Java™ Servlet Specification
Version 2.4

Please send technical comments to: servletapi-feedback @eng.sun.com
Please send business comments to: yutaka.yoshida@sun.com

November 24th, 2003
Danny Coward (danny.coward@sun.com)
Yutaka Yoshida (yutaka.yoshida@sun.com)

Java(TM) Servlet API Specification (" Specification™)
Version: 2.4

Status: FCS

Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

NOTICE ; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you afully-paid, non-exclusive, non-transferable, world-
wide, limited license (without the right to sublicense), under the Sun’s applicable intellectual property
rights to view, download, use and reproduce the Specification only for the purpose of interna evalua-
tion, which shall be understood to include developing applications intended to run on an implementa
tion of the Specification provided that such applications do not themselves implement any portion(s) of
the Specification.

Sun aso grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or patent rights it may have in the
Specification to create and/or distribute an Independent Implementation of the Specification that: (i)
fully implements the Spec(s) including al its required interfaces and functionality; (ii) does not modify,
subset, superset or otherwise extend the Licensor Name Space, or include any public or protected pack-
ages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those
required/authorized by the Specification or Specifications being implemented; and (jii) passes the TCK
(including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass
through" requirements in any license You grant concerning the use of your Independent Implementa-
tion or products derived from it. However, except with respect to implementations of the Specification
(and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may
neither: (a) grant or otherwise pass through to your licensees any licenses under Sun’s applicable intel-
lectual property rights; nor (b) authorize your licensees to make any claims concerning their implemen-
tation’s compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of
the Specification that neither derives from any of Sun’s source code or binary code materials nor, except
with an appropriate and separate license from Sun, includes any of Sun’s source code or binary code
materials, and "Licensor Name Space" shall mean the public class or interface declarations whose
names begin with "java’, "javax”, "com.sun" or their equivalents in any subsequent naming convention
adopted by Sun through the Java Community Process, or any recognized successors or replacements
thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any
material provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JSP, and JavaSer-
ver Pages are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED "ASIS'. SUN MAKESNO REPRESENTATIONS OR WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not
represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changesin the
Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean
room implementation; and/or (iii) any claimsthat |ater versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTSLEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by aU.S.
Government prime contractor or subcontractor (at any tier), then the Government’srights in the Specification
and accompanying documentation shall be only as set forth in this license; this is in accordance with 48
C.FR. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.FR.
2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#X136182/Form | D#011801)

Contents

Java™ Servlet Specification Version2.4 1
Preface e 15
Additional SOUrCeS 15
Who Should Read This Specification 16
API ReEfErenceo 16
Other Java Platform Specifications 16
Other Important References 17
ProvidingFeedback 18
Acknowledgements 18
SRV.L OVEIVIBW. ..ttt et et 19
SRV.1.1 WhatisaServlet?, 19
SRV.1.2 WhatisaServletContainer?...................... 19
SRV.1.3 AnExample 20
SRV.1.4 Comparing Servlets with Other Technologies 21

SRV.1.5 Relationship to Java 2 Platform, Enterprise Edition 21
SRV.1.6 Compatibility with Java Servlet Specification Version 2.3
21
SRV.1.6.1 HttpSessionListener.sessonDestroyed 21
SRV.1.6.2 ServletRegquest methods getRemotePort, getl ocal-
Name, getLocalAddr, getL ocaPort 22

SRV .2 TheServlet Interface. 23

SRV.2.1 Request HandlingMethods 23

CONTENTS 8

SRV.2.1.1 HTTP Specific Request Handling Methods 23

SRV.2.1.2 Additional Methods 24
SRV.2.1.3 Conditional GET Support 24
SRV.22 Numberofinstances, 24
SRV.2.2.1 NoteAbout The Single Thread Model 25
SRV.23 ServletLifeCycle ..., 25
SRV.2.3.1 Loadingand Instantiation 25
SRV.2.3.2 Initidization 26
SRV.23.3 RequestHandling 26
SRV.234 EndofService............. ... 28
SRV.3 SevietContext..........oiiiii i 31
SRV.3.1 Introduction to the ServletContext Interface 31
SRV.3.2 Scopeof aServletContext Interface 31
SRV.3.3 InitidizationParameters 32
SRV.3.4 Context Attributes 32
SRV.3.4.1 Context Attributesin a Distributed Container .. 32
SRV.35 ResOUrceSciiiiiiiii i, 33
SRV.3.6 Multiple Hostsand Servlet Contexts 33
SRV.3.7 Reloading Considerations 33
SRV.3.7.1 Temporary Working Directories............. 34
SRV.4 TheRequestot 35
SRV.4.1 HTTPProtocol Parameters 35
SRV.4.1.1 When ParametersAre Available............. 36
SRV.4.2 Attributes.o 36
SRV.A3 Headers ... e 37
SRV.4.4 Request PathElements 38
SRV.45 PathTrandationMethods 39
SRV.A6 COOKIESottt e 39
SRV.47 SSLAttributes. 40
SRV.4.8 Internationalization, 40
SRV.49 Requestdataencoding 41
SRV.4.10 Lifetime of theRequest Object 41

SRV.5 TheRespONSeo 43

CONTENTS
SRV.5.1 Bufferingco i 43
SRV.52 Headerst 44
SRV.5.3 ConvenienceMethods........................... 45
SRV.5.4 Internationalization, 46
SRV.5.5 Closureof ResponseObject 47
SRV.5.6 Lifetimeof theResponseObject................... 47
SRV.6 Filtering. 49
SRV.6.1 Whatisafilter?.......... 49
SRV.6.1.1 Examplesof Filtering Components 50
SRV.6.2 ManConCeptsouuiiiiiininennn 50
SRV.6.2.1 FilterLifecycle 51
SRV.6.2.2 Wrapping Requestsand Responses 52
SRV.6.2.3 Filter Environment 53
SRV.6.2.4 Configuration of Filtersin aWeb Application . . 53
SRV.6.2.5 Filtersand the RequestDispatcher 55
SRV.7 SESSIONS. ...ttt 57
SRV.7.1 Session TrackingMechanisms 57
SRV.7.1.1 CoOKIES ..ot 57
SRV.7.1.2 SSL SESSIONSoiiiiiiiiiiiiaiaann. 57
SRV.7.1.3 URLRewritingoo.... 58
SRV.7.1.4 Sessonintegrity 58
SRV.7.2 CreatingaSessiono.vuiiiiinnnnnnnnnnn. 58
SRV.7.3 SESSIONSCOPE ..ot vt i it 58
SRV.7.4 Binding AttributesintoaSession 59
SRV.7.5 SessionTiMEOULSccoviiiinnnnnnnnnn. 59
SRV.7.6 LastAccessed TiMES. ..., 60
SRV.7.7 Important Session Semantics 60
SRV.7.7.1 Threadinglssues 60
SRV.7.7.2 Distributed Environments 60
SRV.7.7.3 ClientSemanticsSccooon.. 61
SRV.8 DispatchingRequests., 63
SRV.8.1 Obtaining aRequestDispatcher 63

SRV.8.1.1 Query Stringsin Request Dispatcher Paths 64

SRV.8.2

Using aRequest Dispatcher 64

9

CONTENTS

SRV.8.3 ThelncludeMethod 65
SRV.8.3.1 Included Request Parameters............... 65
SRV.84 TheForwardMethod 65
SRV.84.1 Query StiNg........ccouuirieiinunanan.. 66
SRV.8.4.2 Forwarded Request Parameters 66
SRV.85 ErrorHandling 67
SRV.9 WebApplications 68
SRV.9.1 Web ApplicationsWithinWeb Servers 68
SRV.9.2 Relationshipto ServletContext 68
SRV.9.3 Elementsof aWeb Application 69
SRV.9.4 Deployment Hierarchies 69
SRV.9.5 Directory Structure., 69
SRV.9.5.1 Example of Application Directory Structure ... 70
SRV.9.6 Web Application ArchiveFile 71
SRV.9.7 Web Application Deployment Descriptor 71
SRV.9.7.1 DependenciesOn Extensions............... 71
SRV.9.7.2 Web Application ClassLoader 72
SRV.9.8 ReplacingaWeb Application 73
SRV.99 ErrorHandling 73
SRV.9.9.1 Request Attributes 73
SRV.99.2 ErrorPages.......... ..., 74
SRV.99.3 ErrorFilters 75
SRV.9.10 WelcomeFiles 75
SRV.9.11 Web Application Environment 77
SRV.9.12 Web Application Deployment 78
SRV.10 Application LifecycleEvents....................... 79
SRV.10.1 Introductionc.c.iiiiiiiii. 79
SRV.10.2 EventListeners. 79
SRV.10.2.1 Event Typesand Listener Interfaces 80
SRV.10.2.2 AnExampleof ListenerUse 81
SRV.10.3 Listener Class Configuration 81
SRV.10.3.1 Provisionof ListenerClasses............... 81

SRV.10.3.2 Deployment Declarations. 82

10

CONTENTS
SRV.10.3.3 Listener Registration 82
SRV.10.3.4 Notifications At Shutdown 82
SRV.10.4 Deployment Descriptor Example 82
SRV.10.5 Listener Instancesand Threading 83
SRV.10.6 Listener EXCEpLIONScoiiiiiininnnn.. 83
SRV.10.7 Distributed Containersc..ovuion.. 84
SRV.10.8 SessionEvents ...t 84
SRV.11 Mapping RequeststoServiets 85
SRV.11.1Useof URLPaths........., 85
SRV.11.2 Specification of Mappings 86
SRV.11.2.1 Implicit Mappingscoouuun.. 86
SRV.11.2.2 ExampleMappingSet 87
SRV.12 SECUIMITY. . oot 89
SRV.12.1 Introduction 89
SRV.12.2 Declarative Securityc.coviiiinnnan.. 90
SRV.12.3 Programmatic Securityccouo... 90
SRV.I2AR0IES . ..o 92
SRV.12.5 Authenticationc.iiiiiiiinninnnn.. 92
SRV.12.5.1 HTTP Basic Authentication 92
SRV.12.5.2 HTTP Digest Authentication 93
SRV.12.5.3 Form Based Authentication 93
SRV.12.5.4 HTTPSClient Authentication 95
SRV.12.6 Server Tracking of Authentication Information 95
SRV.12.7 Propagation of Security Identity in EJBTM Calls 95
SRV.12.8 Specifying Security Constraints 96
SRV.12.8.1 Combining Constraints. 97
SRV.12.82 Example ..., 98
SRV.12.8.3 ProcessingRequests 100
SRV.12.9 Default Policies, 101
SRV.12.10LoginandLogoutciiiin... 101
SRV.13 Deployment Descriptorccvvivnon.... 103
SRV.13.1 Deployment Descriptor Elements 103
SRV.13.1.1 Packaging and Deployment of JAX-RPC Compo-

nents 104
SRV.13.2 Rules for Processing the Deployment Descriptor 106

11

CONTENTS 12

SRV.13.3 Deployment Descriptorcoviiuiunan.. 107
SRV.13.4 Deployment Descriptor Diagram 135
SRV.ASS5EXamples 152
SRV.1351 ABascExample........................ 153
SRV.13.5.2 An Exampleof Security 154
SRV.14 javax.serviet 156
SRV.14.1 Generic Servlet Interfacesand Classes 156
SRV.14.2 Thejavax.servletpackagettt 156
SRV.14.21 Filtero 159
SRV.14.2.2 FilterChain 161
SRV.14.23 FilterConfig 161
SRV.14.2.4 GenericServlet............ 162
SRV.14.2.5 RequestDispatcher 167
SRV.1426 Servlet 168
SRV.14.2.7 ServletConfigo 171
SRV.14.2.8 ServletContext...............cooiiuion.. 172
SRV.14.2.9 ServletContextAttributeEvent 181
SRV.14.2.10 ServletContextAttributeListener 182
SRV.14.2.11 ServletContextEvent 182
SRV.14.2.12 ServletContextListener 183
SRV.14.2.13 ServletException 184
SRV.14.2.14 ServletinputStream 185
SRV.14.2.15 ServletOutputStream 186
SRV.14.2.16 ServletRequest 191
SRV.14.2.17 ServletRequestAttributeEvent 199
SRV.14.2.18 ServletRequestAttributeListener 200
SRV.14.2.19 ServletRequestEvent 200
SRV.14.2.20 ServletRequestListener 201
SRV.14.2.21 ServletRequestWrapper 202
SRV.14.2.22 ServletResponse 208
SRV.14.2.23 ServletResponseWrapper 215
SRV.14.2.24 SingleThreadModel 218
SRV.14.2.25 UnavailableException 219
SRV.15 javax.serviethttp.........., 222
SRV.15.1 ServletsUsing HTTP Protocol 222

SRV.15.1.1 CooKieo 224

CONTENTS

SRV.15.1.2 HttpServlet 229
SRV.15.1.3 HttpServietRequest 237
SRV.15.1.4 HttpServietRequestWrapper 245
SRV.15.1.5 HttpServletResponse 250
SRV.15.1.6 HttpServlietResponseWrapper 262
SRV.15.1.7 HttpSessionccoviiiiinnnnnnn. 266
SRV.15.1.8 HttpSessionActivationListener 271
SRV.15.1.9 HttpSessionAttributeListener 272
SRV.15.1.10 HttpSessionBindingEvent 272
SRV.15.1.11 HttpSessionBindingListener 274
SRV.15.1.12 HttpSessionContext 275
SRV.15.1.13 HttpSessionEvent 275
SRV.15.1.14 HttpSessionListener 276
SRV.15. 115 HttpUtiIlSo 276
Changessinceversion 2.3 ...t 280

Final: Changesin this document since Proposed Final Draft version3
280

PFD3: Changesin this document since Proposed Final Draft version2
281

PFD2: Changesin this document since Proposed Final Draft 282

PFD: Changesin this document since the Public Draft 283
Changesin thisdocument sinceversion2.3 284
SRV.A Deployment Descriptor Verson2.2 286
SRV.A.1 Deployment Descriptor DOCTYPE 286
SRV.A2 DTD .ot e e 286
SRV.B Deployment Descriptor Verson23 300
SRV.B.1 Deployment Descriptor DOCTYPE 300
SRV.B.2 DTD ..ttt e 300

SRV.C GlOSSarY ..ottt et et e 326

13

CONTENTS 14

Prefacé

This document is the Java™ Servlet Specification, version 2.4. The standard for
the Java Servlet AP is described herein.

SRV.P.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java Serv-
lets, but if questions remain, the following sources may be consulted:

* A referenceimplementation (RI) has been made available which provides abe-
havioral benchmark for this specification. Where the specification leaves im-
plementation of a particular feature open to interpretation, implementors may
use the reference implementation as amodel of how to carry out the intention
of the specification.

« A compatibility test suite (CTS) has been provided for assessing whether im-
plementations meet the compatibility requirements of the Java Serviet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard.

* If further clarification is required, the working group for the Java Servlet AP
under the Java Community Process should be consulted, and isthefinal arbiter
of such issues.

Comments and feedback are welcome, and will be used to improve future ver-
sions.

15

PREFACE

SRV.P.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:
» Web server and application server vendorsthat want to provide servlet engines
that conform to this standard.

 Authoring tool devel opersthat want to support Web applications that conform
to this specification

» Experienced servlet authors who want to understand the underlying mecha-
nisms of servlet technology.

We emphasize that this specification is not a user’s guide for servlet develop-
ers and is not intended to be used as such. References useful for this purpose are
available from http://java.sun.com/products/serviet.

SRV.P.3 API Reference

Chapter SRV.14, “javax.servlet”, includes the full specifications of classes, inter-
faces, and method signatures that define the Java Servliet API, as well as their
accompanying Javadoc™ documentation.

SRV.P.4 Other Java Platform Specifications

The following Java API specifications are referenced throughout this specifica-
tion:

« Java?2 Platform, Enterprise Edition ("J2EE™"), version 1.4
« JavaServer Pages™ ("JSP™"), version 2.0
« JavaNaming and Directory Interface™ ("J.N.D.1.").

These specifications may be found at the Java 2 Platform, Enterprise Edition
Web site: http://java.sun.com/j2ee/.

Final Version

Other Important References 17

SRV.P.5 Other Important References

The following Internet specifications provide information relevant to the devel op-
ment and implementation of the Java Servlet APl and standard servlet engines:

RFC 1630 Uniform Resource Identifiers (URI)

RFC 1738 Uniform Resource Locators (URL)

RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
RFC 1808 Relative Uniform Resource Locators

RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

RFC 2045 MIME Part One: Format of Internet Message Bodies
RFC 2046 MIME Part Two: Media Types

RFC 2047 MIME Part Three: Message Header Extensions for non-ASCI| text
RFC 2048 MIME Part Four: Registration Procedures

RFC 2049 MIME Part Five: Conformance Criteria and Examples
RFC 2109 HTTP State Management Mechanism

RFC 2145 Use and Interpretation of HTTP Version Numbers
RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)*
RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

RFC 2617 HTTP Authentication: Basic and Digest Authentication

Online versions of these RFCs are at http://wwww.ietf.org/rfc/.
The World Wide Web Consortium (http://www.w3.0rg/) is a definitive

source of HTTP related information affecting this specification and its implemen-
tations.

The eXtensible Markup Language (XML) is used for the specification of the

Deployment Descriptors described in Chapter 13 of this specification. More infor-
mation about XML can be found at the following Web sites:

L This reference is mostly tongue-in-cheek although most of the concepts
described in the HTCPCP RFC are relevant to all well-designed Web
servers.

18

PREFACE

http://java.sun.com/xml
http://www.xml.org/

SRV.P.6 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your
commentsto servletapi-feedback@eng.sun.com.

Please note that due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

SRV.P.7 Acknowledgements

The servlet specification has now undergone a number of revisions since the

first version, and the contributors to this specification are many and various. For
the version 2.4, we'd like to thank the members of the JSR154 expert group for
their continued contributions: Nathan Abramson (ATG), Vinod Mehra (BEA),
Kevin Jones (Developmentor), Timothy Julien (HP), Jason Hunter (Individual),
Jon Stephens (Individual), Pier Fumagali (Apache), Karl Adeval (Orion), Hans
Bergsten (Individual), Tim Ampe (Persistence Software), Jason McGee (IBM),
Nic Ferrier (Individual), Rod Johnson (Individual), Bryan Astatt (Oracle), John
Rousseau (Silverstream), Paul Bonafanti (New Atlanta), Karl Moss (Macrome-
dia), Larry Isaacs (SAS), Vishy Kasar (Borland), BV Prasad (Pramati), Bill
DeHora (InterX), Randal Hanford (Boeing), Ciaran Dynes (Ilona), Anavon Klopp
(Sun), Jeff Plager (Sybase), Shawn McMurdo (Lutris), Greg Wilkins (Mort Bay
Consulting).

We'd like to thank the many people from the Java Community who have sent us
feedback on the specification.

Finally we thank fellow colleagues at Sun who have provided feedback and com-
ment, in particular Bill Shannon, Mark Hapner, Craig McClanahan, Eduardo Pele-
gri-Llopart, and Mark Roth for applying continued technical critique and support
of the specification, Umit Yalcinalp for adesign of XML Schema and the extensi-
bility, conversion, and technical support for it, and Debbie Carson for the editorial
work throughout this specification.

Final Version

cuneren DRV 1

Overview

SRV.1.1 What isa Servlet?

A sarvlet is a Java™ technology-based Web component, managed by a container,
that generates dynamic content. Like other Java technology-based components,
servlets are platform-independent Java classes that are compiled to platform-neutral
byte code that can be loaded dynamically into and run by a Javatechnol ogy-enabled
Web server. Containers, sometimes called servlet engines, are Web server exten-
sions that provide serviet functionality. Servlets interact with Web clients via a
request/response paradigm implemented by the servlet container.

SRV.1.2 What isa Servlet Container?

The servlet container is a part of a\Web server or application server that providesthe
network services over which requests and responses are sent, decodes M 1M E-based
requests, and formats MI1M E-based responses. A servlet container also contains and
manages servlets through their lifecycle.

A servlet container can be built into a host Web server, or installed as an add-
on component to a Web Server viathat server’s native extension API. Servlet con-
tainers can also be built into or possibly installed into Web-enabled application
servers.

All servlet containers must support HTTP as a protocol for requests and
responses, but additional request/response-based protocols such as HTTPS
(HTTP over SSL) may be supported. The required versions of the HTTP specifi-
cation that a container must implement are HTTP/1.0 and HTTP/1.1. Because the
container may have a caching mechanism described in RFC2616(HTTP/1.1), it
may modify requests from the clients before delivering them to the servlet, may
modify responses produced by servlets before sending them to the clients, or may

19

20

OVERVIEW

respond to requests without delivering them to the servlet under the compliance
with RFC2616.

A servlet container may place security restrictions on the environment in
which a servlet executes. In a Java2 Platform, Standard Edition (J2SE™, v.1.3 or
above) or Java 2 Platform, Enterprise Edition (J2EE™, v.1.3 or above) environ-
ment, these restrictions should be placed using the permission architecture defined
by the Java 2 platform. For example, high-end application servers may limit the
creation of a Thread object to insure that other components of the container are
not negatively impacted.

J2SE 1.3 is the minimum version of the underlying Java platform with which
servlet containers must be built.

SRV.1.3 An Example
Thefollowing isatypica sequence of events:

1. A client (e.g., a Web browser) accesses a Web server and makesan HTTP re-
quest.

2. The request is received by the Web server and handed off to the servlet con-
tainer. The servlet container can be running in the same process as the host
Web server, in adifferent process on the same host, or on adifferent host from
the Web server for which it processes requests.

3. The servlet container determines which servlet to invoke based on the config-
uration of its servlets, and calls it with objects representing the request and re-
sponse.

4. The servlet uses the request object to find out who the remote user is, what
HTTP pPosT parameters may have been sent as part of this request, and other
relevant data. The serviet performs whatever logic it was programmed with,
and generates datato send back to the client. It sendsthisdataback to the client
viathe response object.

5. Once the servlet has finished processing the request, the servlet container en-
suresthat the responseis properly flushed, and returns control back to the host
Web server.

Final Version

Comparing Serviets with Other Technologies 21

SRV.1.4 Comparing Servletswith Other Technologies

In functionality, servlets lie somewhere between Common Gateway Interface (CGI)
programs and proprietary server extensions such as the Netscape Server AP
(NSAPI) or Apache Modules.

Servlets have the following advantages over other server extension mecha
nisms:

» They are generally much faster than CGI scripts because a different process
model is used.
» They use astandard API that is supported by many Web servers.

» They have all the advantages of the Java programming language, including
ease of development and platform independence.

» They can accessthe large set of APIs available for the Java platform.

SRV.15 Relationship to Java 2 Platform, Enter prise Edition

The Java Servlet APl v.2.4 isarequired API of the Java 2 Platform, Enterprise Edi-
tion, v.1.4%. Servlet containers and servlets deployed into them must meet additional
requirements, described in the J2EE specification, for executing in a J2EE environ-
ment.

SRV.1.6 Compatibility with Java Servlet Specification
Version 2.3

This section describes the compatibility issuesintroduced in this version of the spec-
ification.
SRV.1.6.1 HttpSessionListener.sessionDestr oyed

In the previous versions of the specification, this method was defined as:
Notification that a session was invalidated.

Asof Version 2.4, this method is changed to:

1 Please see the Java™ 2 Platform, Enterprise Edition specification avail-
ableat http://java.sun.com/j2ee/

22 OVERVIEW

Notification that a session is about to be invalidated

so that it notifies befor e the session invalidation. If the code assumed the pre-
vious behavior, it must be modified to match the new behavior.

SRV.1.6.2 ServletRequest methods getRemotePort, getL ocalName,
getL ocalAddr, getL ocaPort

The following methods are added in the ServletRequest interface in this version of
the specification.

public int getRemotePort()
Returns the Internet Protocol (1P) source port of the client or last proxy
that sent the request.

public javalang.String getL ocalName()
Returns the host name of the Internet Protocol (1P) interface
on which the request was received.

public javalang.String getL ocal Addr()
Returns the Internet Protocol (1P) address of the interface
on which the request was received.

public int getL ocal Port()
Returns the Internet Protocol (1P) port number of the interface
on which the request was received.

Be aware that this addition causes source incompatibility in some cases, such

as when a devel oper implements the ServletRequest interface. In this case, ensure
that all the new methods are implemented.

Final Version

cuneren DRV .2

The Servlet | nterfacé

The servlet interface isthe central abstraction of the Java Servlet API. All servlets
implement this interface either directly, or more commonly, by extending a class
that implements the interface. The two classes in the Java Servlet API that imple-
ment the Servilet interface are GenericServiet and HttpServiet. For most pur-
poses, Developerswill extend HttpServiet to implement their serviets.

SRV.2.1 Request Handling M ethods

The basic serviet interface defines a service method for handling client requests.
Thismethod is called for each request that the servlet container routes to an instance
of aserviet.

The handling of concurrent requests to a Web application generally requires
that the Web Devel oper design servlets that can deal with multiple threads execut-
ing within the service method at a particular time.

Generally the Web container handles concurrent requests to the same servlet
by concurrent execution of the service method on different threads.

SRV.211 HTTP Specific Request Handling M ethods

The HttpServlet abstract subclass adds additional methods beyond the basic
Servlet interface that are automatically called by the service method in the
HttpServiet classto aid in processing HTTP-based requests. These methods are:

* doGet for handling HTTP GET requests
* doPost for handling HTTP POST requests
* doPut for handling HTTP PUT requests

23

24

THE SERVLET INTERFACE

* doDelete for handling HT TP DELETE requests
* doHead for handling HTTP HEAD requests
* doOptions for handling HTTP OPTIONS requests

* doTrace for handling HTTP TRACE requests

Typically when developing HTTP-based servlets, a Servlet Developer will
only concern himself with the doGet and doPost methods. The other methods are
considered to be methods for use by programmers very familiar with HTTP pro-
gramming.

SRV.2.1.2 Additional M ethods

The doPut and doDelete methods alow Servliet Developers to support HTTP/1.1
clients that employ these features. The doHead method in HttpServiet isaspecial-
ized form of the doGet method that returns only the headers produced by the doGet
method. The doOptions method responds with which HTTP methods are supported
by the serviet. The doTrace method generates aresponse containing al instances of
the headers sent in the TRACE request.

SRV.2.1.3 Conditional GET Support

The HttpServilet interface defines the getLastModi fied method to support condi-
tional GET operations. A conditional GET operation requests aresource be sent only if
it has been modified since a specified time. In appropriate situations, implementa:
tion of this method may aid efficient utilization of network resources.

