

Section 5.5.5: Clarified that one-way operations cannot have wsdl:output and
wsdl:fault elements.

Section 6.6 (new): Specified mapping for header faults.

Section 4.3.6: Specified mapping for literal faults (whose message part uses the
“element” attribute instead of “type”).

Section 6.4: Added requirement to support rpc/literal.
Section 6.4.3: Modified the example to make the alternative mappings clearer.

Section 6.4.1: Restated the requirement (already present in 1.0) to be able to unwrap
document/literal calls as its own form of mapping.

Section 6.2: Removed the description of “wrappers” since it conflicts with the Basic
Profile.

Javadocs only: Added prefix field, getPrefix method and ternary constructor to the
javax.xml.namespace.QName class.

Appendix 18: Specified some schema constructs as truly optional, meaning that JAX-
RPC tools don’t have to handle them gracefully.

Appendix 18: Updated the schema support matrix to mark the newly required features
as required.

Section 6.4.1: Added the ability to map any literal part to SOAPElement even in case
it has a standard mapping in JAX-RPC, so that external data binding frameworks can
be plugged onto JAX-RPC more easily.

Sections 5.1.3 and 5.3.2: Added javax.xml.namespace.QName and java.net.URI to the
standard Java classes for which a predefined mapping exists.

-165

Chapter Appendix:

-166

Change Log JAX-RPC 1.1

Sections 4.2.3 and 4.2.4: Specified that for anonymous types the name to be used for
the corresponding Java type must be derived from “the nearest enclosing xsd:element,
xsd:simpleType or xsd:complexType”.

Section 4.2.3: Specified mapping of xsd:any in complex type definitions to
java.lang.Object (or an array thereof if maxOccurs is greater than 1).

Section 4.2.3: Specified that attributes on complex types must be mapped to
properties of the resulting JavaBean class.

Section 4.2.3: Added mapping for complex types defined using xsd:simpleContent
and xsd:extension together.

Section 4.2.6 (new): Specified mapping for simple types defined using xsd:list.
Section 4.2.5 (new): Specified mapping for simple types derived by restriction.
Section 5.3.2: Added mapping for the java.net.URI.

Section 4.2.1: Added mapping for the remaining built-in XML Schema simple types
for which JAXB 1.0 defines a special mapping. Also, added a clause to explicitely
excluded xsd:NOTATION, xsd:ENTITY and xsd:IDREF.

Section 4.2.1: Added mapping for the xsd:anyURI type to both java.net.URI
(available in J2SE 1.4) and java.lang.String (for compatibility with previous J2SE
versions).

Section 13.1.1: Clarified that constants defined on the Call and Stub interfaces can be
used in lieu of the corresponding strings for the
“javax.xml.rpc.security.auth.[username|password]” strings.

Section 10.1.3: Added isUserInRole method to the ServletEndpointContext interface.
Section 7.5: Specified that for image/gif attachments only decoding is required.

Sections 4.2.3 and 5.3.4: Clarified that an element with an attribute of the form
maxOccurs="1" should not result in a array-valued property of a value type.

Section 4.2.3: Clarified that boolean property in value types should follow the
JavaBeans conventions, hence use “is” instead of “get” as a prefix.

Section 4.3.11: Clarified name mapping for the get<name_of_wsdl:port> methods.
Section 3 (R013): Required support for SAAJ 1.2.

Removed reference to the TCK in section 3 (R0S5).

Fixed the indentation of several XML fragments.

Added a reference to the WS-I Basic Profile 1.0.

Updated some obsolete references (JAXB, SOAP 1.2, etc.).

Updated the release number to 1.1 throughout the document.