SRV.2.2 Number of Instances

The servlet declaration which is part of the deployment descriptor of the Web appli-
cation containing the servlet, as described in Chapter SRV.13, “Deployment
Descriptor”, controls how the servlet container provides instances of the serviet.

For a servlet not hosted in a distributed environment (the default), the servlet
container must use only one instance per servlet declaration. However, for a serv-
let implementing the SingleThreadModel interface, the servlet container may
instantiate multiple instances to handle a heavy request load and serialize requests
to a particular instance.

Final Version

Servlet Life Cycle

In the case where a servlet was deployed as part of an application marked in
the deployment descriptor as distributable, a container may have only one instance
per servlet declaration per Java Virtua Machine (JVM™). However, if the servlet
in a distributable application implements the SingleThreadModel interface, the
container may instantiate multiple instances of that serviet in each JVM of the
container.

SRV.2.2.1 Note About The Single Thread M odel

The use of the SingleThreadModel interface guarantees that only one thread at a
time will execute in a given serviet instance's service method. It is important to
note that this guarantee only applies to each servlet instance, since the container
may choose to pool such objects. Objects that are accessible to more than one serv-
let instance at atime, such asinstances of HttpSession, may be available at any par-
ticular time to multiple servlets, including those that implement
SingleThreadModel.

It is recommended that a devel oper take other means to resolve those issues instead
of implementing thisinterface, such as avoiding the usage of an instance variable or
synchronizing the block of the code accessing those resources. The
SingleThreadModel Interfaceis deprecated in thisversion of the specification.

SRV.2.3 Servlet Life Cycle

A servlet is managed through awell defined life cycle that defines how it is loaded
and instantiated, isinitialized, handles requests from clients, and is taken out of ser-
vice. This life cycle is expressed in the APl by the init, service, and destroy
methods of the javax.serviet.Serviet interface that all servliets must implement
directly or indirectly through the GenericServiet Or HttpServiet abstract classes.

SRVv.23.1 L oading and Instantiation

The servlet container is responsible for loading and instantiating servlets. The load-
ing and instantiation can occur when the container is started, or delayed until the
container determines the servlet is needed to service arequest.

When the servlet engine is started, needed servlet classes must be located by
the servlet container. The servlet container loads the servlet class using normal
Java class loading facilities. The loading may be from alocal file system, aremote
file system, or other network services.

After loading the Serviet class, the container instantiates it for use.

25

26

THE SERVLET INTERFACE

SRV.2.3.2 Initialization

After the servlet object isinstantiated, the container must initialize the servlet before
it can handle requests from clients. Initialization is provided so that a servlet can
read persistent configuration data, initialize costly resources (such as JDBC™ API-
based connections), and perform other one-time activities. The container initializes
the servlet instance by calling the init method of the Servilet interface with a
unique (per servlet declaration) object implementing the ServletConfig interface.
This configuration object allows the servlet to access name-value initialization
parameters from the Web application’s configuration information. The configuration
object also gives the servlet access to an object (implementing the ServletContext
interface) that describes the serviet's runtime environment. See Chapter SRV.3,
“Servlet Context” for more information about the ServietContext interface.

SRV.2.3.2.1 Error Conditions on I nitialization

During initidization, the servlet instance can throw an UnavailableException Or @
ServletException. In this case, the servlet must not be placed into active service
and must be released by the servlet container. The destroy method is not called asit
is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container after a
failed initialization. The exception to this rule is when an UnavailableException
indicates a minimum time of unavailability, and the container must wait for the
period to pass before creating and initializing a new servlet instance.

SRV.2.3.2.2 Tool Considerations

The triggering of static initialization methods when a tool |oads and introspects a
Web application is to be distinguished from the calling of the init method. Devel-
opers should not assume a servlet isin an active container runtime until the init
method of the serviet interface is called. For example, a servlet should not try to
establish connections to databases or Enterprise JavaBeans™ containers when only
dtatic (class) initialization methods have been invoked.

SRV.2.3.3 Request Handling

After aservlet isproperly initialized, the servlet container may useit to handle client
requests. Requests are represented by request objects of type ServietRequest. The
servlet fills out response to requests by calling methods of a provided object of type
ServletResponse. These objects are passed as parameters to the service method of
the Serviet interface.

Final Version

Servlet Life Cycle

In the case of an HTTP request, the objects provided by the container are of
typesHttpServletRequest and HttpServietResponse.

Note that a servlet instance placed into service by a servlet container may han-
dle no requests during its lifetime.

SRV.2.3.3.1 Multithreading I ssues

A servlet container may send concurrent requests through the service method of
the servlet. To handle the requests, the Servlet Developer must make adequate provi-
sionsfor concurrent processing with multiple threadsin the service method.

Although it is not recommended, an aternative for the Developer isto imple-
ment the SingleThreadModel interface which requires the container to guarantee
that there is only one request thread at a time in the service method. A serviet
container may satisfy this requirement by serializing requests on a servlet, or by
maintaining a pool of servlet instances. If the servlet is part of a Web application
that has been marked as distributable, the container may maintain a pool of servlet
instances in each VM that the application is distributed across.

For servlets not implementing the SingleThreadModel interface, if the
service method (or methods such as doGet or doPost which are dispatched to the
service method of the HttpServiet abstract class) has been defined with the
synchronized keyword, the servlet container cannot use the instance pool
approach, but must serialize requests through it. It is strongly recommended that
Developers not synchronize the service method (or methods dispatched to it) in
these circumstances because of detrimental effects on performance.

SRV.2.3.3.2 Exceptions During Request Handling

A servlet may throw either a ServletException Or an UnavailableException dur-
ing the service of arequest. A ServietException signals that some error occurred
during the processing of the request and that the container should take appropriate
measures to clean up the request.

An UnavailableException signalsthat the servlet is unable to handle requests
either temporarily or permanently.

If a permanent unavailability is indicated by the unavailableException, the
servlet container must remove the servlet from service, cal its destroy method,
and release the servlet instance. Any requests refused by the container by that
cause must be returned with a SC_NOT_FOUND (404) response.

If temporary unavailability is indicated by the UnavailableException, the
container may choose to not route any requests through the servlet during the time
period of the temporary unavailability. Any requests refused by the container dur-
ing this period must be returned with a SC_SERVICE_UNAVAILABLE (503) response

27

28

THE SERVLET INTERFACE

status along with a Retry-After header indicating when the unavailability will
terminate.

The container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent,
thereby removing a servlet that throws any UnavailableException from service.

SRV.2.3.3.3 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread
safe. This means that they should only be used within the scope of the request han-
dling thread.

References to the request and response objects should not be given to objects
executing in other threads as the resulting behavior may be nondeterministic. If
the thread created by the application uses the container-managed objects, such as
the request or response object, those objects must be accessed only within the
servlet’s service life cycle and such thread itself should have alife cycle within
the life cycle of the servlet's service method because accessing those objects
after the service method ends may cause undeterministic problems. Be aware
that the request and response objects are not thread safe. If those objects were
accessed in the multiple threads, the access should be synchronized or be done
through the wrapper to add the thread safety, for instance, synchronizing the call
of the methods to access the request attribute, or using a local output stream for
the response object within athread.

SRV.2.3.4 End of Service

The servlet container is not required to keep a serviet loaded for any particular
period of time. A servlet instance may be kept active in a servlet container for a
period of milliseconds, for the lifetime of the servlet container (which could be a
number of days, months, or years), or any amount of time in between.

When the servlet container determines that a servlet should be removed from
service, it callsthe destroy method of the Servilet interface to allow the servlet to
release any resources it is using and save any persistent state. For example, the
container may do this when it wants to conserve memory resources, or when it is
being shut down.

Before the servlet container cals the destroy method, it must allow any
threads that are currently running in the service method of the servlet to complete
execution, or exceed a server-defined time limit.

Final Version

Serviet Life Cycle 29

Once the destroy method is called on a servlet instance, the container may
not route other requests to that instance of the servlet. If the container needs to
enable the servlet again, it must do so with a new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the
servlet instance so that it is eligible for garbage collection.

30

Final Version

THE SERVLET INTERFACE

cuneren DRV .3

Serviet Contexf

SRV.3.1 I ntroduction to the ServletContext | nterface

The servletContext interface defines a servlet’s view of the Web application
within which the servlet is running. The Container Provider is responsible for
providing an implementation of the ServietContext interfacein the serviet
container. Using the ServietContext oObject, aservlet can log events, obtain URL
references to resources, and set and store attributes that other servletsin the context
can access.

A ServletContext isrooted at a known path within a Web server. For
example, a servlet context could be located at http://www.mycorp.com/catalog.
All requeststhat begin with the /catalog request path, known as the context path,
are routed to the Web application associated with the ServletContext.

SRV.3.2 Scope of a ServletContext | nterface

Thereis one instance object of the ServietContext interface associated with each
Web application deployed into a container. In cases where the container is
distributed over many virtual machines, a Web application will have an instance of
the ServletContext for each VM.

Servletsin a container that were not deployed as part of a Web application are
implicitly part of a“default” Web application and have a default ServletContext.
In adistributed container, the default ServietContext is non-distributable and
must only exist in one VM.

31

32

SERVLET CONTEXT

SRV.3.3 I nitialization Parameters

The following methods of the ServietContext interface allow the servlet access to
context initialization parameters associated with a Web application as specified by
the Application Developer in the deployment descriptor:

* getInitParameter

* getInitParameterNames

Initialization parameters are used by an Application Devel oper to convey
setup information. Typical examples are a Webmaster's e-mail address, or the
name of a system that holds critical data.

SRV.34 Context Attributes

A servlet can bind an object attribute into the context by name. Any attribute bound
into a context is available to any other servlet that is part of the same Web
application. The following methods of ServietContext interface allow accessto
this functionality:

* setAttribute
* getAttribute
* getAttributeNames

* removeAttribute

SRV.34.1 Context Attributesin a Distributed Container

Context attributes are local to the VM in which they were created. This prevents
ServletContext atributes from being a shared memory storein adistributed
container. When information needs to be shared between servletsrunning in a
distributed environment, the information should be placed into a session (See
Chapter SRV.7, “Sessions’), stored in a database, or set in an Enterprise
JavaBeans™ component.

Final Version

Resources 33

SRV.3.5 Resources

The ServletContext interface provides direct access only to the hierarchy of static
content documents that are part of the Web application, including HTML, GIF, and
JPEG files, viathe following methods of the ServietContext interface:

* getResource

* getResourceAsStream

The getResource and getResourceAsStream methods take a String with a
leading “/” as an argument that gives the path of the resource relative to the root of
the context. This hierarchy of documents may exist in the server’sfile system, ina
Web application archive file, on aremote server, or at some other |ocation.

These methods are not used to obtain dynamic content. For example, in a
container supporting the JavaServer Pages™ specification’, amethod call of the
form getResource("/index.jsp") would return the JSP source code and not the
processed output. See Chapter SRV.8, “Dispatching Requests’ for more
information about accessing dynamic content.

Thefull listing of the resourcesin the Web application can be accessed using
the getResourcePaths(String path) method. Thefull details on the semantics of
this method may be found in the API documentation in this specification.

SRV.3.6 Multiple Hosts and Servlet Contexts

Web servers may support multiple logical hosts sharing one IP address on a server.
This capability is sometimes referred to as "virtual hosting”. In this case, each
logical host must have its own servlet context or set of servlet contexts. Servlet
contexts can not be shared across virtua hosts.

SRV.3.7 Reloading Consider ations

Although a Container Provider implementation of a class reloading scheme for ease
of development is not required, any such implementation must ensure that all
servlets, and classes that they may use?, are loaded in the scope of asingle class
loader. This requirement is needed to guarantee that the application will behave as

“The JavaServer Pages™ specification can be found at http://

java.sun.com/products/jsp

SERVLET CONTEXT

expected by the Developer. As adevelopment aid, the full semantics of notification
to session hinding listeners should be supported by containers for usein the
monitoring of session termination upon class reloading.

Previous generations of containers created new class loadersto load a serviet,
distinct from class |oaders used to load other servlets or classes used in the servlet
context. This could cause object references within a servlet context to point at
unexpected classes or objects, and cause unexpected behavior. The requirement is
needed to prevent problems caused by demand generation of new class loaders.

SRV.3.7.1 Temporary Working Directories

A temporary storage directory isrequired for each servlet context. Servlet
containers must provide a private temporary directory for each servlet context, and
make it available viathe javax.serviet.context.tempdir context atribute. The
objects associated with the attribute must be of type java.io.File.

The requirement recognizes a common convenience provided in many servlet
engine implementations. The container is not required to maintain the contents of
the temporary directory when the servlet container restarts, but is required to
ensure that the contents of the temporary directory of one servlet context is not
visible to the servlet contexts of other Web applications running on the servlet
container.

% An exception is system classesthat the servlet may usein adifferent class
loader.

Final Version

e OV 4

The Requesf

Therequest object encapsulates all information from the client request. Inthe HTTP
protocal, thisinformation is transmitted from the client to the server inthe HTTP
headers and the message body of the request.

SRV .4.1 HTTP Protocol Parameters

Request parameters for the servlet are the strings sent by the client to a servlet
container as part of itsrequest. When the request isan HttpServletRequest Object,
and conditions set out in “When Parameters Are Available” on page 36 are met, the
container populates the parameters from the URI query string and POST-ed data.

The parameters are stored as a set of name-value pairs. Multiple parameter
values can exist for any given parameter name. The following methods of the
ServletRequest interface are available to access parameters:

* getParameter
* getParameterNames

* getParameterValues
» getParameterMap

The getParameterValues method returns an array of String objects
containing all the parameter values associated with a parameter name. The value
returned from the getParameter method must be the first value in the array of
String objectsreturned by getParameterValues. The getParameterMap method
returnsajava.util.Map of the parameter of the request, which contains names as
keys and parameter values as map val ues.

Data from the query string and the post body are aggregated into the request
parameter set. Query string datais presented before post body data. For example,

35

36

THE REQUEST

if arequest is made with aquery string of a=he11o and a post body of
a=goodbye&a=wor1d, the resulting parameter set would be ordered a=(hel1o,
goodbye, world).

Path parametersthat are part of a GET request (asdefined by HTTP 1.1) are not
exposed by these APIs. They must be parsed from the String valuesreturned by the
getRequestURI method or the getPathInfo method.

SRV.4.1.1 When Parameters Are Available

The following are the conditions that must be met before post form data will
be populated to the parameter set:

1. Therequestisan HTTP or HTTPS request.
2. The HTTP method is POST.
3. The content type is app1ication/x-www-form-urlencoded.

4. The servlet hasmade aninitial call of any of the getParameter family of meth-
ods on the request object.

If the conditions are not met and the post form datais not included in the
parameter set, the post data must still be available to the servlet viathe request
object’s input stream. If the conditions are met, post form datawill no longer be
available for reading directly from the request object’s input stream.

SRV .4.2 Attributes

Attributes are objects associated with arequest. Attributes may be set by the
container to expressinformation that otherwise could not be expressed viathe AP,
or may be set by a servlet to communicate information to another servlet (viathe
RequestDispatcher). Attributes are accessed with the following methods of the
ServletRequest interface:

* getAttribute
* getAttributeNames
* setAttribute

Only one attribute value may be associated with an attribute name.

Final Version

Headers 37

Attribute names beginning with the prefixes of “java.” and “javax.” are
reserved for definition by this specification. Similarly, attribute names beginning
with the prefixes of “sun.”, and “com.sun.” arereserved for definition by Sun
Microsystems. It is suggested that all attributes placed in the attribute set be
named in accordance with the reverse domain name convention suggested by the
Java Programming Language Specification® for package naming.

SRV .4.3 Headers

A servlet can access the headers of an HT TP request through the following methods
of theHttpServletRequest interface:

* getHeader

* getHeaders
« getHeaderNames

The getHeader method returns a header given the name of the header. There can
be multiple headers with the same name, e.g. Cache-Control headers, inan HTTP
request. If there are multiple headers with the same name, the getHeader method
returns the first header in the request. The getHeaders method allows access to all
the header values associated with a particular header name, returning an
Enumeration Of String objects.

Headers may contain String representations of int or Date data. The
following convenience methods of the HttpServletRequest interface provide
access to header datain aone of these formats:

* getIntHeader
* getDateHeader

If the getIntHeader method cannot translate the header valueto an int, a
NumberFormatException isthrown. If the getDateHeader method cannot trandlate
the header to aDate object, an I11egalArgumentException isthrown.

The Java Programming Language Specification is available at http://
java.sun.com/docs/books/j1s

38

THE REQUEST

SRV.4.4 Request Path Elements

The request path that leads to a servlet servicing arequest is composed of many
important sections. The following elements are obtained from the request URI path
and exposed via the request object:

» Context Path: The path prefix associated with the ServletContext that this
servletisapart of. If this context isthe “default” context rooted at the base of
the Web server’s URL name space, this path will be an empty string. Other-
wise, if the context isnot rooted at the root of the server’ s name space, the path
startswith @’ /’ character but does not end witha’ /’ character.

» Servlet Path: The path section that directly corresponds to the mapping
which activated this request. This path startswitha’ /’ character except inthe
case where the request is matched with the */*’ pattern, in which caseitisan
empty string.

» Pathlnfo: The part of the request path that is not part of the Context Path or
the Servlet Path. It is either null if thereis no extra path, or isastring with a
leading ‘/’.

The following methods exist in the HttpServletRequest interface to access
this information:

* getContextPath

* getServletPath
e getPathInfo

It isimportant to note that, except for URL encoding differences between the
request URI and the path parts, the following equation is aways true:

requestURI = contextPath + servletPath + pathInfo

To give afew examples to clarify the above points, consider the following:

Table 1. Example Context Set Up

Cont ext Path /catalog

Servl et Mappi ng Pattern: /Tawn/*
Servlet: LawnServiet

Servl et Mappi ng Pattern: /garden/*
Servlet: GardenServiet

Final Version

Path Trandation Methods

Table 1: Example Context Set Up

Servl et Mappi ng Pattern: *.jsp
Servlet: JSPServlet

The following behavior is observed:

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /Tawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null

SRV .45 Path Trandation Methods

There are two convenience methods in the Ap1 which allow the Devel oper to obtain
the file system path equivalent to a particular path. These methods are:

« ServletContext.getRealPath
* HttpServletRequest.getPathTranslated

The getRealPath method takes a String argument and returnsa String
representation of afile on the local file system to which a path corresponds. The

getPathTranslated method computesthe real path of the pathInfo of the request.

In situations where the servlet container cannot determine avalid file path for
these methods, such as when the Web application is executed from an archive, on
aremote file system not accessible locally, or in a database, these methods must
return null.

SRV .4.6 Cookies

TheHttpServletRequest interface providesthe getCookies method to obtain an
array of cookiesthat are present in the request. These cookies are data sent from the

39

40

THE REQUEST

client to the server on every request that the client makes. Typically, the only
information that the client sends back as part of a cookie is the cookie name and the
cookie value. Other cookie attributes that can be set when the cookie is sent to the
browser, such as comments, are not typicaly returned.

SRV 4.7 SSL Attributes

If arequest has been transmitted over a secure protocol, such asHTTPS, this
information must be exposed viathe isSecure method of the ServletRequest
interface. The Web container must expose the following attributes to the serviet
programme:

Table 3: Protocol Attributes

Attribute Attribute Name Java Type
ci pher suite javax.servlet.request.cipher_suite String
bit size of the algo- javax.servlet.request.key_size Integer

rithm

If thereisan SSL certificate associated with the request, it must be exposed by
the servlet container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible viaaServletRequest
attribute of javax.servlet.request.X509Certificate.

The order of thisarray is defined as being in ascending order of trust. Thefirst
certificate in the chain is the one set by the client, the next is the one used to
authenticate the first, and so on.

SRV .4.8 I nter nationalization

Clients may optionaly indicateto a Web server what language they would prefer the
response be given in. Thisinformation can be communicated from the client using
the Accept-Language header aong with other mechanisms described inthe HT TP/
1.1 specification. The following methods are provided in the ServietRequest
interface to determine the preferred locale of the sender:

Final Version

Request data encoding 41

* getlocale

* getlLocales

The getLocale method will return the preferred locale for which the client
wants to accept content. See section 14.4 of RFC 2616 (HTTP/1.1) for more
information about how the Accept-Language header must interpreted to determine
the preferred language of the client.

The getLocales method will return an Enumeration of Locale objects
indicating, in decreasing order starting with the preferred locale, the local es that
are acceptable to the client.

If no preferred locale is specified by the client, the locale returned by the
getLocale method must be the default locale for the servlet container and the
getlLocales method must contain an enumeration of asingle Locale element of
the default locale.

SRV.4.9 Request data encoding

Currently, many browsers do not send achar encoding quaifier with the Content-
Type header, leaving open the determination of the character encoding for reading
HTTP requests. The default encoding of a request the container usesto create the
request reader and parse POST data must be “1S0-8859-1" if none has been
specified by the client request. However, in order to indicate to the devel oper in this
case the failure of the client to send a character encoding, the container returns null
from the getCharacterEncoding method.

If the client hasn’t set character encoding and the request datais encoded with
adifferent encoding than the default as described above, breakage can occur. To
remedy this situation, a new method setCharacterEncoding(String enc) has
been added to the ServietRequest interface. Developers can override the
character encoding supplied by the container by calling this method. It must be
called prior to parsing any post data or reading any input from the request. Calling
this method once data has been read will not affect the encoding.

SRV.4.10 Lifetime of the Request Object

Each request object isvalid only within the scope of aservlet's service method, or
within the scope of afilter's doFi1ter method. Containers commonly recycle
request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining referencesto request objects

42

THE REQUEST

outside the scope described above is not recommended asit may have indeterminate
results.

Final Version

cuneren ORV.O

The Responsé

The response object encapsulates al information to be returned from the server to
the client. Inthe HTTP protocol, this information is transmitted from the server to
the client either by HTTP headers or the message body of the request.

SRV .5.1 Buffering

A servlet container is allowed, but not required, to buffer output going to the client
for efficiency purposes. Typically serversthat do buffering make it the default, but
alow servletsto specify buffering parameters.

The following methods in the ServletResponse interface allow a serviet to
access and set buffering information:

* getBufferSize
* setBufferSize
* isCommitted

* reset

* resetBuffer

¢ flushBuffer

These methods are provided on the ServletResponse interface to allow
buffering operations to be performed whether the serviet isusing a
ServletOutputStream OF aWriter.

The getBufferSize method returns the size of the underlying buffer being
used. If no buffering is being used, this method must return the int value of o
(zero).

43

THE RESPONSE

The servlet can request a preferred buffer size by using the setBufferSize
method. The buffer assigned is not required to be the size requested by the servlet,
but must be at least as large as the size requested. This allows the container to
reuse a set of fixed size buffers, providing alarger buffer than requested if
appropriate. The method must be called before any content is written using a
ServletOutputStream Or Writer. If any content has been written or the response
object has been committed, this method must throw an I17egalStateException.

The isCommi tted method returns a boolean value indicating whether any
response bytes have been returned to the client. The flushBuffer method forces
content in the buffer to be written to the client.

The reset method clears datain the buffer when the response is not
committed. Headers and status codes set by the servlet prior to the reset call must
be cleared aswell. The resetBuffer method clears content in the buffer if the
response is not committed without clearing the headers and status code.

If the response is committed and the reset or resetBuffer method is called,
an I1legalStateFxception Must be thrown. The response and its associated
buffer will be unchanged.

When using a buffer, the container must immediately flush the contents of a
filled buffer to the client. If thisisthefirst datais sent to the client, the responseis
considered to be committed.

SRV .5.2 Headers

A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

* setHeader
¢ addHeader

The setHeader method sets a header with a given name and value. A previous
header is replaced by the new header. Where a set of header values exist for the
name, the values are cleared and replaced with the new value.

The addHeader method adds a header value to the set with a given name. If
there are no headers already associated with the name, anew set is created.

Headers may contain data that represents an int or abate object. The
following convenience methods of the HttpServletResponse interface allow a
servlet to set a header using the correct formatting for the appropriate data type:

Final Version

Convenience Methods

¢ setIntHeader
* setDateHeader
* addIntHeader
¢ addDateHeader

To be successfully transmitted back to the client, headers must be set before
the response is committed. Headers set after the response is committed will be
ignored by the servlet container.

Servlet programmers are responsible for ensuring that the Content-Type
header is appropriately set in the response object for the content the servlet is
generating. The HTTP 1.1 specification does not require that this header be set in
an HTTPresponse. Servlet containers must not set adefault content type when the
servlet programmer does not set the type.

It is recommended that containers use the X-Powered-By HTTP header to
publish its implementation information. The field value should consist of one or
more implementation types, such as"Serviet/2.4". Optionaly, the
supplementary information of the container and the underlying Javaplatform can
be added after the implementation type within parentheses. The container should
be configurable to suppress this header.

Here's the examples of this header.

X-Powered-By: Servlet/2.4
X-Powered-By: Servlet/2.4 JSP/2.0 (Tomcat/5.0 JRE/1.4.1)

SRV .5.3 Convenience M ethods
The following convenience methods exist in the HttpServietResponse interface:

* sendRedirect

* sendError

The sendRedi rect method will set the appropriate headers and content body
to redirect the client to adifferent URL. It islegal to call this method with a
relative URL path, however the underlying container must trandate the relative
path to afully qualified URL for transmission back to the client. If apartial URL
is given and, for whatever reason, cannot be converted into avalid URL, then this
method must throw an I11egalArgumentException.

The sendError method will set the appropriate headers and content body for
an error message to return to the client. An optional String argument can be

45

46

THE RESPONSE

provided to the sendError method which can be used in the content body of the
error.

These methods will have the side effect of committing the responsg, if it has
not already been committed, and terminating it. No further output to the client
should be made by the servlet after these methods are called. If dataiswritten to
the response after these methods are called, the dataisignored.

If data has been written to the response buffer, but not returned to the client
(i.e. the response is not committed), the data in the response buffer must be
cleared and replaced with the data set by these methods. If the responseis
committed, these methods must throw an I11egalStateException.

SRV .54 I nter nationalization

Servlets should set the locale and the character encoding of aresponse. Thelocaeis
set using the ServletResponse.setLocale method. The method can be called
repeatedly; but calls made after the response is committed have no effect. If the
servlet does not set the locale before the page is committed, the container’s default
localeis used to determine the response’slocale, but no specification is made for the
communication with aclient, such as Content-Language header in the case of
HTTPR.

<locale-encoding-mapping-Tist>
<locale-encoding-mapping>
<locale>ja</locale>
<encoding>Shift_JIS</encoding>
</locale-encoding-mapping>
</locale-encoding-mapping-Tist>

If the element does not exist or does not provide amapping, setLocale USESa
container dependent mapping. The setCharacterEncoding, setContentType, and
setlLocale methods can be called repeatedly to change the character encoding.
Calls made after the servlet response’s getwriter method has been called or after
the response is committed have no effect on the character encoding. Callsto
setContentType Set the character encoding only if the given content type string
provides avalue for the charset attribute. Callsto setLocale Set the character
encoding only if neither setCharacterEncoding NOr setContentType has set the
character encoding before.

Final Version

Closure of Response Object 47

If the servlet does not specify a character encoding before the getwriter
method of the ServietResponse interfaceis called or the response is committed,
the default 1S0-8859-1 is used.

Containers must communicate the locale and the character encoding used for
the servlet response’s writer to the client if the protocol in use provides away for
doing so. In the case of HTTP, the locale is communicated viathe Content-
Language header, the character encoding as part of the Content-Type header for
text mediatypes. Note that the character encoding cannot be communicated via
HTTP headersif the servlet does not specify a content type; however, it is still
used to encode text written viathe servlet response’s writer.

SRV.5.5 Closure of Response Object

When aresponseis closed, the container must immediately flush al remaining
content in the response buffer to the client. The following eventsindicate that the
servlet has satisfied the request and that the response object isto be closed:

The termination of the service method of the servlet.

The amount of content specified in the setContentLength method of the re-
sponse has been written to the response.

The sendError method is called.

The sendRedirect method is called.

SRV.5.6 Lifetime of the Response Object

Each response object is valid only within the scope of a servlet’s service
method, or within the scope of a filter's doFilter method. Containers
commonly recycle response objects in order to avoid the performance
overhead of response object creation. The developer must be aware that
maintaining references to response objects outside the scope described above
may lead to non-deterministic behavior.

48

Final Version

THE RESPONSE

cuneren DRV .0

Filtering

Filters are Java components that allow on the fly transformations of payload and
header information in both the request into a resource and the response from a
resource

This chapter describes the Java Servlet v.2.4 API classes and methods that
provide alightweight framework for filtering active and static content. It describes
how filters are configured in aWeb application, and conventions and semanticsfor
their implementation.

API documentation for servlet filtersis provided in Chapter SRV.14,
“javax.servlet”. The configuration syntax for filtersis given by the deployment
descriptor schemain Chapter SRV.13, “Deployment Descriptor”. The reader
should use these sources as references when reading this chapter.

SRV.6.1 What isafilter?

A filter is areusable piece of code that can transform the content of HT TP requests,
responses, and header information. Filters do not generally create a response or
respond to arequest as servlets do, rather they modify or adapt the requests for a
resource, and maodify or adapt responses from aresource.

Filters can act on dynamic or static content. For the purposes of this chapter,
dynamic and static content are referred to as Web resources.

Among the types of functionality available to the developer needing to use
filters are the following:

» The accessing of aresource before arequest to it isinvoked.

» The processing of the request for aresource before it is invoked.

49

50

FILTERING

» The modification of request headers and data by wrapping the request in cus-
tomized versions of the request object.

» The modification of response headers and response data by providing custom-
ized versions of the response object.

» Theinterception of an invocation of aresource after its call.

» Actionson aservlet, on groups of servlets, or static content by zero, one, or
more filtersin a specifiable order.

SRV.6.1.1 Examples of Filtering Components

» Authentication filters

* Logging and auditing filters

* Image conversion filters

» Datacompression filters

» Encryption filters

» Tokenizing filters

» Filtersthat trigger resource access events
o XSL/T filters that transform XML content
* MIME-type chain filters

» Cachingfilters

SRV.6.2 Main Concepts

The main concepts of thisfiltering model are described in this section.

The application developer creates afilter by implementing the
javax.servlet.Filter interface and providing a public constructor taking no
arguments. The classis packaged in the Web Archive along with the static content
and servlets that make up the Web application. A filter is declared using the <fi1-
ter> element in the deployment descriptor. A filter or collection of filters can be
configured for invocation by defining <fi1ter-mapping> elementsin the
deployment descriptor. Thisis done by mapping filters to a particular servlet by
the servlet’s logical name, or mapping to a group of servlets and static content
resources by mapping afilter to a URL pattern.

Final Version

Main Concepts

SRV.6.2.1 Filter Lifecycle

After deployment of the Web application, and before a request causes the container
to access a Web resource, the container must locate the list of filters that must be
applied to the Web resource as described below. The container must ensure that it
hasinstantiated afilter of the appropriate classfor each filter inthelist, and called its
init(FilterConfig config) method. Thefilter may throw an exception to indicate
that it cannot function properly. If the exception is of type UnavailableException,
the container may examinethe isPermanent attribute of the exception and may
choose to retry thefilter at some later time.

Only oneinstance per <filter> declaration in the deployment descriptor is
instantiated per Java Virtual Machine (JVM™) of the container. The container
provides thefilter config as declared in the filter's deployment descriptor, the
referenceto the ServletContext for the Web application, and the set of
initialization parameters.

When the container receives an incoming regquest, it takes the first filter
instance in thelist and callsits doFi1ter method, passing in the ServletRequest
and ServletResponse, and areference to the FilterChain object it will use.

The doFiT1ter method of afilter will typically be implemented following this
or some subset of the following pattern:

Step 1: The method examines the request’s headers.

Step 2: The method may wrap the request object with a customized
implementation of ServietRequest Or HttpServletRequest in order to
modify request headers or data.

Step 3: The method may wrap the response object passed in to its doFilter
method with a customized implementation of ServletResponse Or
HttpServietResponse to modify response headers or data.

Step 4: The filter may invoke the next entity in the filter chain. The next
entity may be another filter, or if the filter making the invocation is the last
filter configured in the deployment descriptor for this chain, the next entity
is the target Web resource. The invocation of the next entity is effected by
calling the doFi1ter method on the FilterChain object, and passing in the
request and response with which it was called or passing in wrapped
versions it may have created.

Thefilter chain’s implementation of the doFi1ter method, provided by the
container, must locate the next entity in thefilter chain and invoke its
doFiTter method, passing in the appropriate request and response abjects.

Alternatively, thefilter chain can block the request by not making the call to

51

52

FILTERING

invoke the next entity, leaving the filter responsible for filling out the response
object.

Step 5: After invocation of the next filter in the chain, the filter may
examine response headers.

Step 6: Alternatively, the filter may have thrown an exception to indicate
an error in processing. If the filter throws an UnavailableException during
its doFilter processing, the container must not attempt continued
processing down the filter chain. It may choose to retry the whole chain at
a later time if the exception is not marked permanent.

Step 7: When the last filter in the chain has been invoked, the next entity
accessed is the target servlet or resource at the end of the chain.

Step 8: Before afilter instance can be removed from service by the
container, the container must first call the destroy method on the filter to
enable the filter to release any resources and perform other cleanup
operations.

SRV.6.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping arequest or responsein
order that it can override behavior to perform afiltering task. In this model, the
developer not only hasthe ability to override existing methods on the request and
response objects, but to provide new API suited to aparticular filtering task to a
filter or target web resource down the chain. For example, the devel oper may wishto
extend the response object with higher level output objects that the output stream or
the writer, such as API that allows DOM objects to be written back to the client.

In order to support this style of filter the container must support the following
requirement. When afilter invokes the doFi1ter method on the container’s filter
chain implementation, the container must ensure that the request and response
object that it passesto the next entity in the filter chain, or to the target web
resource if the filter was the last in the chain, is the same object that was passed
into the doF1i1ter method by the calling filter.

The same requirement of wrapper object identity appliesto the callsfrom a
servlet or afilter to RequestDispatcher.forward or RequestDispatcher.include,
when the caller wraps the request or response objects. In this case, the request and
response objects seen by the called servlet must be the same wrapper objects that
were passed in by the calling servlet or filter.

Final Version

Main Concepts 33

SRV.6.2.3 Filter Environment

A set of initialization parameters can be associated with afilter using the <init-
params> €lement in the deployment descriptor. The names and values of these
parameters are available to thefilter at runtime viathe getInitParameter and
getInitParameterNames methodson thefilter'sFilterConfig object. Additionaly,
the FilterConfig affords accessto the ServietContext of the Web application for
the loading of resources, for logging functionality, and for storage of state in the
ServletContext's attributelist.

SRV.6.2.4 Configuration of Filtersin aWeb Application

A filter isdefined in the deployment descriptor using the <filter> eement. Inthis
element, the programmer declares the following:

e filter-name: used to map thefilter to aservlet or URL
* filter-class: used by the container to identify the filter type

* init-params: initiaization parametersfor afilter

Optionally, the programmer can specify icons, atextual description, and a
display name for tool manipulation. The container must instantiate exactly one
instance of the Java class defining the filter per filter declaration in the deployment
descriptor. Hence, two instances of the samefilter classwill be instantiated by the
container if the developer makes two filter declarations for the same filter class.

Hereis an example of afilter declaration:

<filter>
<filter-name>Image Filter</filter-name>
<filter-class>com.acme.ImageServiet</filter-class>
</filter>
Once afilter has been declared in the deployment descriptor, the assembler
usesthe <filter-mapping> element to define servlets and static resourcesin the
Web application to which the filter is to be applied. Filters can be associated with
aservlet using the <serviet-name> element. For example, the following code
example maps the Image Filter filter to the ImageServiet servlet:

FILTERING

<filter-mapping>
<filter-name>Image Filter</filter-name>
<servlet-name>ImageServlet</servlet-name>
</filter-mapping>
Filters can be associated with groups of servlets and static content using the
<url-pattern> Style of filter mapping:

<filter-mapping>
<filter-name>Logging Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Here the Logging Filter is applied to all the servlets and static content pages
in the Web application, because every request URI matchesthe ' /+' URL pattern.

When processing a <fi1ter-mapping> element using the <ur1-pattern>
style, the container must determine whether the <ur1-pattern> matchesthe
request URI using the path mapping rules defined in Chapter SRV.11, “Mapping
Reguests to Servlets’.

The order the container uses in building the chain of filtersto be applied for a
particular request URI isasfollows:

1. First, the <ur1-pattern> matching filter mappingsin the same order that these
elements appear in the deployment descriptor.

2. Next, the <servlet-name> matching filter mappings in the same order that
these elements appear in the deployment descriptor.

This requirement means that the container, when receiving an incoming
regquest, processes the request as follows:

* |dentifies the target Web resource according to the rules of “ Specification of
Mappings’ on page 86.

o If there arefilters matched by servlet name and the Web resource has a
<servlet-name>, the container builds the chain of filters matching in the order
declared in the deployment descriptor. The last filter in this chain corresponds
to the last <servlet-name> matching filter and is the filter that invokes the tar-
get Web resource.

* If there arefiltersusing <ur1-pattern> matching and the <ur1-pattern>
matches the request URI according to the rules of Section SRV.11.2, “ Specifi-
cation of Mappings’, the container buildsthe chain of <ur1-pattern> matched
filtersin the same order as declared in the deployment descriptor. Thelast filter

Final Version

Main Concepts

in this chain isthelast <url-pattern> matching filter in the deployment de-
scriptor for thisrequest URI. Thelast filter inthischainisthefilter that invokes
thefirst filter inthe <serviet-name> matching chain, or invokesthetarget Web
resource if there are none.

It is expected that high performance Web containers will cachefilter chains so
that they do not need to compute them on a per-request basis.

SRV.6.2.5 Filtersand the RequestDispatcher

New for version 2.4 of the Java Servlet specification isthe ability to configurefilters
to be invoked under regquest dispatcher forward() and include() cals.

By using the new <dispatcher> element in the deployment descriptor, the
developer can indicate for afilter-mapping whether he would like the filter to be
applied to requests when:

1. The request comes directly from the client.

Thisisindicated by a <dispatcher> element with value REQUEST,
or by the absence of any <dispatcher> elements.

2. Therequest is being processed under arequest dispatcher representing the
Web component matching the <ur1-patterns Or <servlet-name> usingafor-
ward () cal.

Thisisindicated by a <dispatcher> element with value FORWARD.

3. Therequest is being processed under arequest dispatcher representing the
Web component matching the <ur1-pattern> Or <serviet-name> usinganin-
clude(cdl.

Thisisindicated by a <dispatcher> element with value INCLUDE.
4. Therequest isbeing processed with the error page mechanism specifiedin “Er-
ror Handling” on page 73 to an error resource matching the <ur1-patterns.

Thisisindicated by a <dispatcher> element with the value ERROR.
5. Or any combination of 1, 2, 3, or 4 above.

For example:

56

FILTERING

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<url-pattern>/products/*</url-pattern>

</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /
products/. .. but not underneath a request dispatcher call where the request

dispatcher has path commencing /products/. . .. The following code:

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<servlet-name>ProductServlet</servilet-name>

<dispatcher>INCLUDE</d1ispatcher>

</filter-mapping>

would result in the Logging Filter not being invoked by client requests to the
ProductServlet, nor underneath a request dispatcher forward() call to the Prod-
uctServlet, but would be invoked underneath arequest dispatcher include() call
where the request dispatcher has a name commencing ProductServiet.

Finally,

<filter-mapping>

<filter-name>Logging Filter</filter-name>

<url-pattern>/products/*</url-pattern>

<dispatcher>FORWARD</d1ispatcher>

<dispatcher>REQUEST</dispatcher>

</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /
products/. .. and underneath a request dispatcher forward() call where the
request dispatcher has path commencing /products/. ...

Final Version

cuneren IRV [

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build
effective Web applications, it isimperative that requests from a particular client be
associated with each other. Many strategies for session tracking have evolved over
time, but all are difficult or troublesome for the programmer to use directly.

This specification definesasimple HttpSession interface that allows a servlet
container to use any of several approachesto track a user’s session without
involving the Application Developer in the nuances of any one approach.

SRV.7.1 Session Tracking M echanisms

The following sections describe approaches to tracking a user’s sessions

SRV.7.1.1 Cookies

Session tracking through HT TP cookies is the most used session tracking
mechanism and is required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the
cookie on each subsequent request to the server, unambiguously associating the
request with a session. The name of the session tracking cookie must be
JSESSIONID.

SRV.7.1.2 SSL Sessions

Secure Sockets L ayer, the encryption technology used inthe HTTPS protocol, hasa
built-in mechanism allowing multiple requests from a client to be unambiguously
identified as being part of asession. A servlet container can easily use this datato
define asession.

57

58

SESSIONS

SRV.7.1.3 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. When a
client will not accept a cookie, URL rewriting may be used by the server asthe basis
for session tracking. URL rewriting involves adding data, a session ID, to the URL
path that isinterpreted by the container to associate the request with a session.

The session ID must be encoded as a path parameter in the URL string. The
name of the parameter must be jsessionid. Hereis an example of aURL
containing encoded path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

SRV.7.1.4 Session Integrity

Web containers must be able to support the HTTP session while servicing HTTP
requests from clients that do not support the use of cookies. To fulfill this
requirement, Web contai ners commonly support the URL rewriting mechanism.

SRV.7.2 Creating a Session

A sessionisconsidered “new” whenit isonly a prospective session and has not been
established. Because HTTP is a request-response based protocol, an HTTP session
isconsidered to be new until aclient “joins’ it. A client joins a session when session
tracking information has been returned to the server indicating that a session has
been established. Until the client joins asession, it cannot be assumed that the next
request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

» The client does not yet know about the session
» Thetlient chooses not to join a session.
These conditions define the situation where the servlet container has no
mechanism by which to associate a request with a previous request.
A Servlet Developer must design his application to handle a situation where a
client has not, can not, or will not join a session.

SRV.7.3 Session Scope

HttpSession objects must be scoped at the application (or servlet context) level.
The underlying mechanism, such as the cookie used to establish the session, can be

Final Version

Binding Attributesinto a Session

the same for different contexts, but the object referenced, including the attributes in
that object, must never be shared between contexts by the container.

To illustrate this requirement with an example: if a serviet uses the
RequestDispatcher to call aservlet in another Web application, any sessions
created for and visible to the servlet being called must be different from those
visibleto the calling servlet.

SRV.7.4 Binding Attributesinto a Session

A servlet can bind an object attribute into an HttpSession implementation by name.
Any object bound into a session is available to any other servlet that belongsto the
same ServletContext and handlesarequest identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed
from, asession. Thisinformation can be obtained by having the object implement
the HttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a
session.

« valueBound
e valueUnbound

The valueBound method must be called before the object is made available via
the getAttribute method of the HttpSession interface. The valueUnbound
method must be called after the object isno longer available viathe getAttribute
method of the HttpSession interface.

SRV.7.5 Session Timeouts

Inthe HTTP protocoal, there is no explicit termination signal when aclient isno
longer active. This meansthat the only mechanism that can be used to indicate when
aclient isno longer active isatimeout period.

The default timeout period for sessions is defined by the servlet container and
can be obtained viathe getMaxInactiveInterval method of the HttpSession
interface. This timeout can be changed by the Developer using the
setMaxInactiveInterval method of the HttpSession interface. The timeout
periods used by these methods are defined in seconds. By definition, if the timeout
period for asession is set to -1, the session will never expire. The session
invalidation will not take effect until all servlets using that session have exited the

60

SESSIONS

service method. Once the session invalidation isinitiated, a new request must not
be able to see that session.

SRV.7.6 Last Accessed Times

The getLastAccessedTime method of the HttpSession interface allows aservlet to
determine the last time the session was accessed before the current request. The
session is considered to be accessed when arequest that is part of the session isfirst
handled by the servlet container.

SRV.7.7 | mportant Session Semantics

SRV.7.7.1 Threading | ssues

Multiple servlets executing request threads may have active accessto asingle
session object at the sametime. The Devel oper has the responsibility for
synchronizing access to Session resources as appropriate.

SRV.7.7.2 Distributed Environments

Within an application marked as distributable, all requests that are part of a session
must be handled by one Java Virtual Machine* (“JVM”) at atime. The container
must be able to handle all objects placed into instances of the HttpSession class
using the setAttribute Of putValue methods appropriately. The following
restrictions are imposed to meet these conditions:

 The container must accept objects that implement the Serializable interface.

» The container may choose to support storage of other designated objectsin
the HttpSession, such as references to Enterprise JavaBeans components and
transactions.

» Migration of sessionswill be handled by container-specific facilities.
The distributed servlet container must throw an I11egalArgumentException

for objects where the container cannot support the mechanism necessary for
migration of the session storing them.

- The terms "Java virtual machine" and "JVM" mean avirtual machine for the Java(TM) platform.

Final Version

Important Session Semantics

The distributed servlet container must support the mechanism necessary for
migrating objects that implement Serializable. Distributed servlet containers
that are part of a J2EE implementation must support the mechanism necessary for
migrating other J2EE objects.

These restrictions mean that the Developer is ensured that there are no
additional concurrency issues beyond those encountered in a non-distributed
container.

The Container Provider can ensure scalability and quality of service features
like load-balancing and failover by having the ability to move a session object,
and its contents, from any active node of the distributed system to a different node
of the system.

If distributed containers persist or migrate sessions to provide quality of
service features, they are not restricted to using the native VM Serialization
mechanism for serializing HttpSessions and their attributes. Developers are not
guaranteed that containers will call readobject and writeObject methodson
session attributes if they implement them, but are guaranteed that the
Serializable closure of their attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of asession. They must notify
listeners of passivation prior to serialization of a session, and of activation after
deserialization of a session.

Application Developers writing distributed applications should be aware that
since the container may run in more than one Java virtual machine, the devel oper
cannot depend on static variables for storing an application state. They should
store such states using an enterprise bean or a database.

SRV.7.7.3 Client Semantics

Dueto the fact that cookies or SSL certificates are typically controlled by the Web
browser process and are not associated with any particular window of the browser,
requests from all windows of aclient application to aservlet container might be part
of the same session. For maximum portability, the Devel oper should always assume
that al windows of aclient are participating in the same session.

61

62

Final Version

SESSIONS

cuneren DRV .8

Dispatching Requesté

When building a Web application, it is often useful to forward processing of a
request to another servlet, or to include the output of another servlet in the response.
TheRequestDispatcher interface provides a mechanism to accomplish this.

SRV.8.1 Obtaining a RequestDispatcher

An object implementing the RequestDi spatcher interface may be obtained from
the ServletContext viathe following methods:

* getRequestDispatcher

* getNamedDispatcher

The getRequestDispatcher method takes a string argument describing a
path within the scope of the ServletContext. This path must be relative to the root
of the SservletContext and beginwitha‘/’. The method uses the path to look up
aservlet, using the servlet path matching rulesin Chapter SRV.11, “Mapping
Regquests to Servlets’, wraps it with aRequestDispatcher object, and returns the
resulting object. If no servlet can be resolved based on the given path, a
RequestDispatcher is provided that returns the content for that path.

The getNamedDispatcher method takes a String argument indicating the
name of aservlet known to the ServletContext. If aservletisfound, it iswrapped
with aRequestDispatcher object and the object isreturned. If no servietis
associated with the given name, the method must return nu11.

To alow RequestDispatcher objectsto be obtained using relative paths that
are relative to the path of the current request (not relative to the root of the
ServletContext), the getRequestDispatcher method is provided in the
ServletRequest interface.

63

DISPATCHING REQUESTS

The behavior of this method is similar to the method of the same name in the
ServletContext. The servlet container usesinformation in the request object to
transform the given relative path against the current servlet to acomplete path. For
example, in acontext rooted at '/ and arequest to /garden/tools.html, arequest
dispatcher obtained viaServietRequest.getRequestDispatcher("header.html™)
will behave exactly like acal to
ServletContext.getRequestDispatcher("/garden/header.html").

SRV.8.1.1 Query Stringsin Request Dispatcher Paths

TheServletContext and ServletRequest methodsthat create RequestDispatcher
objects using path information alow the optional attachment of query string
information to the path. For example, a Developer may obtain aRequestDispatcher
by using the following code:

String path = “/raisins.jsp?orderno=5";
RequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(request, response);

Parameters specified in the query string used to create the RequestDispatcher
take precedence over other parameters of the same name passed to the included
servlet. The parameters associated with aRequestDispatcher are scoped to apply
only for the duration of the include or forward call.

SRV.8.2 Using a Request Dispatcher

To use arequest dispatcher, aserviet cals either the include method or forward
method of the RequestDi spatcher interface. The parameters to these methods can
be either the request and response arguments that were passed in viathe service
method of the javax.serviet interface, or instances of subclasses of the request
and response wrapper classes that were introduced for version 2.3 of the
specification. In the latter case, the wrapper instances must wrap the request or
response objects that the container passed into the service method.

The Container Provider should ensure that the dispatch of the request to a
target servlet occursin the same thread of the same JVM as the original request.

Final Version

The Include Method

SRV.8.3 Thelnclude M ethod

Theinclude method of theRequestDispatcher interface may be called at any time.
Thetarget serviet of the incTude method has accessto all aspects of the request
object, but its use of the response object is more limited.

It can only write information to the ServietOutputStream Or Writer Of the
response object and commit aresponse by writing content past the end of the
response buffer, or by explicitly calling the flushBuffer method of the
ServletResponse interface. It cannot set headers or call any method that affects
the headers of the response. Any attempt to do so must be ignored.

SRV.8.3.1 Included Request Parameters

Except for servlets obtained by using the getNamedDi spatcher method, a serviet
that has been invoked by another servlet using the include method of
RequestDispatcher has access to the path by which it was invoked.

The following request attributes must be set:

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet viathe getAttribute
method on the request object and their values must be equal to the request URI,
context path, servlet path, path info, and query string of the included servlet,
respectively. If the request is subsequently included, these attributes are replaced
for that include.

If the included servlet was obtained by using the getNamedDispatcher
method, these attributes must not be set.

SRV .84 The Forward Method

The forward method of the RequestDispatcher interface may be called by the
calling servlet only when no output has been committed to the client. If output data
exists in the response buffer that has not been committed, the content must be
cleared before the target serviet’s service method is called. If the response has been
committed, an I11egalStateException must be thrown.

65

66

DISPATCHING REQUESTS

The path elements of the request object exposed to the target serviet must
reflect the path used to obtain the RequestDispatcher.

The only exception to thisisif the RequestDispatcher was obtained viathe
getNamedDispatcher method. In this case, the path elements of the request object
must reflect those of the original request.

Before the forward method of the RequestDispatcher interface returns, the
response content must be sent and committed, and closed by the servlet container.

SRV.84.1 Query String

The request dispatching mechanism is responsible for aggregating query string
parameters when forwarding or including requests.

SRV.8.4.2 Forwarded Request Parameters

Except for servlets obtained by using the getNamedDi spatcher method, aservlet
that has been invoked by another servlet using the forward method of
RequestDispatcher has accessto the path of the original request.

The following request attributes must be set:

javax.servlet.forward.request_uri
javax.servlet.forward.context_path
javax.servlet.forward.serviet_path
javax.servlet.forward.path_info
javax.servlet.forward.query_string

The values of these attributes must be equal to the return values of the
HttpServletRequest methods getRequestURI, getContextPath, getServletPath,
getPathInfo, getQueryString respectively, invoked on the request object passed
to thefirst servlet object in the call chain that received the request from the client.

These attributes are accessible from the forwarded servlet viathe
getAttribute method on the request object. Note that these attributes must
always reflect the information in the original request even under the situation that
multiple forwards and subsequent includes are called.

If the forwarded servlet was obtained by using the getNamedDispatcher
method, these attributes must not be set.

Final Version

Error Handling

SRV.85 Error Handling

If the servlet that isthe target of arequest dispatcher throws aruntime exception or a
checked exception of type ServietException Or I0Exception, it should be
propagated to the calling servlet. All other exceptions should be wrapped as
ServletExceptions and theroot cause of the exception set to the original exception,
asit should not be propagated.

67

cuneren ORV.9

Web Applicati oné

A Web application is a collection of servlets, HTML pages, classes, and other
resources that make up a complete application on aWeb server. The Web
application can be bundled and run on multiple containers from multiple vendors.

SRV.9.1 Web Applications Within Web Servers

A Web application isrooted at a specific path within aWeb server. For example, a
catalog application could be located at http://www.mycorp.com/catalog. All
requests that start with this prefix will be routed to the ServietContext which
represents the catal og application.

A servlet container can establish rules for automatic generation of Web
applications. For example a~user/ mapping could be used to map to a Web
application based at /home/user/public_html/.