»
2 Sun

microsystems

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054, U.S.A.
650 960-1300

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 650 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

650 960-1300

Intercontinental Sales: 650 688-9000

	Contents
	1. Introduction�11
	2. JAX-RPC Usecase�14
	3. Requirements�21
	4. WSDL/XML to Java Mapping�31
	5. Java to XML/WSDL Mapping�54
	6. SOAP Binding�68
	7. SOAP Message With Attachments�76
	8. JAX-RPC Core APIs�79
	9. Service Client Programming Model�91
	10. Service Endpoint Model�94
	11. Service Context�98
	12. SOAP Message Handlers�101
	13. JAX-RPC Runtime Services�112
	14. Interoperability�115
	15. Extensible Type Mapping�122
	16. Futures�131
	17. References�132
	18. Appendix: XML Schema Support�133
	19. Appendix: Serialization Framework�143
	20. Appendix: Mapping of XML Names�161
	21. Appendix: Change Log�164

	1 Introduction
	1.1 Design Goals
	1.1.1 Expert Group Goals
	1.2 JSR-101 Expert Group
	1.3 Acknowledgments
	1.4 Status
	1.5 Notational Conventions

	2 JAX-RPC Usecase
	2.1 Stock Quote Service
	2.1.1 Service Endpoint Definition
	2.1.2 Service Deployment
	2.1.3 Service Description
	2.1.4 Service Use
	2.2 JAX-RPC Mechanisms
	2.2.1 Service Client
	2.2.2 Server Side

	3 Requirements
	R01 Protocol Bindings
	R02 Transport
	R03 Supported Type Systems
	R04 XML Encoding for SOAP Messages
	R05 JAX-RPC Runtime System
	R06 Default Type Mapping
	R07 Extensible Type Mapping
	R08 Service Endpoint Model
	R09 Service Description
	R010 Service Registration and Discovery
	R011 Java API for XML Binding (JAXB)
	R012 Application level Modes of Interaction
	R013 Relationship to JAXM and SAAJ
	R014 Parameter Passing semantics
	R015 Service Context
	R016 SOAP Messages with Attachments
	R017 SOAP Message Handler
	R018 Literal Mode
	R019 Application Portability

	4 WSDL/XML to Java Mapping
	4.1 XML Names
	4.2 XML to Java Type Mapping
	4.2.1 Simple Types
	4.2.2 Array
	4.2.3 XML Struct and Complex Type
	4.2.4 Enumeration
	4.2.5 Simple Types Derived By Restriction
	4.2.6 Simple Types Derived Using xsd:list
	4.3 WSDL to Java Mapping
	4.3.1 WSDL Document
	4.3.2 Extensibility Elements
	4.3.3 WSDL Port Type
	4.3.4 WSDL Operation
	4.3.5 Holder Classes
	4.3.6 WSDL Fault
	4.3.7 WSDL Binding
	4.3.8 WSDL Port
	4.3.9 WSDL Service
	4.3.10 Service Interface
	4.3.11 Generated Service
	4.3.12 Name Collisions

	5 Java to XML/WSDL Mapping
	5.1 JAX-RPC Supported Java Types
	5.1.1 Primitive Types
	5.1.2 Java Array
	5.1.3 Standard Java Classes
	5.1.4 JAX-RPC Value Type
	5.2 JAX-RPC Service Endpoint Interface
	5.2.1 Service Specific Exception
	5.2.2 Remote Reference Passing
	5.2.3 Pass by Copy
	5.3 Java to XML Type Mapping
	5.3.1 Java Primitive types
	5.3.2 Standard Java Classes
	5.3.3 Array of Bytes
	5.3.4 Java Array
	5.4 JAX-RPC Value Type
	5.4.1 XML Mapping
	5.4.2 Java Serialization Semantics
	5.5 Java to WSDL Mapping
	5.5.1 Java Identifier
	5.5.2 Java Package
	5.5.3 Service Endpoint Interface
	5.5.4 Inherited Service Endpoint interfaces
	5.5.5 Methods

	6 SOAP Binding
	6.1 SOAP Binding in WSDL
	6.2 Operation Style attribute
	6.3 Encoded Representation
	6.4 Literal Representation
	6.4.1 Java Mapping of Literal Representation
	6.4.2 SOAPElement
	6.4.3 Example
	6.5 SOAP Fault
	6.6 SOAP Headerfault