By default, an instance of a Web application must run on one VM at any one
time. This behavior can be overridden if the application is marked as
“distributable” viaits deployment descriptor. An application marked as
distributable must obey a more restrictive set of rulesthan isrequired of a normal
Web application. These rules are set out throughout this specification.

SRV.9.2 Relationship to ServletContext

The servlet container must enforce a one to one correspondence between a Web
applicationand aSer vI et Cont ext . A Ser vl et Cont ext object providesaserviet
with its view of the application.

68

Elements of a Web Application

SRV.9.3 Elements of aWeb Application

A Web application may consist of the following items:

* Servlets
JSP™ Pages

Utility Classes

Static documents (HTML, images, sounds, etc.)

Client side Java applets, beans, and classes

Descriptive meta information that ties al of the above elements together

SRV.9.4 Deployment Hierarchies

This specification defines a hierarchical structure used for deployment and
packaging purposes that can exist in an open file system, in an archivefile, or in
some other form. It is recommended, but not required, that servlet containers
support this structure as a runtime representation.

SRV.9.5 Directory Structure

A Web application exists as a structured hierarchy of directories. The root of this
hierarchy serves as the document root for files that are part of the application. For
example, for aWeb application with the context path /catalog in a\Web container,
the index.htm1 file at the base of the Web application hierarchy can be served to
satisfy arequest from /catalog/index.htm1. The rulesfor matching URLsto
context path arelaid out in Chapter SRV.11, “Mapping Requeststo Servlets’. Since
the context path of an application determines the URL namespace of the contents of
the Web application, Web containers must reject Web applications defining a
context path could cause potential conflictsin thisURL namespace. This may occur,
for example, by attempting to deploy a second Web application with the same
context path. Since requests are matched to resources in a case-sensitive manner,
this determination of potential conflict must be performed in a case-sensitive
manner aswell.

1 See the JavaServer Pages specification available from http://

java.sun.com/products/jsp.

69

70

WEB APPLICATIONS

A special directory exists within the application hierarchy named “WEB-INF”.
This directory contains all things related to the application that aren’t in the
document root of the application. The WwEB-INF node is not part of the public
document tree of the application. No file contained in the WeB-INF directory may
be served directly to a client by the container. However, the contents of the WeB-
INF directory are visible to servlet code using the getResource and getResource-
AsStream method calls on the ServietContext, and may be exposed using the
RequestDispatcher calls. Hence, if the Application Devel oper needs access, from
servlet code, to application specific configuration information that he does not
wish to be exposed directly to the Web client, he may place it under this directory.
Since requests are matched to resource mappings in a case-sensitive manner,
client requestsfor * /WEB-INF/foo’, ‘ /WEb-iNf/foo’, for example, should not result
in contents of the Web application located under /WEB-INF being returned, nor
any form of directory listing thereof.

The contents of the WEB-INF directory are:

* The /WEB-INF/web.xm1 deployment descriptor.

* The /WEB-INF/classes/ directory for servlet and utility classes. The classes
in this directory must be available to the application class loader.

» The /WEB-INF/1ib/*.jar areafor JavaARchivefiles. Thesefiles contain serv-
lets, beans, and other utility classes useful to the Web application. The Web ap-
plication class |loader must be able to load classes from any of these archive
files.

The Web application class|oader must load classes from the WEB-INF/ classes
directory first, and then from library JARs in the weEB-INF/14b directory. Also, any
requests from the client to access the resources in WeB-INF/ directory must be
returned with a SC_NOT_FOUND(404) response.

SRV.95.1 Example of Application Directory Structure

Thefollowing isalisting of al the filesin a sample Web application:

/index.html

/howto.jsp

/feedback. jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xm1
/WEB-INF/Tib/jspbean.jar

Final Version

Web Application Archive File 71

/WEB-INF/classes/com/mycorp/servlets/MyServilet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class

SRV.9.6 Web Application ArchiveFile

Web applications can be packaged and signed into a Web ARchive format (WAR)
file using the standard Java archive tools. For example, an application for issue
tracking might be distributed in an archivefile called issuetrack.war.

When packaged into such aform, aMETA-INF directory will be present which
contains information useful to Java archive tools. This directory must not be
directly served as content by the container in response to a Web client’s request,
though its contents are visible to servlet code viathe getResource and getResour-
ceAsStream calls on the ServletContext. AlSo, any requests to access the
resources in META-INF directory must be returned with a SC_NOT_FOUND(404)
response.

SRV.9.7 Web Application Deployment Descriptor

The Web application deployment descriptor (see Chapter SRV.13, “ Deployment
Descriptor””) includes the following types of configuration and deployment
information:

e ServletContext Init Parameters
» Session Configuration

* Servlet/JSP Definitions

* Servlet/IJSP Mappings

* MIME Type Mappings

* WelcomeFilelist

» Error Pages

* Security

SRV.9.7.1 Dependencies On Extensions

When anumber of applications make use of the same code or resources, they will
typicaly beinstalled aslibrary filesin the container. These files are often common
or standard APIsthat can be used without sacrificing portability. Files used only by
one or afew applicationswill be made available for access as part of the Web

72

WEB APPLICATIONS

application. The container must provide adirectory for theselibraries. Thefiles
placed within this directory must be available across all Web applications. The
location of thisdirectory is container-specific. The class|oader the servlet container
uses for loading these library files must be the same for all Web applications within
the same JVM. This class|oader instance must be somewhere in the chain of parent
class loaders of the Web application class loader.

Application devel opers need to know what extensions are installed on a Web
container, and containers need to know what dependencies servletsin aWAR have
on such librariesin order to preserve portability.

J2EE technology-compliant containers are required to provide a mechanism
by which a deployer can learn what JAR files containing resources and code are
available for the Web application. Providing such the mechanismis
recommended, but not required for the containers that are not part of J2EE
technol ogy-compliant implementation. The containers should provide a
convenient procedure for editing and configuring library files or extensions.

The application devel oper depending on such an extension or extensions must
provide aMETA-INF/MANIFEST.MF entry in the WAR filelisting all extensions
needed by the WAR. The format of the manifest entry should follow standard JAR
manifest format. During deployment of the Web application, the Web container
must make the correct versions of the extensions available to the application
following the rules defined by the Optional Package Versioning mechanism (http:/
ljava.sun.com/j2se/1.4/docs/guide/extensions/).

Web containers must also be able to recognize declared dependencies
expressed in the manifest entry of any of the library JARs under the WEB-INF/14ib
entry inaWAR.

If aWeb container is not able to satisfy the dependencies declared in this
manner, it should reject the application with an informative error message.

SRV.9.7.2 Web Application Class L oader

The class|oader that a container uses to load a serviet inaWAR must allow the
devel oper to load any resources contained in library JARs within the WAR
following normal J2SE semantics using getResource. As described in the J2EE
license agreement, servlet containers that are not part of a J2EE product should not
allow the application to override J2SE platform classes, such asthosein the java.*
and javax.* namespaces, that J2SE does not alow to be modified. Also, servlet
containersthat are part of a J2EE product should not allow the application to
override J2SE or J2EE platform classes, such asthosein java* and javax.*
namespaces, that either J2SE or J2EE do not allow to be modified. The container
should not allow applications to override or access the container’s implementation

Final Version

Replacing a Web Application

classes. It isrecommended also that the application class loader be implemented so
that classes and resources packaged within the WAR are loaded in preference to
classes and resources residing in container-wide library JARs.

SRV.9.8 Replacing a Web Application

A server should be able to replace an application with a new version without
restarting the container. When an application is replaced, the container should
provide arobust method for preserving session data within that application.

SRV.9.9 Error Handling

SRV.9.9.1 Request Attributes

A Web application must be able to specify that when errors occur. other resourcesin
the application are used to provide the content body of the error response. The
specification of these resources is donein the deployment descriptor.

If the location of the error handler is a servlet or a JSP page:

» Theorigina unwrapped request and response objects created by the container
are passed to the servlet or JSP page.

» Theresponse setStatus method is disabled and ignored if called.

» Therequest path and attributes are set asif aRequestDispatcher.forward tO
the error resource had been performed.

» Therequest attributesin Table SRV.9-1 must be set.

Table SRV.9-1 Request Attributes and their types

Request Attributes Type
javax.servlet.error.status_code java.lang.Integer
javax.servlet.error.exception_type java.lang.Class
javax.servlet.error.message java.lang.String
javax.servlet.error.exception java.lang.Throwable
javax.servlet.error.request_uri java.lang.String

javax.servlet.error.servliet_name java.lang.String

73

74

WEB APPLICATIONS

These attributes allow the servlet to generate specialized content depending
on the status code, the exception type, the error message, the exception object
propagated, and the URI of the request processed by the servlet in which the error
occurred (as determined by the getRequestURI call), and the logical name of the
servlet in which the error occurred.

With the introduction of the exception object to the attributes list for version
2.3 of this specification, the exception type and error message attributes are
redundant. They are retained for backwards compatibility with earlier versions of
the API.

SRV.9.9.2 Error Pages

To allow devel opersto customize the appearance of content returned to aWeb client
when a servlet generates an error, the deployment descriptor definesalist of error
page descriptions. The syntax allows the configuration of resources to be returned
by the container either when aservlet or filter calls sendError on the response for
specific status codes, or if the servlet generates an exception or error that propagates
to the container.

If the sendError method is called on the response, the container consults the
list of error page declarations for the Web application that use the status-code
syntax and attempts amatch. If there is amatch, the container returns the resource
asindicated by the location entry.

A servlet or filter may throw the following exceptions during processing of a
request:

* runtime exceptions or errors
* ServletExceptions Or subclasses thereof
» IOExceptions Or subclasses thereof

The Web application may have declared error pages using the exception-
type element. In this case the container matches the exception type by comparing
the exception thrown with the list of error-page definitions that use the
exception-type element. A match results in the container returning the resource
indicated in the location entry. The closest match in the class heirarchy wins.

If no error-page declaration containing an exception-type fits using the
class-heirarchy match, and the exception thrown isa ServletException Or
subclass thereof, the container extracts the wrapped exception, as defined by the
ServletException.getRootCause method. A second pass is made over the error

Final Version

Welcome Files

page declarations, again attempting the match against the error page declarations,
but using the wrapped exception instead.

Error-page declarations using the exception-type element in the deployment
descriptor must be unique up to the class name of the exception-type. Similarly,
error-page declarations using the status-code €lement must be unique in the
deployment descriptor up to the status code.

The error page mechanism described does not intervene when errors occur
when invoked using the RequestDispatcher Or filter.doFilter method. In this
way, afilter or servlet using the RequestDi spatcher hasthe opportunity to handle
errors generated.

If aservlet generates an error that is not handled by the error page mechanism
as described above, the container must ensure to send a response with status 500.

The default servlet and container will use the sendError method to send 4xx
and 5xx status responses, so that the error mechanism may be invoked. The
default servlet and container will use the setStatus method for 2xx and 3xx
responses and will not invoke the error page mechanism.

SRV.9.9.3 Error Filters

The error page mechanism operates on the original unwrapped/unfiltered request
and response obj ects created by the container. The mechanism described in
Section SRV.6.2.5, “Filters and the RequestDispatcher” may be used to specify
filtersthat are applied before an error responseis generated.

SRV.9.10 WecomeFiles

Web Application developers can define an ordered list of partial URIs called
welcome files in the Web application deployment descriptor. The deployment
descriptor syntax for the list is described in the Web application deployment
descriptor schema.

The purpose of this mechanism is to alow the deployer to specify an ordered
list of partial URIsfor the container to use for appending to URIs when thereisa
request for aURI that corresponds to adirectory entry in the WAR not mapped to
aWeb component. This kind of request is known as avalid partial reguest.

The use for thisfacility is made clear by the following common example: A
welcome file of ‘index.htm1’ can be defined so that arequest to a URL like
host:port/webapp/directory/, where‘directory’ isan entry inthe WAR that is
not mapped to a servlet or JSP page, is returned to the client as ‘host:port/
webapp/directory/index.html’.

75

76

WEB APPLICATIONS

If aWeb container receives avalid partial request, the Web container must
examine the welcomefile list defined in the deployment descriptor. The welcome
filelist isan ordered list of partial URLswith no trailing or leading /. The Web
server must append each welcome file in the order specified in the deployment
descriptor to the partial request and check whether a static resource or servlet in
the WAR is mapped to that request URI. The Web container must send the request
to the first resource in the WAR that matches. The container may send the request
to the welcome resource with a forward, aredirect, or a container specific
mechanism that is indistinguishable from a direct request.

If no matching welcome fileis found in the manner described, the container
may handle the request in amanner it finds suitable. For some configurations this
may mean returning a directory listing or for others returning a 404 response.

Consider a Web application where:

* The deployment descriptor lists the following welcome files.

<welcome-file-Tist>
<welcome-file>index.html</welcome-file>
<welcome-file>default.jsp</welcome-file>
</welcome-file-1ist>

» The static content in the WAR is as follows

/foo/index.html
/foo/default.jsp
/foo/orderform.html
/foo/home.gif
/catalog/default.jsp
/catalog/products/shop.jsp
/catalog/products/register.jsp

» A request URI of /foo will be redirected to a URI of /foo/.

* A request URI of /foo/ will bereturned as /foo/index.html.

» A request URI of /catalog will be redirected to a URI of /catalog/.

» A request URI of /catalog/ will bereturned as /catalog/default. jsp.

» A request URI of /catalog/index.html will cause @404 not found

» A request URI of /catalog/products will be redirected to a URI of /
catalog/products/.

» A request URI of /catalog/products/ will be passed to the “default” serviet,
if any. If no “default” servlet is mapped, the request may cause a 404 not

Final Version

Web Application Environment

found, may cause adirectory listing including shop.jsp and register.jsp, Or
may cause other behavior defined by the container. See Section SRV.11.2,
“Specification of Mappings’ for the definition of “default” servlet.

SRV.9.11 Web Application Environment

The Java™ 2 Platform, Enterprise Edition defines anaming environment that allows
applications to easily access resources and external information without explicit
knowledge of how the external information is named or organized.

Asservlets are an integral component type of J2EE technology, provision has
been made in the Web application deployment descriptor for specifying
information allowing a servlet to abtain references to resources and enterprise
beans. The deployment elements that contain thisinformation are:

* env-entry

* ejb-ref

* ejb-Tlocal-ref
* resource-ref

®* resource-env-ref

The developer uses these elements to describe certain objects that the Web
application requires to be registered in the INDI namespace in the Web contai ner
at runtime.

The reguirements of the J2EE environment with regard to setting up the
environment are described in Chapter J2EE.5 of the Java™ 2 Platform, Enterprise
Edition version 1.4 specification'. Servlet containersthat are not part of a J2EE
technology-compliant implementation are encouraged, but not required, to
implement the application environment functionality described in the J2EE
specification. If they do not implement the facilities required to support this
environment, upon deploying an application that relies on them, the container
should provide awarning.

Servlet containers that are part of a J2EE technology-compliant
implementation are required to support this syntax. Consult the Java™ 2 Platform,
Enterprise Edition version 1.4 specification for more details. This type of servlet
container must support lookups of such objects and calls made to those objects
when performed on athread managed by the servlet container. Thistype of servlet

1 The J2EE specification isavailable at http://java.sun.com/j2ee

77

78

WEB APPLICATIONS

container should support this behavior when performed on threads created by the
developer, but are not currently required to do so. Such arequirement will be
added in the next version of this specification. Developers are cautioned that
depending on this capability for application-created threads is not recommended,
asit is non-portable.

SRV.9.12 Web Application Deployment

When aweb application is deployed into a container, the following steps must be
performed, in this order, before the web application begins processing client
requests.

Instantiate an instance of each event listener identified by a<1istener> ele-
ment in the deployment descriptor.

For instantiated listener instances that implement ServletContextListener,
call the contextInitialized() method.

Instantiate an instance of each filter identified by a<fi1ter> element in the de-
ployment descriptor and call each filter instance’s init () method.

Instantiate an instance of each servlet identified by a <servlet> element that
includes a <load-on-startup> element in the order defined by the load-on-
startup element values, and call each servlet instance’ s init() method.

Final Version

cuneren DRV .10

A pplication Lifecycle Eventé

SRV.10.1 Introduction

The application events facility gives the Web Application Developer greater control
over thelifecycle of the ServletContext and HttpSession and ServletRequest,
allowsfor better code factorization, and increases efficiency in managing the
resources that the Web application uses.

SRV.10.2 Event Listeners

Application event listeners are classes that implement one or more of the servlet
event listener interfaces. They areinstantiated and registered in the Web container at
the time of the deployment of the Web application. They are provided by the
Developer in the WAR.

Servlet event listeners support event notifications for state changesin the
ServletContext, HttpSession and ServietRequest Objects. Serviet context
listeners are used to manage resources or state held at a VM level for the
application. HTTP session listeners are used to manage state or resources
associated with a series of requests made into a Web application from the same
client or user. Servlet request listeners are used to manage state across the
lifecycle of servlet requests.

There may be multiple listener classes listening to each event type, and the
Developer may specify the order in which the container invokes the listener beans
for each event type.

79

80

SRV.10.2.1

APPLICATION LIFECYCLE EVENTS

Event Typesand Listener Interfaces

Events types and the listener interfaces used to monitor them are shown in Table

SRV.10-1..

Table SRV.10-1 Events and Listener I nterfaces

Event Type Description Listener Interface
Servlet Context

Events

Lifecycle The servlet context has javax.servlet.

Changesto attributes

HTTP Session
Events

Lifecycle

Changes to attributes

Session migration

Object binding

Servlet Request
Events

just been created and is
availableto serviceits
first request, or the serv-
let context is about to be
shut down.

Attributes on the serv-
let context have been
added, removed, or
replaced.

AnHttpSession has
been created, invali-
dated, or timed out.

Attributes have been
added, removed, or
replaced on an
HttpSession.

HttpSession has been
activated or passivated.

Object has been bound
to or unbound from
Httpsession

ServletContextListener

javax.servlet.
ServletContextAttributelistener

javax.servlet.http.
HttpSessionlListener

javax.servlet.
HttpSessionAttributelistener

javax.servlet.
HttpSessionActivationlListener

javax.servlet.
HttpSessionBindinglListener

Final Version

Listener Class Configuration 8l

Table SRV.10-1 Events and Listener Interfaces

Event Type Description Listener Interface
Lifecycle A servlet request has javax.servlet.
started being processed ServletRequestListener
by Web components.
Changesto attributes Attributes have been javax.servlet.
added, removed, or ServletRequestAttributelistener
replaced on a
ServletRequest.

For details of the AP, refer to the API reference in Chapter SRV.14,
“javax.servlet” and Chapter SRV.15, “javax.servlet.http”.

SRV.10.2.2 An Example of Listener Use

Toillustrate a use of the event scheme, consider a ssimple Web application
containing a number of servletsthat make use of a database. The Developer has
provided a servlet context listener class for management of the database connection.

1. When the application starts up, the listener classis notified. The application
logs on to the database, and stores the connection in the servlet context.

2. Servletsin the application access the connection as needed during activity in
the Web application.

3. When the Web server is shut down, or the application is removed from the
Web server, the listener classis notified and the database connection is closed.

SRV.10.3 Listener Class Configuration

SRV.10.3.1 Provision of Listener Classes

The Developer of the Web application provideslistener classesimplementing one or
more of the listener classesinthe javax.servlet API. Eachlistener class must have
apublic constructor taking no arguments. The listener classes are packaged into the
WAR, either under the WEB-INF/classes archive entry, or insde aJJAR in the weB-
INF/11b directory.

82

APPLICATION LIFECYCLE EVENTS

SRV.10.3.2 Deployment Declarations

Listener classes are declared in the Web application deployment descriptor using the
listener eement. They arelisted by class namein the order in which they areto be
invoked.

SRV.10.3.3 Listener Registration

The Web container creates an instance of each listener classand registersit for event
notifications prior to the processing of the first request by the application. The Web
container registers the listener instances according to the interfaces they implement
and the order in which they appear in the deployment descriptor. During Web
application execution, listeners are invoked in the order of their registration.

SRV.10.3.4 Notifications At Shutdown

On application shutdown, listeners are notified in reverse order to their declarations
with notifications to session listeners preceeding natifications to context listeners.
Session listeners must be notified of session invalidations prior to context listeners
being notified of application shutdown.

SRV.10.4 Deployment Descriptor Example

The following example is the deployment grammar for registering two servlet
context lifecycle listeners and an HttpSession listener.

Suppose that com. acme .MyConnectionManager and com.acme.
MyLoggingModuTe both implement javax.servlet.ServletContextListener, and
that com.acme.MyLoggingModule additionally implements
javax.servilet.HttpSessionListener. Also, the Developer wants
com.acme .MyConnectionManager to be notified of serviet context lifecycle events
before com.acme.MyLoggingModule. Hereis the deployment descriptor for this
application:

Final Version

Listener Instances and Threading 83

<web-app>
<display-name>MyListeningApplication</display-name>
<listener>
<1listener-class>com.acme.MyConnectionManager</1istener-
class>
</1istener>
<listener>
<listener-class>com.acme.MyLoggingModule</1listener-class>
</Tistener>
<servlet>
<display-name>RegistrationServlet</display-name>
...etc
</serviet>
</web-app>

SRV.10.5 Listener Instancesand Threading

The container is required to complete instantiation of the listener classesin aWeb
application prior to the start of execution of thefirst request into the application. The
container must maintain areference to each listener instance until the last request is
serviced for the Web application.

Attribute changes to ServietContext and HttpSession objects may occur
concurrently. The container is not required to synchronize the resulting
notifications to attribute listener classes. Listener classes that maintain state are
responsible for the integrity of the data and should handle this case explicitly.

SRV.10.6 Listener Exceptions

Application code inside a listener may throw an exception during operation. Some
listener notifications occur under the call tree of another component in the
application. An example of thisisaservlet that sets a session attribute, where the
session listener throws an unhandled exception. The container must allow
unhandled exceptions to be handled by the error page mechanism described in
Section SRV.9.9, “Error Handling”. If thereis no error page specified for those
exceptions, the container must ensure to send aresponse back with status 500. In
this case no more listeners under that event are called.

Some exceptions do not occur under the call stack of another component in
the application. An example of thisisaSessionListener that receives a
notification that a session has timed out and throws an unhandled exception, or of
aservletContextListener that throws an unhandled exception during a

APPLICATION LIFECYCLE EVENTS

notification of servlet context initialization, or of aServletRequestListener that
throws an unhandled exception during a notification of the initialization or the
destruction of the request object. In this case, the Devel oper has no opportunity to
handle the exception. The container may respond to all subsequent requeststo the
Web application with an HT TP status code 500 to indicate an application error.
Developers wishing normal processing to occur after alistener generates an
exception must handle their own exceptions within the notification methods.

SRV.10.7 Distributed Containers

In distributed Web containers, HttpSession instances are scoped to the particular
JVM sarvicing session requests, and the ServietContext object is scoped to the
Web container’s VM. Distributed containers are not required to propagate either
servlet context eventsor HttpSession eventsto other VMs. Listener classinstances
are scoped to one per deployment descriptor declaration per Java Virtual Machine.

SRV.10.8 Session Events

Listener classes provide the Devel oper with away of tracking sessionswithin a\Web
application. It isoften useful in tracking sessions to know whether a session became
invalid because the container timed out the session, or because a Web component
within the application called the invalidate method. The distinction may be
determined indirectly using listeners and the HttpSession APl methods.

Final Version

cuneren DRV 11

Mapping Requests to Servleté

The mapping techniques described in this chapter are required for Web containers
mapping client requests to servlets.!

SRV.11.1 Useof URL Paths

Upon receipt of aclient request, the Web container determines the Web application
to which to forward it. The Web application selected must have the the longest
context path that matches the start of the request URL. The matched part of the URL
isthe context path when mapping to servlets.

The Web container next must locate the servlet to process the request using
the path mapping procedure described bel ow.

The path used for mapping to a servlet isthe request URL from the request
object minus the context path and the path parameters. The URL path mapping
rules below are used in order. The first successful match is used with no further
matches attempted:

1. The container will try to find an exact match of the path of the request to the
path of the servlet. A successful match selects the serviet.

2. Thecontainer will recursively try to match thelongest path-prefix. Thisisdone
by stepping down the path tree adirectory at atime, usingthe’ /* character as
a path separator. The longest match determines the servlet selected.

1 Previous versions of this specification made use of these mapping tech-
niques as a suggestion rather than a requirement, allowing servlet con-
tainers to each have their different schemes for mapping client requests
to servlets.

85

86 MAPPING REQUESTSTO SERVLETS

3. If the last segment in the URL path contains an extension (e.g. . jsp), the serv-
let container will try to match a servlet that handles requests for the extension.
An extension is defined as the part of the last segment after thelast’ . char-
acter.

4. If neither of the previousthreerulesresult in aservlet match, the container will
attempt to serve content appropriate for the resource requested. If a"default”
servlet is defined for the application, it will be used.

The container must use case-sensitive string comparisons for matching.

SRV.11.2 Specification of Mappings

In the Web application deployment descriptor, the following syntax is used to define
mappings:

A string beginning witha“ /* character and ending witha“ /*' suffix is used
for path mapping.

» A string beginning witha* =.’ prefix is used as an extension mapping.

A string containing only the’ /* character indicates the "default” servlet of

the application. In this case the servlet path is the request URI minus the con-
text path and the path info is null.

All other strings are used for exact matches only.

SRV.11.2.1 Implicit Mappings

If the container has an internal JSP container, the* . j sp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping istermed an implicit
mapping. If a*. j sp mapping is defined by the Web application, its mapping takes
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as
explicit mappings take precedence. For example, an implicit mapping of
*. shtm could be mapped to include functionality on the server.

Final Version

Soecification of Mappings

SRV.11.2.2 Example Mapping Set
Consider the following set of mappings:

Table SRV.11-1 Example Set of Maps

Path Pattern Servlet

/foo/bar/* servietl
/baz/* serviet2
/catalog serviet3
*.bop servlet4

The following behavior would result:

Table SRV.11-2 Incoming Paths Applied to Example M aps

Incoming Path Servlet Handling Request
/foo/bar/index.html servletl
/foo/bar/index.bop serviletl

/baz serviet?2
/baz/index.html serviet2

/catalog serviet3
/catalog/index.html “default” servlet
/catalog/racecar.bop serviet4

/index.bop serviet4

Notethat inthecase of /catalog/index.html and /catalog/racecar.bop, the
servlet mapped to “/catalog” is not used because the match is not exact.

87

88

Final Version

MAPPING REQUESTSTO SERVLETS

cureren DRV .12

Security'

Web applications are created by Application Developerswho give, sell, or otherwise
transfer the application to a Deployer for installation into a runtime environment.
Application Devel opers need to communicate to Deployers how the security isto be
set up for the deployed application. Thisis accomplished declaratively by use of the
deployment descriptors mechanism.

This chapter describes deployment representations for security requirements.
Similarly to web application directory layouts and deployment descriptors, this
section does not describe requirements for runtime representations. It is
recommended, however, that containers implement the elements set out here as
part of their runtime representations.

SRV.12.1 Introduction

A web application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of web applications will have security
requirements.

Although the quality assurances and implementation details may vary, servlet
containers have mechanisms and infrastructure for meeting these requirements
that share some of the following characteristics:

89

90

SECURITY

» Authentication: The means by which communicating entities proveto onean-
other that they are acting on behalf of specific identitiesthat are authorized for
access.

» Access control for resources: The means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

» Data Integrity: The means used to prove that information has not been mod-
ified by athird party while in transit.

» Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to accessiit.

SRV.12.2 Declarative Security

Declarative security refersto the means of expressing an application’s security
structure, including roles, access control, and authentication requirementsin aform
external to the application. The deployment descriptor is the primary vehicle for
declarative security in web applications.

The Deployer maps the application’s logical security requirementsto a
representation of the security policy that is specific to the runtime environment. At
runtime, the servlet container uses the security policy representation to enforce
authentication and authorization.

The security model applies to the static content part of the web application
and to servlets and filters within the application that are requested by the client.
The security model does not apply when a servlet uses the RequestDispatcher to
invoke a static resource or servlet using a forward Or an include.

SRV.12.3 Programmatic Security

Programmatic security is used by security aware applications when declarative
security aloneis not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the
HttpServletRequest interface:

Final Version

Programmatic Security a

* getRemoteUser
* isUserInRole

* getUserPrincipal

The getRemoteUser method returns the user name the client used for
authentication. The isUserInRole method determinesif aremoteuserisina
specified security role. The getUserPrincipal method determines the principal
name of the current user and returns a java.security.Principal object. These
APIs alow servletsto make business logic decisions based on the information
obtained.

If no user has been authenticated, the getRemoteUser method returnsnull, the
isUserInRole method always returns false, and the getUserPrincipal method
returns null.

The isUserInRole method expectsaString user role-name parameter. A
security-role-ref element should be declared in the deployment descriptor
with arole-name sub-element containing the rolename to be passed to the
method. A security-role element should contain a role-1ink sub-element
whose valueisthe name of the security role that the user may be mapped into. The
container uses the mapping of security-role-ref t0 security-role when
determining the return value of the call.

For example, to map the security role reference "FOO" to the security role
with role-name "manager" the syntax would be:

<security-role-ref>
<role-name>F00</role-name>
<role-Tink>manager</role-1ink>

</security-role-ref>

In this caseif the servlet called by a user belonging to the "manager" security
role made the API call isUserInRole("F00™) theresult would be true.

If N0 security-role-ref element matching asecurity-role element has
been declared, the container must default to checking the role-name element
argument against thelist of security-role elementsfor the web application. The
isUserInRole method referencesthelist to determine whether the caller is
mapped to a security role. The developer must be aware that the use of this default
mechanism may limit the flexibility in changing rolenamesin the application
without having to recompile the servliet making the call.

92

SECURITY

SRV.12.4 Roles

A security roleisalogical grouping of users defined by the Application Devel oper
or Assembler. When the application is deployed, roles are mapped by a Deployer to
principals or groupsin the runtime environment.

A servlet container enforces declarative or programmatic security for the
principal associated with an incoming request based on the security attributes of
the principal. This may happen in either of the following ways:

1. A deployer has mapped a security role to auser group in the operational envi-
ronment. The user group to which the calling principal belongsis retrieved
from its security attributes. The principal isin the security role only if the prin-
cipal’s user group matches the user group to which the security role has been
mapped by the deployer.

2. A deployer has mapped a security roleto a principal namein a security policy
domain. In this case, the principal hame of the calling principal is retrieved
from its security attributes. The principal isin the security role only if the prin-
cipal nameis the same as a principal name to which the security role was
mapped.

SRV.12.5 Authentication

A web client can authenticate a user to aweb server using one of the following
mechanisms:

HTTP Basic Authentication
HTTP Digest Authentication
HTTPS Client Authentication
» Form Based Authentication

SRV.125.1 HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests aweb client to authenticate the user. As part of the request, the web server
passes the realm (a string) in which the user is to be authenticated. The realm string
of Basic Authentication does not have to reflect any particular security policy

Final Version

Authentication

domain (confusingly also referred to as arealm). The web client obtains the
username and the password from the user and transmits them to the web server. The
web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords
are sent in simple base64 encoding, and the target server is not authenticated.
Additional protection can alleviate some of these concerns: a secure transport
mechanism (HTTPS), or security at the network level (such as the |PSEC protocol
or VPN strategies) is applied in some deployment scenarios.

SRV.125.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user
based on a username and a password. However the authentication is performed by
transmitting the password in an encrypted form which is much more secure than the
simple base64 encoding used by Basic Authentication, e.g. HTTPS Client
Authentication. As Digest Authentication is not currently in widespread use, servlet
containers are encouraged but not required to support it.

SRV.125.3 Form Based Authentication

Thelook and feel of the “login screen” cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces arequired form
based authentication mechanism which allows a Devel oper to control the look and
fedl of thelogin screens.

The web application deployment descriptor contains entries for alogin form
and error page. The login form must contain fields for entering a username and a
password. These fields must be named j_username and j_password, respectively.

When auser attemptsto access a protected web resource, the container checks
the user’s authentication. If the user is authenticated and possesses authority to
access the resource, the requested web resource is activated and areferencetoitis
returned. If the user is not authenticated, all of the following steps occur:

1. Thelogin form associated with the security constraint is sent to the client and
the URL path triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and password
fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from the

93

94

SECURITY

form.

5. If authentication fails, the error page is returned using either aforward or are-
direct, and the status code of the responseis set to 200.

6. If authentication succeeds, the authenticated user’ s principal is checked to see
if it isin an authorized role for accessing the resource.

7. If the user isauthorized, the client is redirected to the resource using the stored
URL path.

The error page sent to auser that is not authenticated contains information
about the failure.

Form Based Authentication has the same lack of security as Basic
Authentication since the user password is transmitted as plain text and the target
server is not authenticated. Again additional protection can alleviate some of these
concerns: a secure transport mechanism (HTTPS), or security at the network level
(such asthe IPSEC protocol or VPN strategies) is applied in some deployment
scenarios.

SRV.12.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement.
Form based login should be used only when sessions are being maintained by
cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of thelogin
form must always be j_security_check. Thisrestriction is made so that the login
form will work no matter which resourceit isfor, and to avoid requiring the server
to specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTML

page:

<form method="POST” action="j_security_check”>
<input type="text” name="j_username”>

<input type="password” name="j_password”>
</form>

If the form based login is invoked because of an HTTP request, the original
request parameters must be preserved by the container for useif, on successful
authentication, it redirects the call to the requested resource.

If the user is authenticated using form login and has created an HTTP session,
the timeout or invalidation of that session leadsto the user being logged out in the

Final Version

Server Tracking of Authentication Information 95

sense that subsequent requests must cause the user to be re-authenticated. The
scope of the logout is that same as that of the authentication: for example, if the
container supports single signon, such as J2EE technology compliant web
containers, the user would need to reauthenticate with any of the web applications
hosted on the web container.

SRV.12.5.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the user to possess a Public Key Certificate
(PKC). Currently, PK Cs are useful in e-commerce applications and also for asingle-
signon from within the browser. Servlet containersthat are not J2EE technology
compliant are not required to support the HTTPS protocol.

SRV.12.6 Server Tracking of Authentication I nformation

Asthe underlying security identities (such as users and groups) to which roles are
mapped in a runtime environment are environment specific rather than application
specific, itisdesirableto:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same authentication information to represent a principal to
al applications deployed in the same container, and

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Therefore, aservlet container is required to track authentication information
at the container level (rather than at the web application level). This allows users
authenticated for one web application to access other resources managed by the
container permitted to the same security identity.

SRV.12.7 Propagation of Security Identity in EJB™ Calls

A security identity, or principal, must always be provided for usein acall to an
enterprise bean. The default mode in callsto enterprise beans from web applications
isfor the security identity of aweb user to be propagated to the EJB™ container.

96

SECURITY

In other scenarios, web containers are required to allow web users that are not
known to the web container or to the EJB™ container to make calls:

» Web containers are required to support access to web resources by clientsthat
have not authenticated themselves to the container. Thisis the common mode
of access to web resources on the Internet.

» Application code may be the sole processor of signon and customization of
data based on caller identity.

In these scenarios, aweb application deployment descriptor may specify a
run-as element. When it is specified, the container must propagate the security
identity for any call from a servlet to the EJB layer in terms of the security role
name defined in the run-as element. The security role name must one of the
security role names defined for the web application.

For web containers running as part of a J2EE platform, the use of run-as
elements must be supported both for calls to EJB components within the same
J2EE application, and for calls to EJB components deployed in other J2EE
applications.

SRV.12.8 Specifying Security Constraints

Security constraints are a declarative way of defining the protection of web content.
A security constraint associates authorization and or user data constraints with
HTTP operations on web resources. A security constraint, which is represented by
security-constraint in deployment descriptor, consists of the following elements:

» web resource collection (web-resource-collection in deployment descriptor)
* authorization constraint (auth-constraint in deployment descriptor)
* user dataconstraint (user-data-constraint in deployment descriptor)

The HTTP operations and web resources to which a security constraint
applies (i.e. the constrained requests) are identified by one or more web resource
collections. A web resource collection consists of the following elements:

Final Version

Specifying Security Constraints 97

* URL patterns (url-pattern in deployment descriptor)
e HTTP methods (http-method in deployment descriptor)

An authorization constraint establishes a requirement for authentication and
names the authorization roles permitted to perform the constrained requests. A
user must be amember of at least one of the named roles to be permitted to
perform the constrained requests. The special role name “*” is a shorthand for all
role names defined in the deployment descriptor. An authorization constraint that
names no roles indicates that access to the constrained regquests must not be
permitted under any circumstances. An authorization constraint consists of the
following element:

* role name (role-name in deployment descriptor)

A user data constraint establishes a requirement that the constrained requests
be received over a protected transport layer connection. The strength of the
required protection is defined by the value of the transport guarantee. A transport
guarantee of INTEGRAL is used to establish a requirement for content integrity
and atransport guarantee of CONFIDENTIAL is used to establish a requirement
for confidentiality. The transport guarantee of “NONE” indicates that the
container must accept the constrained requests when received on any connection
including an unprotected one. A user data constraint consists of the following
element:

e transport guarantee (transport-guarantee in deployment descriptor)

If no authorization constraint appliesto a request, the container must accept
the request without requiring user authentication. If no user data constraint applies
to arequest, the container must accept the request when received over any
connection including an unprotected one.

SRV.12.8.1 @ Combining Constraints

When aurl-pattern and http-method pair occursin multiple security constraints,
the constraints (on the pattern and method) are defined by combining the individual
congtraints. The rules for combining constraints in which the same pattern and
method occur are as follows:

The combination of authorization constraints that name roles or that imply
rolesviathe name “*” shall yield the union of the role namesin the individual
constraints as permitted roles. A security constraint that does not contain an
authorization constraint shall combine with authorization constraints that name or

98

SECURITY

imply roles to allow unauthenticated access. The special case of an authorization
constraint that names no roles shall combine with any other constraintsto override
their affects and cause access to be precluded.

The combination of user-data-constraints that apply to acommon url-
pattern and http-method shall yield the union of connection types accepted by
the individual constraints as acceptable connection types. A security constraint
that does not contain auser-data-constraint shall combine with other user-
data-constraintSto cause the unprotected connection type to be an accepted
connection type.

SRV.12.82 Example

The following example illustrates the combination of constraints and their
trandation into atable of applicable constraints. Suppose that a deployment
descriptor contained the following security constraints.

<security-constraint>

<web-resource-collection>

<web-resource-name>restricted methods</web-resource-name>
<url-pattern>/*</url-pattern>
<url-pattern>/acme/wholesale/*</url-pattern>
<url-pattern>/acme/retail/*</url-pattern>
<http-method>DELETE</http-method>
<http-method>PUT</http-method>
</web-resource-collection>

<auth-constraint/>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>wholesale</web-resource-name>
<url-pattern>/acme/wholesale/*</url-pattern>
<http-method>GET</http-method>
<http-method>PUT</http-method>
</web-resource-collection>

<auth-constraint>
<role-name>SALESCLERK</roTle-name>

Final Version

Soecifying Security Constraints

</auth-constraint>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>wholesale</web-resource-name>
<url-pattern>/acme/wholesale/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>
<role-name>CONTRACTOR</role-name>
</auth-constraint>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>retail</web-resource-name>
<url-pattern>/acme/retail/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0OST</http-method>

</web-resource-collection>

<auth-constraint>
<role-name>CONTRACTOR</role-name>
<role-name>HOMEOWNER</role-name>

</auth-constraint>

</security-constraint>

The trandation of this hypothetical deployment descriptor would yield the
constraints defined in Table 4.

99

Table 4: Security Constraint Table

SECURITY

http- . .
url-pattern method permitted roles supported connection types

I* DELETE access not constrained
precluded

I* PUT access not constrained
precluded

/acme/whol esal e/* DELETE access precluded not constrained

Jacme/whol esal e/* GET CONTRACTOR not constrained
SALESCLERK

Jacme/whol esal e/* POST CONTRACTOR CONFIDENTIAL

/acme/whol esal e/* PUT access not constrained
precluded

Jacme/retail /* DELETE access precluded not constrained

Jacmelretail /* GET CONTRACTOR not constrained
HOMEOWNER

Jacmelretail /* POST CONTRACTOR not constrained
HOMEOWNER

Jacmelretail /* PUT access precluded not constrained

SRV.12.8.3 Processing Requests

When a Servlet container receives arequest, it shall use the algorithm described in
SRV.11.1 to select the constraints (if any) defined on the ur1-pattern that isthe
best match to the request URI. If no constraints are selected, the container shall
accept the request. Otherwise the container shall determine if the HTTP method of
the request is constrained at the selected pattern. If it is not, the request shall be
accepted. Otherwise, the request must satisfy the constraints that apply to the http-
method at the ur1-pattern. Both of the following rules must be satisfied for the
request to be accepted and dispatched to the associated serviet.

1. The characteristics of the connection on which the request was received must
satisfy at least one of the supported connection types defined by the con-
straints. If thisruleisnot satisfied, the container shall reject the request and re-
direct it to the HTTPS port.!

Final Version

Default Policies 101

2. The authentication characteristics of the request must satisfy any au-
thentication and role requirements defined by the constraints. If thisrule
IS not satisfied because access has been precluded (by an authorization
constraint naming no roles), the request shall be rejected as forbidden
and a403 (sc_rorsippen) status code shall bereturned to the user. If access
isrestricted to permitted roles and the request has not been authenticat-
ed, the request shall be rejected as unauthorized and a 401
(sc_unauTHorizep) status code shall be returned to cause authentication. If
access s restricted to permitted roles and the authentication identity of
the request is not amember of any of theseroles, the request shall bere-
jected as forbidden and a 403 (sc_rorsippen) status code shall be returned
to the user.

SRV.129 Default Policies

By default, authentication is not needed to access resources. Authentication is
needed for requests for aweb resource collection only when specified by the
deployment descriptor.

SRV.12.10 Login and L ogout

Being logged in to aweb application corresponds precisely to there being a
valid non-null value in getUserPrincipal method, discussed in SRV.12.3 and the
javadoc. A null value in that method indicates that a user islogged out.

Containers may create HTTP Session objectsto track login state. If a
developer creates a session while a user is not authenticated, and the container
then authenticates the user, the session visible to developer code after login must
be the same session object that was created prior to login occurring so that thereis
no loss of session information.

- As an optimization, a container should reject the request as forbid-
den and return a403 (sc_roreibpen) status codeif it knowsthat access
will ultimately be precluded (by an authorization constraint naming
no roles).

102 SECURITY

Final Version

cuneren DRV .13

Deployment Descri ptor'

This chapter specifiesthe Java™ Servlet Specification version 2.4 requirements for
Web container support of deployment descriptors. The deployment descriptor
conveys the elements and configuration information of a\Web application between
Application Developers, Application Assemblers, and Deployers.

For Java Servlets v.2.4, the deployment descriptor is defined in terms of an
XML schema document.

For backwards compatibility of applications written to the 2.2 version of the
API, Web containers are also required to support the 2.2 version of the
deployment descriptor. For backwards compatibility of applications written to the
2.3 version of the API, Web containers are also required to support the 2.3 version
of the deployment descriptor. The 2.2 and 2.3 versions are defined in the
appendices.

SRV.13.1 Deployment Descriptor Elements

Thefollowing types of configuration and deployment information are required to be
supported in the Web application deployment descriptor for al servlet containers:

¢ ServletContext |nit Parameters

» Session Configuration

Servlet Declaration

Servlet Mappings

Application Lifecyle Listener classes

Filter Definitions and Filter Mappings

103

104

MIME Type Mappings

Welcome File list
» Error Pages
 Localeand Encoding Mappings

Security information which may also appear in the deployment descriptor is
not required to be supported unless the servlet container is part of an
implementation of the J2EE specification.

The following additional elements exist in the Web application deployment
descriptor to meet the requirements of Web containers that are JSP pages enabled
or part of a J2EE application server. They are not required to be supported by
containers wishing to support only the servlet specification:

e jsp-config
» Syntax for looking up JNDI objects (env-entry, ejb-ref, ejb-Tocal-ref, re-
source-ref, resource—env-ref)

» Syntax for specifying the message destination (message-destination, mes-
sage-destination-ref)

» Referenceto aWeb service (service-ref)

The syntax for these elements is now held in the JavaServer Pages
specification version 2.0, and the J2EE specification version 1.4.

SRV.13.1.1 Packaging and Deployment of JAX-RPC Components

Web containers embedded in a 2EE 1.4 conformant implementation will be
required to support running components written to implement a Web service
endpoint as defined by the JAX-RPC specification [http://jcp.org/jsr/detail/
101.jsp, 10.1.2]. Web containersthat do not implement the extra requirements of
a J2EE 1.4 conformant Web container are not required to support JAX-RPC Web
service components. This section describes the packaging and deployment model
for such JAX-RPC Web component implementations.

JSR-109 [http://jcp.org/jsr/detail/109. jsp] defines the model for
packaging a Web service interface with its associated WSDL description and
associated classes. It defines a mechanism for JAX-RPC-enabled Web containers
to link to a component that implements this Web service. A JAX-RPC Web
service implementation component uses the APIs defined by the JAX-RPC
specification, which defines its contract with the JAX-RPC enabled Web

105

container. It is packaged into the WAR file. The Web service developer makes a
declaration of this component using the usual <servlet> declaration.

The JAX-RPC-enabled Web container must support the devel oper in using the
Web deployment descriptor to define the following information for the endpont
implementation component, using the same syntax asfor HTTP Servlet
components:

« alogical name which may be used to locate this endpoint description among
the other Web components in the WAR

* thefully quaified Java class name of this endpoint implementation
« descriptions of the component which may be displayed in atool

* the order in which the component isinitialized relative to other Web compo-
nents in the Web container

* security-role-references that it may use to test whether the authenticated
user isin alogica security role

» whether or not to override the identity propagated to EJBs called by this com-
ponent

Any servlet initialization parameters defined by the developer for this Web
component may be ignored by the container. Additionally, the JAX-RPC enabled
Web component inherits the traditional Web component mechanisms for defining
information:

* mapping of the component to the Web container’s URL namespace using the
servlet mapping technique

« authorization constraints on Web components using security constraints

* the ability to use servlet filtersto provide low-level byte stream support for
mani pulating JAX-RPC messages using the filter mapping technique

« thetimeout characteristics of any HTTP sessions that are associated with the
component

* linksto J2EE objects stored in the INDI namespace

106

SRV.13.2 Rulesfor Processing the Deployment Descriptor

This section lists some general rules that Web containers and devel opers must note
concerning the processing of the deployment descriptor for a Web application.

» Web containers must remove all leading and trailing whitespace, which is de-
fined as* S(white space)” in XML 1.0 (http://www.w3.0rg/TR/2000/WD-xm1-
2e-20000814), for the element content of the text nodes of a deployment de-
scriptor.

* The deployment descriptor must be valid against the schema. Web containers
and tools that mani pulate Web applications have a wide range of options for
checking the validity of a WAR. Thisincludes checking the validity of the de-
ployment descriptor document held within. The containers and tools that are
part of J2EE technology-compliant implementation are required to validate
deployment descriptor against the XML schemafor structural correctness.
The validation is recommended, but not required for the web containers and
tools that are not part of J2EE technol ogy-compliant implementation.

Additionally, it is recommended that Web containers and tool s that manipu-
late Web applications provide alevel of semantic checking. For example, it
should be checked that arole referenced in a security constraint has the same
name as one of the security roles defined in the deployment descriptor.

In cases of non-conformant Web applications, tools and containers should
inform the devel oper with descriptive error messages. High-end application
server vendors are encouraged to supply thiskind of validity checking in the
form of atool separate from the container.

» The sub elements under web-app can bein an arbitrary order in thisversion of
the specification. Because of the restriction of XML Schema, The multiplicity
of the elements distributable, session-config, welcome-file-1ist, jsp-
config, Togin-config, and Tocale-encoding-mapping-11ist was changed
from “optiona” to “0 or more’. The containers must inform the devel oper
with a descriptive error message when the deployment descriptor contains
more than one element of session-config, jsp-config, and Togin-config.
The container must concatenate the itemsin welcome-file-1ist and Tocale-
encoding-mapping-1ist when there are multiple occurrences. The multiple
occurrence of distributable must be treated exactly in the same way as the
single occurrence of distributable.

107

* URI paths specified in the deployment descriptor are assumed to bein URL-
decoded form. The containers must inform the developer with a descriptive
error message when URL contains CR(#xD) or LF(#xA). The containers must
preserve all other characters including whitespacein URL.

 Containers must attempt to canonicalize paths in the deployment descriptor.
For example, paths of the form /a/. . /b must be interpreted as /b. Paths be-
ginning or resolving to paths that begin with . ./ are not valid paths in the de-
ployment descriptor.

* URI pathsreferring to aresource relative to the root of the WAR, or a path
mapping relative to the root of the WAR, unless otherwise specified, should
begin with aleading /.

 In elements whose value is an enumerated type, the value is case sensitive.

SRV.13.3 Deployment Descriptor

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsd: schema xm ns="http://wwmw. w3. or g/ 2001/ XM_Schema"
t ar get Namespace="http://java. sun. coni xm / ns/j 2ee"
xm ns: j2ee="http://java. sun.conl xm /ns/j 2ee"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Scherma"
el enent For mDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="2.4">

<xsd: annot at i on>
<xsd: docunent ati on>

@ #) web- app_2_4. xsds 1.60 03/08/26

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>
<xsd: docunent ati on>

This is the XML Schena for the Servlet 2.4 depl oyment descri ptor

The depl oynent descriptor nust be named "WEB-| NF/ web.xm " in the
web application’s war file. Al Servlet deployment descriptors
nmust i ndicate the web application schema by using the J2EE
namespace

108

http://java.sun.com xm /ns/j 2ee

and by indicating the version of the schema by
using the version el enent as shown bel ow

<web-app xm ns="http://java. sun.com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="..."
version="2.4">

</ web- app>

The instance docunents may indicate the published version of
the schema using the xsi:schemaLocation attribute for J2EE
nanespace with the follow ng | ocation

http://java.sun.conl xm /ns/j2ee/ web-app_2_4. xsd

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>
<xsd: docunent ati on>

The follow ng conventions apply to all J2EE
depl oynent descriptor elenents unless indicated otherw se

- In elements that specify a pathnane to a file within the
sane JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file's nanmespace. Absolute filenanes (i.e., those
starting with "/") also specify nanes in the root of the
JAR file' s nanespace. |n general, relative nanes are
preferred. The exception is .war files where absolute
nanmes are preferred for consistency with the Servlet API.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:include schemaLocati on="j 2ee_1_4. xsd"/>
<xsd:include schemaLocation="jsp_2_0.xsd"/>

<|__ R EEE RS EEEEEE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEES - >

<xsd: el ement nane="web-app" type="j 2ee: web-appType">

109

<xsd: annot ati on>
<xsd: docunent ati on>

The web-app el enent is the root of the depl oynent
descriptor for a web application. Note that the sub-el enents
of this elenent can be in the arbitrary order. Because of
that, the nmultiplicity of the elenents of distributable,
sessi on-config, welcone-file-list, jsp-config, |ogin-config
and | ocal e- encodi ng- mappi ng-1i st was changed from"?" to "*"
in this schema. However, the depl oynent descriptor instance
file nust not contain nmultiple elenents of session-config
jsp-config, and | ogi n-config. Wien there are nultiple el enents of
wel cone-file-list or |ocal e-encodi ng-mappi ng-1ist, the container
nust concatinate the el ement contents. The nultiple occurance
of the elenent distributable is redundant and the contai ner
treats that case exactly in the same way when there is only
one distributable

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: uni que nane="web-app-servl et - name- uni queness" >

<xsd: annot at i on>
<xsd: docunent at i on>

The servl et elenment contains the name of a servlet.
The nane nust be unique within the web application

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j 2ee: servlet"/>
<xsd:field xpat h="j 2ee: servl et - nane"/ >
</ xsd: uni que>
<xsd: uni que nanme="web-app-filter-nanme-uni queness">

<xsd: annot ati on>
<xsd: docunent ati on>

The filter elenment contains the nane of a filter.
The nanme nust be unique within the web application

</ xsd: docunent at i on>
</ xsd: annot at i on>

110

<xsd:sel ector xpath="j2ee:filter"/>
<xsd:field xpat h="j 2ee: fil ter-name"/>
</ xsd: uni que>
<xsd: uni que nanme="web- app-ej b-I1ocal -ref - name- uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The ej b-1ocal -ref-nane el enent contains the nane of an EJB
reference. The EJB reference is an entry in the web
application’s environnent and is relative to the

java: conp/env context. The name nust be unique within

the web application.

It is reconmended that name is prefixed with "ejb/".