	7 SOAP Message With Attachments
	7.1 SOAP Message with Attachments
	7.2 Java Types
	7.3 MIME Types
	7.4 WSDL Requirements
	7.5 Mapping between MIME types and Java types

	8 JAX-RPC Core APIs
	8.1 Server side APIs
	8.2 Client side APIs
	8.2.1 Generated Stub Class
	8.2.2 Stub Configuration
	8.2.3 Dynamic Proxy
	8.2.4 DII Call Interface
	8.2.5 Abstract ServiceFactory
	8.2.6 ServiceException
	8.2.7 JAXRPCException
	8.2.8 Additional Classes

	9 Service Client Programming Model
	9.1 Requirements
	9.2 J2EE based Service Client Programming Model
	9.2.1 Component Provider
	9.2.2 Deployment Descriptor
	9.2.3 Deployer
	9.3 J2SE based Service Client Programming Model

	10 Service Endpoint Model
	10.1 Service Developer
	10.1.1 JAX-RPC Service Endpoint Lifecycle
	10.1.2 Servlet based Endpoint
	10.1.3 ServletEndpointContext
	10.2 Packaging and Deployment Model

	11 Service Context
	11.1 Context Definition
	11.2 Programming Model
	11.2.1 Implicit Service Context
	11.2.2 Explicit Service Context
	11.3 Processing of Service Context

	12 SOAP Message Handlers
	12.1 JAX-RPC Handler APIs
	12.1.1 Handler
	12.1.2 SOAP Message Handler
	12.1.3 GenericHandler
	12.1.4 HandlerChain
	12.1.5 HandlerInfo
	12.1.6 MessageContext
	12.1.7 SOAPMessageContext
	12.2 Handler Model
	12.2.1 Configuration
	12.2.2 Processing Model
	12.3 Configuration
	12.3.1 Handler Configuration APIs
	12.3.2 Deployment Model
	12.4 Handler Lifecycle

	13 JAX-RPC Runtime Services
	13.1 Security
	13.1.1 HTTP Basic Authentication
	13.1.2 SSL Mutual Authentication
	13.1.3 SOAP Security Extensions
	13.2 Session Management

	14 Interoperability
	14.1 Interoperability Scenario
	14.2 Interoperability Goals
	14.3 Interoperability Requirements
	14.3.1 SOAP based Interoperability
	14.3.2 SOAP Encoding and XML Schema Support
	14.3.3 Transport
	14.3.4 WSDL Requirements
	14.3.5 Processing of SOAP Headers
	14.3.6 Mapping of Remote Exceptions
	14.3.7 Security
	14.3.8 Transaction
	14.4 Interoperability Requirements: WS-I Basic Profile Version 1.0
	14.4.1 Requirements On Java-to-WSDL Tools
	14.4.2 Requirements on WSDL-to-Java Tools
	14.4.3 Requirements On JAX-RPC Runtime Systems

	15 Extensible Type Mapping
	15.1 Design Goals
	15.2 Type Mapping Framework
	15.3 API Specification
	15.3.1 TypeMappingRegistry
	15.3.2 TypeMapping
	15.3.3 Serializer
	15.3.4 Deserializer
	15.4 Example: Serialization Framework

	16 Futures
	17 References
	18 Appendix: XML Schema Support
	19 Appendix: Serialization Framework
	19.1 Serialization
	19.1.1 Serializers
	19.1.2 SOAPSerializationContext
	19.1.3 SOAPSerializer Interface
	19.1.4 Primitive Serializers
	19.2 Deserialization
	19.2.1 Deserializers
	19.2.2 SOAPDeserializationContext
	19.2.3 The deserialize Method
	19.2.4 Instance Builders
	19.2.5 Deserializing Trailing Blocks
	19.2.6 Primitive Deserializers
	19.3 XMLWriter
	19.4 XMLReader

	20 Appendix: Mapping of XML Names
	20.1 Mapping

	21 Appendix: Change Log
	21.1 Changes for the JAX-RPC 1.1 Maintenance Release