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpath="j2ee:ejb-local-ref"/>
<xsd: field xpat h="j 2ee: ej b-r ef - nane"/ >
</ xsd: uni que>
<xsd: uni que nanme="web- app- ej b-ref - nane- uni queness" >

<xsd: annot at i on>
<xsd: docunent at i on>

The ej b-ref-name el enent contains the name of an EJB
reference. The EJB reference is an entry in the web
application’s environnent and is relative to the

java: conp/env context. The nane nust be unique within
the web application.

It is reconmended that name is prefixed with "ejb/".

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpath="j2ee:ejb-ref"/>
<xsd: field xpat h="j 2ee: ej b-r ef - nane"/ >
</ xsd: uni que>
<xsd: uni que nanme="web- app-resour ce-env-ref-uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

111

The resource-env-ref-name el ement specifies the name of
a resource environnent reference; its value is the

envi ronnment entry nane used in the web application code
The nane is a JNDI nane relative to the java: conp/env
context and must be unique within a web application

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ect or xpat h="j 2ee: resource-env-ref"/>
<xsd: field xpat h="j 2ee: r esour ce- env-r ef - nane"/ >
</ xsd: uni que>
<xsd: uni que nanme="web- app- nessage- desti nati on-ref-uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The nessage- destination-ref-nanme el enent specifies the nane of
a nessage destination reference; its value is the
envi ronnment entry nane used in the web application code
The nane is a JNDI nane relative to the java: conp/env
context and must be unique within a web application

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ect or xpat h="j 2ee: nessage-desti nati on-ref"/>
<xsd:field xpat h="j 2ee: message- desti nati on-ref-name"/>
</ xsd: uni que>
<xsd: uni que nane="web-app-res-ref-nanme-uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The res-ref-nanme el enent specifies the name of a
resour ce nmanager connection factory reference. The nane
is a JNDI nane relative to the java:conp/env context.
The nane nust be unique within a web application

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j 2ee: resource-ref"/>
<xsd: field xpat h="j 2ee: res-ref-nane"/>
</ xsd: uni que>

112

<xsd: uni que name="web- app-env-entry-name-uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The env-entry-name el ement contains the nane of a web
application’s environnent entry. The nanme is a JNDI
nanme relative to the java:conp/env context. The nane
must be unique within a web application.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j 2ee: env-entry"/>
<xsd:field xpat h="j 2ee: env-entry-nane"/ >
</ xsd: uni que>
<xsd: key name="web- app-rol e- nane- key" >

<xsd: annot ati on>
<xsd: docunent ati on>

A rol e-nane-key is specified to allow the references
fromthe security-role-refs

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j 2ee: security-role"/>
<xsd: field xpat h="j 2ee: rol e- nane"/ >
</ xsd: key>
<xsd: keyref name="web-app-rol e-nanme-references"
refer="j 2ee: web- app-rol e- nanme- key" >

<xsd: annot ati on>
<xsd: docunent ati on>

The keyref indicates the references from
security-role-ref to a specified rol e-nane

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpath="j 2ee: servlet/j2ee:security-role-ref"/>
<xsd: field xpat h="j 2ee:rol e-1ink"/>
</ xsd: keyref >

</ xsd: el enent >

<| - EE R R R R R R I S

<xsd: conpl exType nane="aut h-constrai nt Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

->

The aut h-constrai nt Type indicates the user roles that

shoul d be permtted access to this resource

col l ection. The rol e-nane used here nust either correspond
to the rol e-nane of one of the security-role elenents
defined for this web application, or be the specially
reserved role-nane "*" that is a conpact syntax for
indicating all roles in the web application. If both "*"
and rol enames appear, the container interprets this as al
roles. If no roles are defined, no user is allowed access
to the portion of the web application described by the
contai ning security-constraint. The contai ner natches
rol e nanes case sensitively when determ ning access.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nane="r ol e- nane"
type="j 2ee: rol e- naneType"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<| - Khkkhkkkkhkhkhkhkkhhhhkhkhhhhkhkhhhhkhkhhdkhhkhhhhhhhhhkrhhdhkhkhkhhhhkx

<xsd: conpl exType nane="aut h- met hodType" >

<xsd: annot at i on>
<xsd: docunent at i on>

The aut h-met hodType is used to configure the authentication

>

mechani smfor the web application. As a prerequisite to
gai ni ng access to any web resources which are protected by

an aut horization constraint, a user nust have authenticated

113

114

using the configured mechanism Legal values are "BASIC',
"Dl GEST", "FORM', "CLIENT-CERT", or a vendor-specific
aut henti cation schene.

Used in: login-config

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
<!__ R I O S —
<xsd: conpl exType name="di spat cher Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

The di spatcher has four |egal val ues: FORWARD, REQUEST, | NCLUDE,
and ERROR. A val ue of FORWARD neans the Filter will be applied
under Request Di spatcher.forward() calls. A value of REQUEST
neans the Filter will be applied under ordinary client calls to
the path or servlet. A value of INCLUDE neans the Filter will be
appl i ed under RequestDi spatcher.include() calls. A value of
ERROR neans the Filter will be applied under the error page
mechani sm The absence of any dispatcher elenments in a

filter-mapping indicates a default of applying filters only under
ordinary client calls to the path or servlet.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuner ati on val ue="FORWARD"/ >
<xsd: enuner ati on val ue="1 NCLUDE"/ >
<xsd: enuner ati on val ue="REQUEST"/ >
<xsd: enunerati on val ue="ERROR'/ >
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

115

<|__ EE R I I S S I I S I S O - >

<xsd: si npl eType name="encodi ngType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The encodi ngType defines | ANA character sets.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:restriction base="xsd:string">
<xsd: pattern val ue="["s] +"/>
</xsd:restriction>
</ xsd: si npl eType>

<|__ EIE R R I I O R S -—>

<xsd: conpl exType nane="error-codeType">

<xsd: annot ati on>
<xsd: docunent ati on>

The error-code contains an HTTP error code, ex: 404
Used in: error-page

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee: xsdPosi tivel nteger Type">
<xsd: pattern val ue="d{3}"/>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R R R R L -—>

<xsd: conpl exType nane="error - pageType" >

<xsd: annot ati on>
<xsd: docunent at i on>

The error-pageType contains a nmappi ng between an error code
or exception type to the path of a resource in the web

116

appl i cation.
Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: choi ce>
<xsd: el enent nanme="error-code"
type="j 2ee: error-codeType"/ >
<xsd: el ement nane="exception-type"
type="j 2ee: fully-qualified-classType">

<xsd: annot ati on>
<xsd: docunent ati on>

The exception-type contains a fully qualified class
name of a Java exception type

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
</ xsd: choi ce>
<xsd: el ement nane="| ocati on"
type="j 2ee: war - pat hType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The | ocation el ement contains the |ocation of the
resource in the web application relative to the root of
the web application. The value of the |ocation nust have
a leading /.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ EE R I I S S I I S I S O - >

<xsd: conpl exType nanme="filter-mappi ngType" >

<xsd: annot ati on>
<xsd: docunent ati on>

Decl aration of the filter mappings in this web

application is done by using filter-nmappi ngType.

The contai ner uses the filter-mapping

decl arations to decide which filters to apply to a request,
and in what order. The contai ner matches the request URl to
a Servlet in the nornal way. To determine which filters to
apply it matches filter-nmappi ng declarations either on
servl et-nane, or on url-pattern for each filter-nmapping

el enent, depending on which style is used. The order in
which filters are invoked is the order in which
filter-mappi ng declarations that match a request URI for a
servl et appear in the list of filter-mapping el enents. The
filter-name val ue nust be the value of the filter-name
sub-el enents of one of the filter declarations in the

depl oynent descri ptor

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nanme="filter-nane"
type="j 2ee: filter-naneType"/>
<xsd: choi ce>
<xsd: el ement name="url -pattern"
type="j 2ee: url -patternType"/>
<xsd: el ement nane="servl et - nane"
type="j 2ee: servl et - naneType"/ >
</ xsd: choi ce>
<xsd: el enent narme="di spat cher"
type="j 2ee: di spat cher Type"
m nCccurs="0" maxCccurs="4"/>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:1D'/>
</ xsd: conpl exType>

<|__ EE R I S S I I S -

<xsd: conpl exType nanme="filter-nameType">

117

<xsd: annot ati on>
<xsd: docunent ati on>

The | ogical nanme of the filter is declare

by using filter-nameType. This nanme is used to map the

filter. Each filter nane is unique within the web

appl i cation.

Used in: filter, filter-mapping

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: si npl eCont ent >
<xsd: ext ensi on base="j 2ee: nonEnptyStri ngType"/ >
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<| - IR R R R RS R SR ESE RS EREEEEEREEEEEEEEEEEEEEEREEEEEEEEEEREEES

<xsd: conpl exType nanme="filter Type">

<xsd: annot ati on>
<xsd: docunent ati on>

-->

The filterType is used to declare a filter in the web

application. The filter is nmapped to either a servlet or a

URL pattern in the filter-napping el ement, using the
filter-nane value to reference. Filters can access the
initialization paraneters declared in the depl oynent
descriptor at runtine via the FilterConfig interface.

Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionGoup"/>
<xsd: el enent name="filter-nanme"
type="j2ee:filter-nameType"/>
<xsd: el enent name="filter-class"
type="j2ee: fully-qualified-classType">

<xsd: annot ati on>
<xsd: docunent ati on>

118

119

The fully qualified classname of the filter.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
<xsd: el enent name="init - parant
type="j 2ee: param val ueType"
m nCccurs="0" maxCccur s="unbounded" >

<xsd: annot at i on>
<xsd: docunent at i on>

The init-param el ement contains a nane/value pair as
an initialization paramof a servlet filter

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:I1D'/>
</ xsd: conpl exType>
<! PR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEESEEES -
<xsd: conpl exType nane="forml ogi n-confi gType">

<xsd: annot at i on>
<xsd: docunent at i on>

The form |l ogi n-configType specifies the login and error
pages that should be used in formbased login. If formbased
authentication is not used, these elenents are ignored.

Used in: login-config

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent name="form| ogi n- page"
type="j 2ee: war - pat hType" >

<xsd: annot at i on>
<xsd: docunent at i on>

120

The form |l ogi n-page el ement defines the |ocation in the web
app where the page that can be used for |ogin can be
found. The path begins with a leading / and is interpreted
relative to the root of the WAR

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el ement nane="formerror-page"
type="j 2ee: war - pat hType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The formerror-page el ement defines the location in
the web app where the error page that is displayed
when login is not successful can be found.

The path begins with a leading / and is interpreted
relative to the root of the WAR

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ R I O I O S I —

<xsd: conpl exType name="htt p- met hodType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The http-method contains an HTTP nethod recogni zed by the
web- app, for exanple GET, POST

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuneration val ue="CET"/ >
<xsd: enuner ati on val ue="POST"/ >

121

<xsd: enunerati on val ue="PUT"/>
<xsd: enuner ati on val ue="DELETE"/ >
<xsd: enuner ati on val ue="HEAD'/ >
<xsd: enuner ati on val ue="COPTI ONS"/ >
<xsd: enuner ati on val ue="TRACE"/ >
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R R O I O R S O O I O I O -—>

<xsd: conpl exType nane="| ocal e- encodi ng- nappi ng-1i st Type" >

<xsd: annot at i on>
<xsd: docunent ati on>

The | ocal e- encodi ng- mappi ng-1i st contains one or nore
| ocal e- encodi ng- mappi ng(s) .

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane="1 ocal e- encodi ng- mappi ng"
type="j 2ee: | ocal e- encodi ng- mappi ngType"
maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EIE R R S S I S O S R S ->

<xsd: conpl exType nane="1| ocal e- encodi ng- mappi ngType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The | ocal e- encodi ng- mappi ng contains |ocal e nane and
encodi ng nanme. The | ocal e nane nust be either "Language-code"

such as "ja", defined by | SO 639 or "Language-code_Country-code"
such as "ja_JP'. "Country code" is defined by | SO 3166

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="1|ocal e"

122

type="j 2ee: | ocal eType"/ >
<xsd: el ement nane="encodi ng"
type="j 2ee: encodi ngType"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ khkkkkhkhhhkhkkhhhhhkhhhhhkhkhhhhkhddhhhhkhhrhhddhxdddhxrrdhx*x >

<xsd: si npl eType nane="I| ocal eType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The | ocal eType defines valid |ocale defined by | SO 639-1
and | SO 3166.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:restriction base="xsd:string">
<xsd: pattern value="[a-z] {2} (_|-)?2([p{L}-p{Nd}]{2})?"/>
</xsd:restriction>
</ xsd: si npl eType>

<|__ EE R I o S S R O R I O O I O S S O o o -->

<xsd: conpl exType nane="1ogi n-confi gType">

<xsd: annot at i on>
<xsd: docunent ati on>

The | ogi n-configType is used to configure the authentication
met hod that should be used, the real mnanme that should be
used for this application, and the attributes that are
needed by the formlogin nechani sm

Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="aut h- net hod"
type="j 2ee: aut h- met hodType"
m nCccurs="0"/>
<xsd: el ement nane="real m nane"

123

type="j 2ee: string" mnCccurs="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The real m nane el enent specifies the realmnane to
use in HITP Basic authorization.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el enent name="form| ogi n-config"
type="j 2ee: f orm | ogi n- confi gType"
m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EEE RS S SR EEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEES -

<xsd: conpl exType nane="m ne- mappi ngType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The m ne- mappi ngType defines a mappi hg between an extension
and a m nme type.

Used in: web-app

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>

<xsd: annot ati on>
<xsd: docunent ati on>

The extension el ement contains a string describing an
ext ension. exanple: "txt"

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: el enrent nane="ext ensi on"

124

type="j 2ee:string"/>
<xsd: el ement nanme="mi ne-type"
type="j 2ee: m nme-typeType"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ khkkkkhkhhhkhkkhhhhhkhhhhhkhkhhhhkhddhhhhkhhrhhddhxdddhxrrdhx*x >

<xsd: conpl exType nanme="mi ne-typeType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The mine-typeType is used to indicate a defined mme type

Exanpl e:
"text/plain"

Used in: m me-mapping

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: pattern value="[p{L}-p{Nd}]+/[p{L}-p{Nd}.]+"/>
</xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ EE R R R R -->

<xsd: conpl exType nanme="nonEnptyStringType">

<xsd: annot ati on>
<xsd: docunent ati on>

This type defines a string which contains at |east one
character.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: mi nLengt h val ue="1"/>

</xsd:restric
</ xsd: si npl eCon
</ xsd: conpl exType

<|__ kkkkhkkkkkhkkhkkkkk*k

<xsd: conpl exType

<xsd: annot ati on
<xsd: docunent

The securit

security constraints with one or

col l ections

tion>
tent>
>

LR R

nanme="security-constraint Type">

>
ati on>

y-constrai nt Type is used to associate

Used in: web-app

</ xsd: docunen

tation>

</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent

<xsd: el enent

<xsd: el enent

<xsd: el enent

</ xsd: sequence>

<xsd:attribute

nanme="di spl ay- nane"

type="j 2ee: di spl ay- naneType"

m nCccur s="0"

maxQccur s="unbounded"/ >
nane="web- r esour ce-col | ecti on"

t ype="j 2ee: web-resource-col | ecti onType"
maxCccur s="unbounded"/ >

nane="aut h-constraint"

type="j 2ee: aut h- const r ai nt Type"

m nCccurs="0"/>
nanme="user - dat a- constrai nt"

type="j 2ee: user - dat a- const r ai nt Type"
m nCccurs="0"/>

nanme="id" type="xsd:|D'/>

</ xsd: conpl exType>

<|__ *kkkhkkkkhkkkhkkkkhkkk*k

<xsd: conpl exType

R I O O O R I O O R R O O

name="ser vl et - mappi ngType" >

<xsd: annot at i on>

<xsd: docunent

ati on>

nmore web resource

>

-->

The servl et-mappi ngType defines a mappi ng between a
servlet and a url pattern

125

126

Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nanme="servl et - nanme"
type="j 2ee: servl et - naneType"/ >
<xsd: el ement nane="url -pattern”
type="j 2ee: url -patternType"/>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EE R R I R R R R S I - >

<xsd: conpl exType nanme="servl et - nameType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The servl et-nane el enent contains the canonical nane of the
servlet. Each servlet nane is unique within the web
appl i cati on.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si nmpl eCont ent >
<xsd: ext ensi on base="j 2ee: nonEnptyStri ngType"/ >
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R EEE RS EEEEEE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEES - >

<xsd: conpl exType nanme="servl et Type">

<xsd: annot ati on>
<xsd: docunent ati on>

The servletType is used to declare a servlet.

It contains the declarative data of a

servliet. If a jsp-file is specified and the | oad-on-startup
el ement is present, then the JSP should be preconpiled and
| oaded.

127

Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descripti onG oup"/>
<xsd: el enent nanme="servl et - nane"
type="j 2ee: servl et - naneType"/ >
<xsd: choi ce>
<xsd: el ement nane="servl et-cl ass"
type="j2ee: fully-qualified-classType">

<xsd: annot at i on>
<xsd: docunent ati on>

The servlet-class elenent contains the fully
qualified class name of the servlet.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
<xsd: el ement nane="jsp-file"
type="j 2ee:jsp-fil eType"/>
</ xsd: choi ce>
<xsd: el enent name="i nit - parant
type="j 2ee: par am val ueType"
m nCccur s="0" nmaxCccur s="unbounded"/ >
<xsd: el enent name="1| oad- on-startup"”
type="j 2ee: xsdl nt eger Type"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The | oad-on-startup el enent indicates that this
servl et should be | oaded (instantiated and have
its init() called) on the startup of the web
application. The optional contents of these

el enent nmust be an integer indicating the order in
whi ch the servlet should be |oaded. If the value
is a negative integer, or the elenment is not
present, the container is free to |oad the servlet
whenever it chooses. |If the value is a positive

integer or 0, the container nust |oad and
initialize the servliet as the application is
depl oyed. The contai ner nmust guarantee that
servlets marked with [ower integers are |oaded
before servlets marked with higher integers. The
contai ner may choose the order of |oading of
servliets with the sane | oad-on-start-up val ue

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nanme="run-as"
type="j 2ee: run-asType"
m nCccurs="0"/>

<xsd: el ement name="security-role-ref"

type="j 2ee: security-rol e-ref Type"
m nCccur s="0" maxCccur s="unbounded"/ >

</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l--
<xsd: conpl exType nane="sessi on-confi gType">

<xsd: annot at i on>
<xsd: docunent ati on>

R R O o O O I O S O S I I O O R O

-->

The session-configType defines the session paraneters

for this web application
Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nanme="sessi on-ti neout"
type="j 2ee: xsdl nt eger Type"
m nCccurs="0">

<xsd: annot at i on>
<xsd: docunent ati on>

The session-tinmeout el ement defines the default

128

129

session timeout interval for all sessions created
in this web application. The specified timeout

must be expressed in a whol e nunber of mnutes.

If the tineout is O or less, the container ensures
the default behavi our of sessions is never to tine
out. If this elenent is not specified, the container
nmust set its default tinmeout period

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: conpl exType>

<|__ ERE R R R R R R S -——>

<xsd: conpl exType nane="transport - guar ant eeType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The transport-guarant eeType specifies that the conmunication
between client and server should be NONE, |NTEGRAL, or

CONFI DENTI AL. NONE neans that the application does not
requi re any transport guarantees. A value of | NTEGRAL neans
that the application requires that the data sent between the
client and server be sent in such a way that it can't be
changed in transit. CONFIDENTI AL neans that the application
requires that the data be transmitted in a fashion that
prevents other entities fromobserving the contents of the
transm ssion. In nost cases, the presence of the | NTEGRAL or
CONFI DENTI AL flag will indicate that the use of SSL is
required

Used in: user-data-constraint

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuner ati on val ue="NONE"/>
<xsd: enunerati on val ue="1 NTEGRAL"/ >
<xsd: enuner ati on val ue=" CONFI DENTI AL"/ >

130

</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R R R S -—>

<xsd: conpl exType nane="user - dat a- constrai nt Type">

<xsd: annot ati on>
<xsd: docunent ati on>

The user-data-constrai nt Type is used to indicate how
data communi cated between the client and contai ner shoul d be
pr ot ect ed

Used in: security-constraint

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nanme="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el enent nanme="transport - guar ant ee"
type="j 2ee: transport - guar ant eeType"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:1D'/>
</ xsd: conpl exType>

<|__ EE R S I S S I I S -—>

<xsd: conpl exType nane="war - pat hType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The el ements that use this type designate a path starting
with a "/" and interpreted relative to the root of a WAR
file.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">

<xsd: pattern value="/.*"/>
</xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<l --

khkkhhkkhkhdhhkhddhhkdhdddhdhdhdddhdhddhhdddhrxddhdhrrrddrrrddhx

<xsd: si npl eType name="web- app-versi onType" >

<xsd: annot at i on>
<xsd: docunent at i on>

This type contains the recogni zed versions of

web- application supported. It is used to designate the

version of the web application.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="2.4"/>
</xsd:restriction>

</ xsd: si npl eType>

<| - Khkkhkkkkhkhhkhkkhhhkhkhkhhhkhkhkhhhkhkhkhkhdkhhkdkhhkhkxhkhhkhkrhkhkdkhkhkkhhhkhkx

<xsd: conpl exType nane="web-appType">
<xsd: choi ce m nQccurs="0" maxQccurs="unbounded" >
<xsd: group ref="j2ee: descripti onG oup"/>

<xsd: el enent

<xsd: el enent

nanme="di stri but abl e"
type="j 2ee: enpt yType"/ >
name="cont ext - par ant

type="j 2ee: param val ueType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The cont ext - param el ement contai ns the decl aration

of a web application’s servlet context
initialization paraneters

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent

name="filter"
type="j2ee:filterType"/>

->

>

131

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:
<xsd:

<xsd:

el ement

el ement

el ement

el ement

el ement

el enent

el ement

el ement

el ement

el ement

el ement

el enent

name="fil t er- mappi ng"

type="j 2ee: filter-mappi ngType"/>
name="1i st ener"

type="j 2ee: | istener Type"/>
nanme="servl et"
type="j 2ee: servl et Type"/ >
nane="ser vl et - mappi ng"

type="j 2ee: servl et - mappi ngType"/ >
nane="sessi on-confi g"

type="j 2ee: sessi on-confi gType"/ >
name="m me- mappi ng"

type="j 2ee: m me- mappi ngType"/ >
name="wel cone-file-list"

type="j 2ee: wel conme-file-listType"/>
name="err or - page"

type="j 2ee: error-pageType"/ >
nanme="j sp-confi g"

type="j 2ee: j sp-confi gType"/ >
nane="security-constraint"

type="j 2ee: security-constraint Type"/>
nane="1 ogi n- confi g"

type="j 2ee: | ogi n-confi gType"/>
nane="security-role"

type="j 2ee: security-rol eType"/>

group ref="j2ee:jndi Environment Ref sG oup"/ >

el ement

el ement

</ xsd: choi ce>
<xsd: attribute nane="version"

name="nmessage- desti nati on"

type="j 2ee: nessage- desti nati onType"/ >

narme="1 ocal e- encodi ng- mappi ng-1ist"

type="j 2ee: | ocal e- encodi ng- mappi ng-1i st Type"/ >

type="j 2ee: web- app- ver si onType"
use="requi red"/ >

<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EIE R I S I S O O O O R S -—>

<xsd: conpl exType nane="web-resource-col | ecti onType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The web-resource-collectionType is used to identify a subset
of the resources and HTTP nmet hods on those resources wthin

132

a web application to which a security constraint applies. If
no HTTP nethods are specified, then the security constraint
applies to all HTTP nethods.

Used in: security-constraint

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane="web-resour ce- nane"
type="j 2ee: string">

<xsd: annot at i on>
<xsd: docunent ati on>

The web-resource-nane contains the nanme of this web
resource coll ection.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el enent nanme="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nane="url -pattern"”
type="j 2ee: url - patternType"
maxCOccur s="unbounded"/ >
<xsd: el enent name="htt p- et hod"
type="j 2ee: htt p- net hodType"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ khkkhhkkkkhhhhkhkkhkhhhkhkkhdhhhhkhkhdhhkhkhdhhkddddhhkrddhhkrkrddhkxrdd%x ->

<xsd: conpl exType nane="wel cone-file-IlistType">

<xsd: annot at i on>
<xsd: docunent ati on>

The wel cone-file-list contains an ordered list of welcone
files el enments.

133

Used in: web-app

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent name="wel conme-file"
type="xsd: string"
maxQccur s=" unbounded" >

<xsd: annot at i on>
<xsd: docunent ati on>

The wel cone-file elenent contains file nane to use
as a default welcome file, such as index. html

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: conpl exType>

</ xsd: schema>

134

135

SRV.13.4 Deployment Descriptor Diagram

This section illustrates the elements in deployment descriptor. All diagrams follow
the convention displayed in Figure SRV.13.1. Attributes are not shown in the
diagrams. See Deployment Descroptor Schema for the detailed information.

Figure SRv.13.1 Convention of the Diagram of Deployment Descriptor Element

| + Mandatory Element |

@ 4+ Element Occurs 0 or More |

@ + Optional Element |

@ 4+ Element Occurs 1 or more |

1. web-app Element
Theweb- app element isthe root deployment descriptor for aWeb application. This

element contains the following elements.This element has arequired attribute ver -
si on to specify to which version of the schema the deployment descriptor
conforms. All sub elements under this element can bein an arbitrary order.

136

Figure SRV.13.2 web-app Element Structure

@[description |

&) + display-name |

%) ¢ icon |

(%) + distributable |

() # context-param |
) fiter |

) # filter-mapping |
@/ stener |

%)+ serviet |

() # serviet-mapping |

() # session-config |

(%) # mime-mapping |

) » welcome-file-list |

@[+ emorpage |
@[+ Jspsonfis

2. description Element

()| * security-constraint |

(% * login-config

+ security-role |

+ ejb-ref
@[+ resourcerrer

() * resource-env-ref |

®

@ + message-destination-ref |

(%] * message-destination |

_@)| + locale-encoding-mapping-list |

Thedescri pti on element isto provide atext describing the parent element. This
element occurs not only under the web- app element but also under other multiple

elements. It has an optiona attribute xni : | ang to indicate which language is used
in the description. The default value of this attribute is English (“en™).

3. display-name Element

Thedi spl ay- name contains a short name that isintended to be displayed by tools.
The display name need not to be unique. This element has an optional attribute

xm : | ang to specify the language.

4. icon Element
Thei con contains small-icon and large-icon elements that specify the file names

for small and large GIF or JPEG icon images used to represent the parent element in
aGuUlI toal.

Figure SRV.13.3 icon Element Structure

+ small-icon

(7) * large-icon

5. distributable Element
Thedi st ri but abl e indicates that this Web application is programmed
appropriately to be deployed into a distributed servlet container.

6. context-param Element
The cont ext - par amcontains the declaration of aWeb application’s serviet

context initialization parameters.

7. filter Element
Thefilter declaresafilter in the Web application. Thefilter is mapped to either a

servliet or aURL patterninthefi | t er - mappi ng lement, usingthefi | t er - name
valueto reference. Filters can accessthe initialization parameters declared in the
deployment descriptor at runtime viathe FilterConfig interface. Thefi | t er - name
element isthe logical name of thefilter. It must be unique within the Web
application. The element content of fi | t er - name element must not be empty. The

137

filter-class isthefull

y qualified class name of thefilter. Thei ni t - par am

element contains name-va ue pair as an initialization parameter of thisfilter.

Figure SRV.

13.4 filter Element Structure

@[+ desoripion |

| # display-name |

+icon

+ filter-name

#+ filter-class

Ii

(%) + init-param |4 param-name |

+ param-value |

8. filter-mapping Element

Thefilter-mappi ng isused by the container to decide which filtersto apply to a

request in what order. The value of thefi I t er - name must be one of the filter
declarationsin the deployment descriptor. The maching regquest can be specified
githerur| - pattern or servl et - nane.

Figure SRV.

13,5 filter-mapping Element Structure

+ filter-name

+ filter-mapping [o

=

+ serviet-name |

+ dispatcher

e

138

139

9. listener Element

Thel i st ener indicates the deployment properties for an application listener bean.
Thesub-element | i st ener - cl ass declaresthat aclassin the application must be
registered as a Web application listener bean. The valueis the fully qualified
classname of the listener class.

Figure SRV.13.6 listener Element Structure

[description

@) + display-name |

(:4 + icon

—{ + listener-class

+ listener }—

10. servlet Element

Theser vl et isusedto declareaservlet. It containsthe declarative data of aservlet.
Thej sp-fil e element contains the full path to a JSP file within the web
application beginningwitha*“/". If aj sp-fi | e isspecified and thel oad- on-

st art up element is present, then the JSP should be precompiled and loaded. The
ser vl et - name element contains the canonical name of the servlet. Each serviet
nameis unique within the web application. The element content of ser vl et - nane
must not be empty. Theser vl et - cl ass contains the fully qualified class name of
the servlet. Ther un- as element specifies the identity to be used for the execution
of acomponent. It contains an optional descri pt i on, and the name of a security
role specified by ther ol e- nane dement. Theelement | oad- on- st art up
indicatesthat this servlet should be loaded (instantiated and haveitsinit() called) on
the startup of the Web application. The element content of this element must be an
integer indicating the order in which the servlet should be loaded. If the valueisa
negative integer, or the element is not present, the container isfreeto load the servlet
whenever it chooses. If the value is a positive integer or 0, the container must load
and initialize the servlet asthe application is deployed. The container must
guarantee that servlets marked with lower integers are loaded before serviets
marked with higher integers. The container may choose the order of loading of
servletswith the samel oad- on- st art up value. Thesecurity-rol e-ref
element declares the security role reference in a component’s or in a deployment
component’s code. It consists of an optional descr i pt i on, the security role name

140

used in the code(r ol e- name), and an optional link to a security role(r ol e- 1§ nk).
If the security roleis not specified, the deployer must choose an appropriate security
role.

Figure SRV.13.7 servlet Element Structure

@ + display-name |

+ icon

|+ serviet-name |

)

£

,—| + serviet-class |

OR\\

+ senvjet

+ init-param

(71 + load-on-startup |

% mn-as |

+ role-link

%) * security-role-ref

141

11. servlet-mapping Element
Theser vl et - mappi ng defines amapping between a serviet and a URL pattern.

Figure SRV.13.8 servlet-mapping Element Structure

_{ + servlet-name |

_| + un-pattem

+ serviet-mapping |—

12. session-config Element

Thesessi on- conf i g definesthe session parametersfor this Web application. The
sub-element sessi on-ti neout defines the default session timeout interval for all
sessions created in this Web application. The specified timeout must be expressed in
awhole humber of minutes. If the timeout is 0 or less, the container ensures the
default behaviour of sessionsis never to time out. If thiselement is not specified, the
container must set its default timeout period.

Figure SRV.13.9 session-config Element Structure

+ session-config |—@||¢ sessioh-timeout

13. mime-mapping Element
Theni me- mappi ng defines a mapping between an extension and amimetype. The
ext ensi on element contains a string describing an extension, such as “txt”.

Figure SRV.13.10 mime-mapping Element Structure

—| + extension
—| + mime-type

+ mime-mapping |

142

14. welcome-file-list Element

Thewel come-fil e-1i st containsan ordered list of welcomefiles. The sub-
element wel cone-fi | e contains afile name to use as a default welcomefile, such
as index.html

Figure SRV.13.11 welcome-file-list Element Structure

|¢ welcome-file-list }—@{ + welcome-file

15. error-page Element

Theer r or - page contains amapping between an error code or an exception typeto
the path of aresource in the Web application. The sub-element except i on-t ype
contains afully qualified class name of a Java exception type. The sub-element

| ocat i on element contains the location of the resource in the web application
relative to the root of the web application. The value of the location must have a
leading ‘/".

Figure SRV.13.12 error-page Element Structure

+ arror-code

+ exception-type |

143

16. jsp-config Element
Thej sp- confi g isused to provide global configuration information for the JSP

filesin aweb application. It hastwo sub-elements, t agl i b andj sp- property-
group. Thet agl i b element can be used to provide information on atag library
that is used by a JSP page within the Web application. See JavaServer Pages
specification version 2.0 for detail.

Figure SRV.13.13 jsp-config Element Structure

+ taglib-uri

|+ taglib-location |

+ jsp-config

%) * jsp-property-group |

17. security-constraint Element
Thesecurity-constrai nt isused to associate security constraints with one or

more web resource collections. The sub-element web- r esour ce-col | ecti on
indetifies a subset of the resources and HT TP methods on those resources within a
Web application to which a security constraint applies. The aut h- const r ai nt
indicates the user roles that should be permitted access to this resource collection.
Ther ol e- name used here must either correspond to ther ol e- name of one of the
security-rol e elements defined for this Web application, or be the specialy
reserved role-name "*" that is a compact syntax for indicating al rolesin the web
application. If both "*" and rolenames appear, the container interpretsthisasal
roles. If no roles are defined, no user is allowed access to the portion of the Web
application described by the containing securi t y- const r ai nt . The container
matches role names case sensitively when determining access. The user - dat a-
constrai nt indicates how data communicated between the client and container
should be protected by the sub-element t r anspor t - guar ant ee. Thelega values
of thet r ansport - guar ant ee iseither one of NONE, | NTEGRAL, or CONFI DEN-
TI AL.

144

Figure SRV.13.14 security-constraint Element Structure

@[dispiay-name |

— ¢ web-resource-name |
@I desepton

@0 ur-pattem

+ security-constraint | @) + http-method |

+ description

() + web-resource-collection |

(7) + auth-constraint

+ role-name

+ description

{7+ user-data-constraint

+ transport-guarantee

18. login-config Element

Thel ogi n- conf i g isused to configure the authentication method that should be
used, the realm name that should be used for this application, and the attributes that
are needed by the form login mechanism. The sub-element aut h- met hod
configures the authentication mechanism for the Web application. The element
content must be either BASI C, DI GEST, FORM, CLI ENT- CERT, or avendor-specific
authentication scheme. Ther eal m nane indicates the reelm nameto usein HTTP
BASIC authentication. Thef or m | ogi n- conf i g specifiesthe login and error
pages that should be used in FORM based login. If FORM based login is not used,
these elements are ignored.

145

Figure SRV.13.15 login-config Element Structure

+ auth-method |

+ login-config (7} * realm-name

+ form-login-config |—

— # form-login-page |

-+ form-error-page |

19. security-role Element
Thesecuri ty-rol e defines asecurity role. The sub-element r ol e- nane

designates the name of the security role. The name must conformto thelexical rules
for NMTOKEN.

Figure SRV.13.16 Security-role Element Structure
+ description
+ security-role
+ role-name

20. env-entry Element

Theenv- ent ry declares an application’s environment entry. The sub-element
env-ent ry- nane contains the name of a deployment component’s environment
entry. The nameisaJNDI name relative to the java.comp/env context. The name
must be unigue within a deployment component. Theenv- ent ry-t ype contains
the fully-qualified Java type of the environment entry value that is expected by the
application’s code. The sub-element env- ent ry- val ue designatesthe value of a
deployment component’s environment entry. The value must be a String that isvalid

for the constructor of the specified type that takes asingle String as aparameter, or a
single character for java.lang.Character.

Figure SRV.13.17 env-entry Element Structure

@[desoription

|+ env-entry-name |

|+ env-entry-type |

L_{7) + env-entry-value |

21. eb-ref Element

Theej b-ref declaresthe reference to an enterprise bean’'shome. Theej b-r ef -
nanme specifies the name used in the code of the deployment component that is
referencing the enterprise bean. The ej b-r ef - t ype isthe expected type of the
referenced enterprise bean, whichiseither Enti ty or Sessi on. Thehone defines
the fully qualified name of the the referenced enterprise bean’s home interface. The
r enot e defines the fully qualified name of the referenced enterprise bean’s remote
interface. Theej b- 1 i nk specifiesthat an EJB referenceislinked to the enterprise
bean. See Java 2 Patform, Enterprise Edition, version 1.4 for more detail.

Figure SRV.13.18 gb-ref Element Structure

[description

|+ ejb-ref-name |

+ remote

+ ejb-ref |

146

147

22. gjb-local-ref Element

Theej b-1 ocal - ref declaresthe reference to the enterprise bean’s local home.
Thel ocal - hone definesthe fully qualified name of the enterprise bean’slocal
homeinterface. Thel ocal definesthe fully qualified name of the enterprise bean’'s
local interface.

Figure SRV.13.19 gb-local-ref Element Structure

@[deseription

+ gjb-ref-type

+ ejb-local-ref

+ local-home

+ local

[+
I :
4
1
=
(1)
3
i

7+ ejb-link

23. service-ref Element

Theservi ce-ref declaresthe referenceto aWeb service. Theser vi ce-ref -
nane declaresthe logical name that the components in the module use to ook up
the Web service. It is recommended that all service reference names start with /
servi ce/ . Theservi ce-i nt erf ace definesthe fully quaified class name of the
JAX-RPC Serviceinterface that the client depends on. In most cases, the value will
bejavax.xml.rpc.Service. A JAX-RPC generated Service Interface classmay aso be
specified. Thewsd! - fi | e element contains the URI location of aWSDL file. The
location isrelative to theroot of the module. Thej axr pc- mappi ng-fi | e contains
the name of afile that describes the JAX-RPC mapping between the Javainteraces
used by the application and the WSDL descriptioninthewsdl - fi | e. Thefile name
isardative path within the modulefile. Theser vi ce- gnane eement declaresthe
specific WSDL service element that is being refered to. 1t isnot specified if no
wsdl -fil e isdeclared. Theport - component - r ef element declaresaclient
dependency on the container for resolving a Service Endpoint Interfaceto aWSDL
port. It optionally associates the Service Endpoint Interface with a particular port-
component. Thisisonly used by the container for a Service.getPort(Class) method
cal. Thehandl er element declaresthe handler for aport-component. Handlers can

148

accessthei ni t - par amname-value pairs using the Handlerinfo interface. If port-
name s not specified, the handler is assumed to be associated with al ports of the
service. See JSR-109 Specification [http://www.jcp.org/en/jsr/
detail?id=921] for detail. The container that is not a part of a J2EE
implementation is not required to support this element.

Figure SRV.13.20 service-ref Element Structure
@[deseription
@) + display-name |
& feon |

|+ service-ref-name |

|+ service-interface |
7]+ wsdl-file

(71 + jaxrpe-mapping-file |

(7 # service-gname |

(%] # port-component-ref |

@[handier |

24. resource-ref Element

Ther esour ce-ref containsthe declaration of a deployment component’s
reference to the external resource. Ther es- r ef - nane specifiesthe name of a
resource manager connection factory reference. The nameisaJNDI name relative
to the java:comp/env context. The name must be unique within a deployment file.
Theres-t ype element specifies the type of the data source.The type isthe fully
qualified Javalanguage class or the interface expected to be implemented by the
data source. Ther es- aut h specifies whether the deployment component code
signs on programmatically to the resource manager, or whether the container will
sign on to the resource manager on behaf of the deployment component. In the
latter case, the container uses the information supplied by the deployer. Ther es-
shari ng- scope specifieswhether connections obtained through the given

149

resource manager connection factory reference can be shared. The value, if
specified, must be either Shar eabl e or Unshar eabl e.

Figure SRV.13.21 resource-ref Element Structure

@[desoription

|¢ res-ref-name |

(%) + res-sharing-scope

25. resour ce-env-ref Element
Ther esour ce- env-ref containsthe deployment component’s reference to the

administered object associated with aresource in the deployment component’s
environment. Ther esour ce- env-r ef - name specifies the name of the resource
environment reference. The value is the environment entry name used in the
deployment component code and is a INDI name relative to the java.comp/env
context and must be unique within the deployment component. Ther esour ce-
env-ref - t ype specifiesthe type of the resource environment reference. It isthe
fully qualified name of a Javalanguage class or the interface.

Figure SRV.13.22 resource-env-ref Element Structure

| + resource-env-ref-name |

+ resource-env-ref

+ resource-env-ref-type |

26. message-destination-ref Element
Thenessage- desti nati on-ref element contains adeclaration of deployment

component’s reference to a message destination associated with aresourcein
deployment component’s environment. The nessage- dest i nati on-r ef - name
element specifies the name of a message destination reference; itsvalue isthe

environment entry name used in deployment component code. The nameisaJNDI
name relative to the javaccomp/env context and must be unique within an gjb-jar for
enterprise beans or a deployment file for others. The nessage- desti nati on-

t ype specifiesthetype of the destination. The typeis specified by the Javainterface
expected to be implemented by the destination. The message- dest i nat i on-
usage specifiesthe use of the message destination indicated by the reference. The
value indicates whether messages are consumed from the message destination,
produced for the destination, or both. The Assembler makes use of thisinformation
in linking producers of a destination with its consumers. Thenessage- dest i na-
tion-1i nk links amessage destination reference or message-driven bean to a
message destination. The Assembler setsthe value to reflect the flow of messages
between producers and consumersin the application. The value must be the mes-
sage- dest i nat i on- name of amessage destination in the same deployment file or
in another deployment file in the same J2EE application unit. Alternatively, the
value may be composed of a path name specifying a deployment file containing the
referenced message destination with the message- dest i nat i on- name of the
destination appended and separated from the path name by "#". The path nameis
relative to the deployment file containing deployment component that is referencing
the message destination. This allows multiple message destinations with the same
name to be uniquely identified.

Example:
<message-destination-ref>
<message-destination-ref-name>jms/StockQueue</message-
destination-ref-name>
<message-destination-type>javax.jms.Queue</message-
destination-type>
<message-destination-usage>Consumes</message-destination-
usage>
<message-destination-1ink>CorporateStocks</message-
destination-T1ink>
</message-destination-ref>

150

151

Figure SRV.13.23 message-destination-ref Element Structure

—%| + description

|+ message-destination-ref-name |

+ message-destination-ref |— |¢ message-destination-type |

|¢ message-destination-usage |

—@j + message-destination-link |

27. message-destination Element

The message-destination specifies a message destination. The logical destination
described by this element is mapped to a physical destination by the deployer. The
message-destination-name el ement specifiesaname for amessage destination. This
name must be unique among the names of message destinations within the
deployment file.

Example:

<message-destination>
<message-destination-name>CorporateStocks</message-

destination-name>

</message-destination>

Figure SRV.13.24 message-destination Element Structure

—%) + description |

(%) + display-name |

(:4 +icon

_{0 message-destination-name

+ message-destination |—

152

28. locale-encoding-mapping-list Element
Thel ocal e- encodi ng- mappi ng- | i st contains the mapping between the locale
and the encoding. specified by the sub-element | ocal e- encodi ng- mappi ng.

Example:
<locale-encoding-mapping-Tist>
<locale-encoding-mapping>
<locale>ja</locale>
<encoding>Shift_JIS</encoding>
</locale-encoding-mapping>
</locale-encoding-mapping-Tist>

Figure SRV.13.25 |ocale-encoding-mapping-list Element Structure

+ locale-encoding-mapping-list + locale
+ locale-encoding-mapping |—
—|¢ encoding

SRV.13.5 Examples

The following examplesillustrate the usage of the definitions listed in the
deployment descriptor schema.

153

SRV.135.1 A Basic Example

<?xml version="1.0" encoding="IS0-8859-1"7>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
version="2.4">

<display-name>A Simple Application</display-name>
<context-param>
<param-name>Webmaster</param-name>
<param-value>webmaster@mycorp.com</param-value>
</context-param>
<servlet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServilet
</serviet-class>
<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
</serviet>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>
<welcome-file-Tist>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
</welcome-file-1ist>
<error-page>
<error-code>404</error-code>
<location>/404.html</location>
</error-page>
</web-app>

154

SRV.135.2 An Example of Security

<?xml version="1.0" encoding="IS0-8859-1"7>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<display-name>A Secure Application</display-name>
<servilet>
<servlet-name>catalog</serviet-name>
<servlet-class>com.mycorp.CatalogServiet
</serviet-class>
<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
<security-role-ref>
<role-name>MGR</role-name>
<!-- role name used in code -->
<role-Tink>manager</role-1ink>
</security-role-ref>
</serviet>
<security-role>
<role-name>manager</role-name>
</security-role>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</servlet-mapping>
<security-constraint>
<web-resource-collection>
<web-resource-name>SalesInfo
</web-resource-name>
<url-pattern>/salesinfo/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL
</transport-guarantee>

155

</user-data-constraint>
</security-constraint>
</web-app>

cuneren DRV .14

javax.servlet

This chapter describes the javax.servlet package. The chapter includes content that
is generated automatically from javadoc embedded in the actual Java classes and
interfaces. This alows the creation of asingle, authoritative, specification docu-
ment.

SRV.14.1 Generic Servlet I nterfaces and Classes

The javax.serviet package contains a number of classes and interfaces that describe
and define the contracts between a servlet class and the runtime environment pro-
vided for an instance of such aclass by a conforming servlet container.

The Serviet interface is the central abstraction of the serviet API. All servlets
implement this interface either directly, or more commonly, by extending a class
that implements the interface. The two classes in the servliet API that implement
the Serviet interface are GenericServlet and HttpServiet . For most purposes,
developers will extend HttpServiet to implement their servliets while
implementing web applications employing the HTTP protocol.

The basic Serviet interface defines a service method for handling client
requests. Thismethod is called for each request that the servlet container routes to
an instance of a servlet.

SRV.14.2 Thejavax.servlet package

The following section summarizes the javax.serviet package:

156

157

JAVAX.SERVLET

Class Summary

Interfaces
Filter

FilterChain

FilterConfig

RequestDispatcher

Serviet

ServletConfig

ServletContext

ServletContextAt-
tributelistener

ServletContextlistener

ServletRequest

ServletRequestAt-
tributelistener

A filter is an object that performs filtering tasks
on either the request to a resource (a servlet or
static content), or on the response from a
resource, or both.

Filters perform filtering in the doFilter
method.

A FilterChain is an object provided by the
servlet container to the developer giving a view
into the invocation chain of a filtered request
for a resource.

A filter configuration object used by a servlet
container to pass information to a filter during
initialization.

Defines an object that receives requests from
the client and sends them to any resource (such
as a servlet, HTML file, or JSP file) on the
server.

Defines methods that all servlets must
implement.

A servlet configuration object used by a servlet
container to pass information to a servlet
during initialization.

Defines a set of methods that a servlet uses to
communicate with its servlet container, for
example, to get the MIME type of a file,
dispatch requests, or write to a log file.

Implementations of this interface receive
notifications of changes to the attribute list on
the servlet context of a web application.

Implementations of this interface receive
notifications about changes to the servlet
context of the web application they are part of.

Defines an object to provide client request
information to a servlet.

A ServletRequestAttributeListener can be
implemented by the developer interested in
being notified of request attribute changes.

Final Version

The javax.serviet package

Class Summary

ServletRequestlListener

ServletResponse

SingleThreadMode]l

Classes
GenericServlet

ServletContextAttribute

Event

ServletContextEvent

ServletInputStream

ServletOQutputStream

ServletRequestAttribute

Event

ServletRequestEvent

ServletRequestWrapper

ServletResponseWrapper

Exceptions

A ServletRequestListener can be implemented
by the developer interested in being notified of
requests coming in and out of scope in a web
component.

Defines an object to assist a servlet in sending a
response to the client.

Ensures that servlets handle only one request at a
time.

Defines a generic, protocol-independent servlet.

This is the event class for notifications about
changes to the attributes of the servlet context
of a web application.

This is the event class for notifications about
changes to the servlet context of a web
application.

Provides an input stream for reading binary
data from a client request, including an efficient
readLine method for reading data one line at a
time.

Provides an output stream for sending binary
data to the client.

This is the event class for notifications of
changes to the attributes of ServletRequest in
an application.

Events of this kind indicate lifecycle events for
a ServletRequest.

Provides a convenient implementation of the
ServletRequest interface that can be subclassed
by developers wishing to adapt the request to a
Servlet.

Provides a convenient implementation of the
ServletResponse interface that can be subclassed
by developers wishing to adapt the response
from a Servlet.

158

159

JAVAX.SERVLET
Class Summary
ServiletException Defines a general exception a servlet can throw
when it encounters difficulty.
UnavailableException Defines an exception that a servlet or filter
throws to indicate that it is permanently or tem-
porarily unavailable.

SRV.142.1 Filter

public interface Filter

A filter isan object that performs filtering tasks on either the request to aresource
(aservlet or static content), or on the response from aresource, or both.

Filters perform filtering in the doFilter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a refer-
ence to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of aweb application

Examples that have been identified for this design are
1) Authentication Filters

2) Logging and Auditing Filters

3) Image conversion Filters

4) Data compression Filters

5) Encryption Filters

6) Tokenizing Filters

7) Filtersthat trigger resource access events

8) XSL/T filters

9) Mime-type chain Filter

Since: Servlet 2.3

SRV.14.21.1 Methods

destroy()

public void destroy()

Called by the web container to indicate to afilter that it is being taken out of
service. Thismethod isonly called once al threads within the filter's doFilter
method have exited or after atimeout period has passed. After the web con-

tainer calls this method, it will not call the doFilter method again on this

Final Version

The javax.servlet package 160

instance of thefilter.

This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that
any persistent state is synchronized with thefilter’s current state in memory.

doFilter (ServletRequest, ServletResponse, Filter Chain)

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException

The doFi1ter method of the Filter is called by the container each time a
reguest/response pair is passed through the chain due to a client request for a
resource at the end of the chain. The FilterChain passed in to this method
allows the Filter to pass on the request and response to the next entity in the
chain.

A typical implementation of this method would follow the following pattern:-
1. Examine the request

2. Optionally wrap the request object with a custom implementation to filter
content or headers for input filtering

3. Optionally wrap the response object with a custom implementation to fil-
ter content or headers for output filtering

4. a) Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()),

4. b) or not pass on the request/response pair to the next entity in the filter
chain to block the request processing

5. Directly set headers on the response after invocation of the next entity in
the filter chain.

Throws:
ServletException, IOException

init(Filter Config)

pubTlic void init(FilterConfig filterConfig)
throws ServletException

Called by the web container to indicate to afilter that it is being placed into
service. The servlet container callsthe init method exactly once after instanti-
ating thefilter. Theinit method must complete successfully beforethefilter is
asked to do any filtering work.

The web container cannot place the filter into serviceif the init method either
1.Throws a ServletException
2.Does not return within atime period defined by the web container

161 JAVAX.SERVLET

Throws:
ServletException

SRV.14.2.2 FilterChain

pubTlic interface FilterChain

A FilterChain is an object provided by the servlet container to the devel oper giv-
ing aview into the invocation chain of afiltered request for aresource. Filters use
the FilterChain to invoke the next filter in the chain, or if the calling filter is the
last filter in the chain, to invoke the resource at the end of the chain.

Since: Servlet 2.3
See Also: Filter

SRV.14.2.2.1 Methods

doFilter (ServletRequest, ServletResponse)

public void doFilter(ServletRequest request,
ServletResponse response)
throws IOException, ServletException

Causes the next filter in the chain to be invoked, or if the calling filter isthe
last filter in the chain, causes the resource at the end of the chain to be
invoked.

Parameters:
request - the request to pass aong the chain.

response - the response to pass along the chain.

Throws:
ServletException, IOException

Since: 2.3

SRV.14.2.3 FilterConfig

pubTlic interface FilterConfig

A filter configuration object used by a servlet container to pass information to a
filter during initialization.

Since: Servlet 2.3
See Also: Filter

Final Version

The javax.serviet package

SRV.14.2.3.1 Methods

getFilter Name()
public java.lang.String getFilterName()

Returns the filter-name of thisfilter as defined in the deployment descriptor.

getl nitPar ameter (String)

public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter,
or null if the parameter does not exist.

Parameters:
name - a String specifying the name of theinitialization parameter

Returns: aString containing the value of the initialization parameter

getl nitParameter Names()

public java.util.Enumeration getInitParameterNames()

Returns the names of thefilter’s initialization parameters as an Enumeration
of String objects, or an empty Enumeration if the filter has no initialization
parameters.

Returns: an Enumeration Of String objects containing the names of the
filter'sinitialization parameters

getServletContext()
public ServletContext getServletContext()

Returns areference to the ServietContext inwhich the caller is executing.

Returns. aServletContext object, used by the caller to interact with its
servlet container

See Also: ServletContext

SRV.14.2.4 GenericServlet

public abstract class GenericServlet implements
javax.servlet.Servlet, javax.servlet.ServletConfig,
java.io.Serializable

All Implemented Interfaces. java.io.Serializable, Servlet, ServletCon-
fig
Direct Known Subclasses: javax.servlet.http.HttpServiet

163

JAVAX.SERVLET

Defines a generic, protocol-independent servlet. To write an HTTP servlet for use
on the Web, extend javax.servlet.http.HttpServiet instead.

GenericServlet implements the Servlet and ServletConfig interfaces.
GenericServlet may be directly extended by a servlet, although it's more com-
mon to extend a protocol-specific subclass such asHttpServiet.

GenericServlet makes writing servlets easier. It provides simple versions of the
lifecycle methods init and destroy and of the methods in the ServletConfig
interface. GenericServlet aso implements the Tog method, declared in the
ServletContext interface.

To write ageneric servlet, you need only override the abstract service method.

RV.14.2.4.1 Constructors

GenericServlet()

public GenericServlet()

Does nothing. All of the servlet initiaization is done by one of the init
methods.

SRV.14.2.4.2 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the serviet is being
taken out of service. See Servlet.destroy() .

Specified By: Servlet.destroy() ininterface Serviet

getlnitPar ameter (String)
public java.lang.String getInitParameter(java.lang.String name)
Returns a String containing the value of the named initialization parameter,

or nul1 if the parameter does not exist. See
ServletConfig.getInitParameter(String) .

This method is supplied for convenience. It gets the value of the named
parameter from the servlet's ServletConfig object.

Specified By: ServletConfig.getInitParameter(String) ininterface
ServletConfig

Parameters:
name - a String specifying the name of theinitialization parameter

Final Version

The javax.serviet package

Returns: String aString containing the value of the initialization parameter

getlnitPar ameter Names()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’sinitialization parameters as an
Enumeration of String objects, or an empty Enumeration if the servlet has
no initialization parameters. See
ServletConfig.getInitParameterNames() .

Thismethod is supplied for convenience. It gets the parameter names from
the servlet’s ServietConfig object.

Specified By: ServletConfig.getInitParameterNames() ininterface
ServletConfig

Returns: Enumeration an enumeration of String objects containing the
names of the servlet’sinitialization parameters

getServletConfig()
public ServletConfig getServletConfig()

Returnsthis servlet’'s ServietConfig object.
Specified By: Servlet.getServletConfig(Q) ininterface Serviet

Returns: ServletConfig the ServietConfig object that initialized this
serviet

getServletContext()
public ServletContext getServletContext()

Returns areference to the ServietContext inwhich thisservlet isrunning.
SeeServletConfig.getServietContext() .

Thismethod is supplied for convenience. It gets the context from the servlet’'s
ServletConfig object.

Specified By: ServletConfig.getServletContext() ininterface
ServletConfig

Returns: ServletContext the ServletContext object passed to this serviet
by the init method

getServletlnfo()
public java.lang.String getServietInfo()

165

JAVAX.SERVLET

Returnsinformation about the servlet, such as author, version, and copyright.
By default, this method returns an empty string. Override this method to have
it return ameaningful value. See Servlet.getServietInfo() .

Specified By: Servlet.getServletInfo() ininterface Serviet

Returns: String information about this servlet, by default an empty string

getServlietName()
pubTlic java.lang.String getServletName()

Returns the name of this servlet instance. See
ServletConfig.getServietName() .

Specified By: ServletConfig.getServletName() ininterface
ServletConfig

Returns; the name of this servlet instance

pubTlic void 1init(Q)

throws ServletException

A convenience method which can be overridden so that there’s no need to call
super.init(config).

Instead of overriding init(ServletConfig) , Smply override this method
and it will becalled by GenericServlet.init(ServletConfig config).
The ServletConfig object can till be retrieved viagetServletConfig() .

Throws:
ServletException - if an exception occurs that interrupts the serviet’'s
normal operation

init(ServletConfig)
pubTlic void init(ServiletConfig config)

throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is being
placed into service. See Serviet.init(ServletConfig) .

Thisimplementation stores the ServletConfig object it receives from the
servlet container for later use. When overriding this form of the method, call
super.init(config).

Specified By: Servlet.init(ServletConfig) ininterface Serviet

Parameters:
config - the ServletConfig object that contains configutation information
for this servlet

Final Version

The javax.serviet package 166

Throws:
ServiletException - if an exception occurs that interrupts the servlet’s
normal operation

See Also: UnavailableException

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the serviet’s
name. See ServletContext.log(String) .

Parameters:
msg - a String specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message, java.lang.Throwable t)
Writes an explanatory message and a stack trace for agiven Throwable

exception to the servlet log file, prepended by the serviet’s name. See Serv-
letContext.log(String, Throwable) .

Parameters:
message - a String that describes the error or exception

t - the java.lang.Throwable error or exception

service(ServietRequest, ServietResponse)

public abstract void service(ServletRequest req,
ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to arequest.
SeeServlet.service(ServletRequest, ServletResponse) .

This method is declared abstract so subclasses, such asHttpServlet, must
overrideiit.

Specified By: Servlet.service(ServletRequest, ServletResponse) in
interface Servilet

Parameters:
req - the ServletRequest object that contains the client’s request

res - the ServletResponse object that will contain the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the serviet’s
normal operation occurred

IOException - if aninput or output exception occurs

167 JAVAX.SERVLET

SRV.14.25 RequestDispatcher

pubTlic interface Request Di spat cher

Defines an object that receives requests from the client and sends them to any
resource (such asaservlet, HTML file, or JSPfile) on the server. The servlet con-
tainer creates the RequestDispatcher object, which is used asawrapper around a
server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can create
RequestDispatcher objectsto wrap any type of resource.

See Also: ServletContext.getRequestDispatcher(String), ServletCon-
text.getNamedDispatcher(String), ServletRequest.getRe-
questDispatcher(String)

SRV.14.251 Methods

forward(ServietRequest, ServletResponse)

pubTlic void forward(ServletRequest request,
ServletResponse response)
throws ServletException, IOException

Forwards a request from a servlet to another resource (servlet, JSPfile, or
HTML file) on the server. This method allows one servlet to do preliminary
processing of arequest and another resource to generate the response.

For aRequestDispatcher obtained via getRequestDispatcher(), the
ServletRequest object hasits path elements and parameters adjusted to
match the path of the target resource.

forward should be called before the response has been committed to the cli-
ent (before response body output has been flushed). If the response aready
has been committed, this method throws an I17egalStateException.
Uncommitted output in the response buffer is automatically cleared before
the forward.

The request and response parameters must be either the same objects aswere
passed to the calling servlet’s service method or be subclasses of the
ServletRequestWrapper Of ServletResponseWrapper classesthat wrap
them.

Parameters:
request - aServletRequest object that represents the request the client
makes of the servlet

response - aServletResponse object that represents the response the
servlet returns to the client

Final Version

The javax.serviet package

Throws:
ServletException - if the target resource throws this exception

IOException - if the target resource throws this exception
I1legalStateException - if the response was already committed

include(ServletRequest, ServletResponse)

public void include(ServietRequest request,
ServletResponse response)
throws ServletException, IOException

Includes the content of aresource (servlet, JSP page, HTML file) in the
response. In essence, this method enables programmatic server-side includes.

The ServletResponse object hasits path elements and parameters remain
unchanged from the caller’s. The included servlet cannot change the response
status code or set headers; any attempt to make a change isignored.

The request and response parameters must be either the same objects as were
passed to the calling servlet’s service method or be subclasses of the
ServletRequestWrapper Of ServletResponseWrapper classesthat wrap
them.

Parameters:
request - aServletRequest Object that containsthe client’s request

response - aServletResponse oObject that contains the servlet’s response

Throws:
ServletException - if theincluded resource throws this exception

IOException - if theincluded resource throws this exception

SRV.1426 Serviet

public interface Servl et

All Known Implementing Classes. GenericServiet

Defines methods that all servlets must implement.

A servlet is asmall Java program that runs within a Web server. Servlets receive
and respond to requests from Web clients, usually across HTTP, the HyperText
Transfer Protocol.

To implement this interface, you can write a generic servliet that extends
javax.servlet.GenericServlet or an HTTP servlet that extends
javax.servlet.http.HttpServiet.

168

169

JAVAX.SERVLET

This interface defines methods to initialize a servlet, to service requests, and to
remove a servlet from the server. These are known as life-cycle methods and are
called in the following sequence:

1.The servlet is constructed, then initialized with the i nit method.
2.Any callsfrom clients to the service method are handled.

3.The servlet istaken out of service, then destroyed with the destroy method,
then garbage collected and finalized.

In addition to the life-cycle methods, this interface provides the getServiet-
Config method, which the servlet can use to get any startup information, and the
getServletInfo method, which allows the servlet to return basic information
about itself, such as author, version, and copyright.

See Also: GenericServlet, javax.servlet.http.HttpServilet

RV.14.26.1 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. This method is only called once all threads within the
servlet’'s service method have exited or after atimeout period has passed.
After the servlet container callsthis method, it will not call the service
method again on this servlet.

This method gives the servlet an opportunity to clean up any resources that
are being held (for example, memory, file handles, threads) and make sure
that any persistent state is synchronized with the servlet's current state in
memory.

getServletConfig()
public ServletConfig getServletConfig()

ReturnsaServletConfig object, which containsinitialization and startup
parameters for this servlet. The ServletConfig object returned isthe one
passed to the init method.

Implementations of this interface are responsible for storing the Serviet-
Config object so that this method can return it. The GenericServiet class,
which implements this interface, already does this.

Returns: the ServletConfig object that initializes this servlet
See Also: init(ServletConfig)

Final Version

The javax.serviet package 170

getServletlnfo()
public java.lang.String getServletInfo()

Returnsinformation about the servlet, such as author, version, and copyright.

The string that this method returns should be plain text and not markup of any
kind (suchasHTML, XML, etc.).

Returns: aString containing servlet information

init(ServletConfig)

pubTlic void 1init(ServletConfig config)
throws ServletException

Called by the servlet container to indicate to aservlet that the servlet isbeing
placed into service.

The servlet container calls the init method exactly once after instantiating
the servlet. The init method must complete successfully before the servlet
can receive any requests.

The servlet container cannot place the servlet into serviceif the init method
1. ThrowsaServletException
2. Does not return within atime period defined by the Web server

Parameters:
config - aServletConfig object containing the servlet's configuration and
initialization parameters

Throws:
ServiletException - if an exception has occurred that interferes with the
servlet’'s normal operation

See Also: UnavailableException, getServletConfig()

service(ServietRequest, ServietResponse)

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a request.

This method isonly called after the servlet’s init () method has completed
successfully.

The status code of the response always should be set for a servlet that throws
or sends an error.

Servlets typically run inside multithreaded servlet containers that can handle
multiple requests concurrently. Developers must be aware to synchronize
accessto any shared resources such asfiles, network connections, and aswell

171

JAVAX.SERVLET

as the servlet’s class and instance variables. More information on multi-
threaded programming in Javais available in the Javatutorial on multi-
threaded programming (http://java.sun.com/Series/Tutorial/javalthreads/mul -
tithreaded.html).

Parameters:
req - the ServletRequest object that contains the client’s request

res - the ServletResponse object that contains the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the serviet’'s
normal operation

IOException - if aninput or output exception occurs

SRV.14.2.7 ServletConfig

public interface Servl et Config
All Known Implementing Classes. GenericServiet

A servlet configuration object used by a servlet container to pass information to a
servlet during initialization.

SRV.14.2.7.1 Methods

getlnitParameter (String)

pubTlic java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named initialization parameter,
or nulT if the parameter does not exist.

Parameters:
name - @ String specifying the name of theinitialization parameter

Returns. asString containing the value of the initialization parameter

getlnitParameter Names()

pubTlic java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’sinitialization parameters as an
Enumeration of String objects, or an empty Enumeration if the servlet has
no initialization parameters.

Returns: an Enumeration of String objects containing the names of the
servlet’'sinitialization parameters

getServletContext()

Final Version

The javax.serviet package 172

public ServletContext getServletContext()
Returns areference to the ServletContext inwhich the caller is executing.

Returns. aServletContext object, used by the caller to interact with its
servlet container

See Also: ServletContext

getServlietName()
public java.lang.String getServletName()

Returns the name of this servlet instance. The name may be provided via
server administration, assigned in the web application deployment descriptor,
or for an unregistered (and thus unnamed) servlet instance it will be the serv-
let's class name.

Returns; the name of the servlet instance

SRV.14.2.8 ServletContext
public interface Servl et Cont ext

Defines a set of methods that a servlet uses to communicate with its servlet con-
tainer, for example, to get the MIME type of afile, dispatch requests, or writeto a
log file.

There is one context per “web application” per Java Virtual Machine. (A “web
application” is a collection of servlets and content installed under a specific sub-
set of the server's URL namespace such as /catalog and possibly installed viaa
.war file)

In the case of a web application marked “distributed” in its deployment descrip-
tor, there will be one context instance for each virtual machine. In this situation,
the context cannot be used as a location to share global information (because the
information won't be truly global). Use an externa resource like a database
instead.

The ServletContext object is contained within the ServletConfig object,
which the Web server provides the servlet when the servlet isinitialized.

See Also: Servlet.getServletConfig(), ServletConfig.getServietCon-
text()

SRV.14.2.8.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

173

JAVAX.SERVLET

Returns the servlet container attribute with the given name, or nu11 if thereis
no attribute by that name. An attribute allows a servlet container to give the
servlet additional information not already provided by thisinterface. See
your server documentation for information about its attributes. A list of sup-
ported attributes can be retrieved using getAttributeNames.

The attribute isreturned as a java. Tang.Object or some subclass. Attribute
names should follow the same convention as package names. The Java Serv-
let API specification reserves names matching java. *, javax.*, and sun.*.

Parameters:
name - @ String specifying the name of the attribute

Returns: an Object containing the value of the attribute, or nu11 if no
attribute exists matching the given name

See Also: getAttributeNames()

getAttributeNames()

pubTlic java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the attribute names available within this
servlet context. Use the getAttribute(String) method with an attribute
name to get the value of an attribute.

Returns. an Enumeration of attribute names

See Also: getAttribute(String)

getContext(String)
public ServletContext getContext(java.lang.String uripath)

Returns aServletContext object that correspondsto a specified URL on the
server.

This method allows servlets to gain access to the context for various parts of
the server, and as needed obtain RequestDispatcher objectsfrom the con-
text. The given path must be begin with “/”, isinterpreted relative to the
server’s document root and is matched against the context roots of other web
applications hosted on this container.

In a security conscious environment, the servlet container may return null
for agiven URL.

Parameters:
uripath - aString specifying the context path of another web application in
the container.

Returns. the ServletContext object that correspondsto the named URL, or
null if either none exists or the container wishes to restrict this access.

Final Version

The javax.serviet package 174

See Also: RequestDispatcher

getl nitParameter (String)
public java.lang.String getInitParameter(java.lang.String name)

Returns a String containing the value of the named context-wide initializa-
tion parameter, or nul11 if the parameter does not exist.

This method can make available configuration information useful to an entire
“web application”. For example, it can provide a webmaster’s email address
or the name of a system that holds critical data.

Parameters:
name - & String containing the name of the parameter whose value is

reguested

Returns. aString containing at least the servlet container name and version
number

See Also: ServletConfig.getInitParameter(String)

getl nitParameter Names()
public java.util.Enumeration getInitParameterNames()

Returns the names of the context’s initialization parameters as an
Enumeration of String objects, or an empty Enumeration if the context has
no initialization parameters.

Returns: an Enumeration of String objects containing the names of the
context’sinitialization parameters

See Also; ServletConfig.getInitParameter(String)

getMajorVersion()
public int getMajorVersion()
Returns the major version of the Java Servlet API that this servlet container

supports. All implementations that comply with Version 2.4 must have this
method return the integer 2.

Returns: 2

getMimeType(String)
public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, or nu11 if the MIME typeis not
known. The MIME type is determined by the configuration of the serviet
container, and may be specified in aweb application deployment descriptor.
Common MIME types are “text/htm1” and “image/gif”.

175 JAVAX.SERVLET

Parameters:
file - aString specifying the name of afile

Returns. asString specifying thefile's MIME type

getMinor Version()

pubTlic int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container sup-
ports. All implementations that comply with Version 2.4 must have this
method return the integer 4.

Returns. 4

getNamedDispatcher (String)

public RequestDispatcher getNamedDispatcher(java.lang.String name)

Returns aRequestDispatcher object that acts as awrapper for the named
serviet.

Servlets (and JSP pages also) may be given names via server administration
or viaaweb application deployment descriptor. A servlet instance can deter-
mineits name using ServletConfig.getServletName() .

This method returns nul1 if the ServletContext cannot return aRequest-
Dispatcher for any reason.

Parameters:
name - a String specifying the name of aservlet to wrap

Returns. aRequestDispatcher object that acts as a wrapper for the named
servlet, or null if the ServletContext cannot return aRequestDispatcher

See AlsO: RequestDispatcher, getContext(String),
ServletConfig.getServietName()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Returns a String containing the real path for a given virtual path. For exam-
ple, the path “/index.html” returns the absol ute file path on the server’sfile-
system would be served by arequest for “ http://host/contextPath/index.html”,
where contextPath is the context path of this ServletContext.

Thereal path returned will be in aform appropriate to the computer and oper-
ating system on which the servlet container is running, including the proper
path separators. This method returns nu11 if the servlet container cannot
translate the virtual path to areal path for any reason (such as when the con-
tent is being made available from a .war archive).

Final Version

The javax.serviet package 176

Parameters:
path - aString specifying avirtua path

Returns. aString specifying thereal path, or null if the translation cannot
be performed

getRequestDispatcher (String)

public RequestDispatcher getRequestDispatcher(java.lang.String
path)

Returns aRequestDispatcher object that acts as awrapper for the resource
located at the given path. A RequestDispatcher object can be used to for-
ward arequest to the resource or to include the resource in aresponse. The
resource can be dynamic or static.

The pathname must begin with a“/” and isinterpreted as relative to the cur-
rent context root. Use getContext to obtain aRequestDispatcher for
resources in foreign contexts. This method returns nu11 if the Serviet-
Context cannot return aRequestDispatcher.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as awrapper for the
resource at the specified path, or nul11 if the ServletContext cannot return a
RequestDispatcher

See Also: RequestDispatcher, getContext(String)

getResource(String)

public java.net.URL getResource(java.lang.String path)
throws MalformedURLException

Returns a URL to the resource that is mapped to a specified path. The path
must begin with a“/” and isinterpreted as relative to the current context root.

This method allows the servlet container to make a resource available to serv-
lets from any source. Resources can be located on alocal or remotefile sys-
tem, in adatabase, or in a .war file.

The servlet container must implement the URL handlers and URLConnection
objects that are necessary to access the resource.

This method returns nu11 if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method using
the methods of the URL class.

177

JAVAX.SERVLET

The resource content is returned directly, so be aware that requesting a . jsp
page returns the JSP source code. Use aRequestDispatcher instead to
include results of an execution.

This method has a different purpose than java.lang.Class.getResource,
which looks up resources based on a class loader. This method does not use
class loaders.

Parameters:
path - aString specifying the path to the resource

Returns: the resource located at the named path, or nu11 if thereisno
resource at that path

Throws:
MalformedURLException - if the pathnameis not given in the correct form

getResour ceAsStream(String)

pubTlic java.io.InputStream getResourceAsStream(java.lang.String

path)
Returns the resource located at the named path as an InputStream object.

The datain the InputStream can be of any type or length. The path must be
specified according to the rules given in getResource. This method returns
null if no resource exists at the specified path.

M eta-information such as content length and content type that is available via
getResource method islost when using this method.

The servlet container must implement the URL handlers and URLConnection
objects necessary to access the resource.

This method is different from java.lang.Class.getResourceAsStream,
which uses a class |oader. This method allows servlet containersto make a
resource available to a servlet from any location, without using a class |oader.

Parameters:
path - aString specifying the path to the resource

Returns. the InputStream returned to the servlet, or nul11 if no resource
exists at the specified path

getResour cePaths(String)
public java.util.Set getResourcePaths(java.lang.String path)

Returns a directory-like listing of all the paths to resources within the web
application whose longest sub-path matches the supplied path argument.
Paths indicating subdirectory paths end with a’/’. The returned paths are all
relative to the root of the web application and havealeading’'/’. For example,

Final Version

The javax.serviet package 178

for aweb application containing

/welcome.html

/catal og/index.html

/catalog/products.html

/catal og/offers/books.html

/catal og/offers/music.html

/customer/login.jsp

/WEB-INF/web.xml
/WEB-INF/classes/com.acme.OrderServlet.class,

getResourcePaths(“ /") returns { “/welcome.html”, “/catalog/”, “/customer/”,
“/WEB-INF/"}

getResourcePaths(“ /catalog/”) returns {“/catalog/index.html”, “/catal og/
products.html”, “/catal og/offers/”} .

Parameters:
path - the partial path used to match the resources, which must start with a/

Returns: a Set containing the directory listing, or null if there are no
resources in the web application whose path begins with the supplied path.

Since: Servlet 2.3

getServernfo()
public java.lang.String getServerInfo()
Returns the name and version of the servlet container on which the servlet is
running.

The form of the returned string is servername/versionnumber. For example,
the JavaServer Web Development Kit may return the string JavaServer Web
Dev Kit/1.0.

The servlet container may return other optional information after the primary
string in parentheses, for example, JavaServer Web Dev Kit/1.0 (JDK
1.1.6; Windows NT 4.0 x86).

Returns. aString containing at least the servlet container name and version
number

getServlet(String)

public Servlet getServlet(java.lang.String name)
throws ServletException

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

179

JAVAX.SERVLET

This method was originally defined to retrieve a servlet from a
ServletContext. Inthisversion, this method always returns nu11 and
remains only to preserve binary compatibility. This method will be
permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information using the
ServletContext class and can perform shared business logic by invoking
methods on common non-servlet classes.

Throws:
ServletException

getServletContextName()
public java.lang.String getServletContextName()

Returns the name of this web application corresponding to this Servlet-
Context as specified in the deployment descriptor for thisweb application by
the display-name element.

Returns: The name of the web application or null if no name has been
declared in the deployment descriptor.

Since: Servlet 2.3

getServletNames()

public java.util.Enumeration getServletNames()

Deprecated. Asof Java Servlet API 2.1, with no replacement.

This method was originally defined to return an Enumeration of al the
servlet names known to this context. In this version, this method aways
returns an empty Enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in afuture version
of the Java Servlet API.

getServlets()

public java.util.Enumeration getServlets()

Deprecated. Asof Java Servlet API 2.0, with no replacement.

This method was originally defined to return an Enumeration of al the
servlets known to this servlet context. In this version, this method always
returns an empty enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in afuture version
of the Java Serviet API.

log(Exception, String)

Final Version

The javax.servlet package 180

public void log(java.lang.Exception exception,
java.lang.String msg)

Deprecated. Asof JavaServiet APl 2.1, use Tog(String, Throwable)
instead.

This method was originally defined to write an exception’s stack trace and an
explanatory error message to the servlet log file.

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. The
name and type of the servlet log file is specific to the servlet container.

Parameters:
msg - a String specifying the message to be written to the log file

log(String, Throwable)

public void log(java.lang.String message,
java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for agiven Throwable
exception to the servlet log file. The name and type of the servlet log fileis
specific to the servlet container, usually an event log.

Parameters.
message - & String that describes the error or exception

throwable - the Throwab1le error or exception

removeAttribute(String)
public void removeAttribute(java.lang.String name)
Removes the attribute with the given name from the servlet context. After

removal, subsequent callsto getAttribute(String) to retrievethe
attribute’s value will return nul1.

If listeners are configured on the ServletContext the container notifies them
accordingly.

Parameters:
name - a String specifying the name of the attribute to be removed

setAttribute(String, Object)

public void setAttribute(java.lang.String name,
java.lang.Object object)

181

JAVAX.SERVLET

Binds an object to a given attribute name in this servlet context. If the name
specified isalready used for an attribute, this method will replace the attribute
with the new to the new attribute.

If listeners are configured on the ServletContext the container notifies them
accordingly.

If anull valueis passed, the effect isthe same as calling removeAttribute().

Attribute names should follow the same convention as package names. The
Java Servlet API specification reserves names matching java. *, javax.*,
and sun.*.

Parameters:
name - @ String specifying the name of the attribute

object - an Object representing the attribute to be bound

SRV.14.2.9 ServletContextAttributeEvent

public class ServletContextAttributeEvent extends
javax.servlet.ServletContextEvent

All Implemented Interfaces. java.io.Serializable

Thisisthe event class for notifications about changes to the attributes of the serv-
let context of aweb application.

Since: v 2.3

See Also: ServletContextAttributelistener

RV.14.29.1 Constructors

ServletContextAttributeEvent(ServietContext, String, Object)

pubTlic ServletContextAttributeEvent(ServietContext source,
java.lang.String name, java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the
given attribute name and attribute value.

SRV.14.29.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletContext.

getValue()

Final Version

The javax.serviet package 182

public java.lang.Object getValue()

Returns the value of the attribute that has been added, removed, or replaced.
If the attribute was added, thisisthe value of the attribute. If the attribute was
removed, thisisthe value of the removed attribute. If the attribute was
replaced, thisisthe old value of the attribute.

SRV.14.2.10 ServletContextAttributelListener

public interface Servl et Context AttributelListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener
Implementations of this interface receive notifications of changes to the attribute
list on the servlet context of aweb application. To receive notification events, the

implementation class must be configured in the deployment descriptor for the
web application.

Since: v23

See Also: ServletContextAttributeEvent

RV.14.2.10.1 Methods

attributeAdded(ServletContextAttributeEvent)
public void attributeAdded(ServietContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called after
the attribute is added.

attributeRemoved(ServletContextAttributeEvent)
public void attributeRemoved(ServletContextAttributeEvent scab)

Notification that an existing attribute has been removed from the servlet con-
text. Called after the attribute is removed.

attributeReplaced(ServletContextAttributeEvent)
public void attributeReplaced(ServiletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Called
after the attribute is replaced.

SRV.14.2.11 ServletContextEvent

public class Servl et Cont ext Event extends java.util.EventObject

All Implemented Interfaces. java.io.Serializable

183

JAVAX.SERVLET

Direct Known Subclasses: ServletContextAttributeEvent

This is the event class for notifications about changes to the servlet context of a
web application.

Since: v 2.3

See Also; ServletContextListener

SRV.14.2.11.1 Constructors

ServletContextEvent(ServietContext)

pubTic ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:
source - - the ServletContext that is sending the event.

RV.14.2.11.2 Methods

getServletContext()
pubTlic ServletContext getServletContext()

Return the ServletContext that changed.
Returns: the ServletContext that sent the event.

SRV.14.2.12 ServiletContextListener

pubTlic interface Servl et Cont ext Li stener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener
Implementations of this interface receive notifications about changes to the serv-
let context of the web application they are part of. To receive notification events,

the implementation class must be configured in the deployment descriptor for the
web application.

Since: v 2.3

See Also: ServletContextEvent

RV.14.2.12.1 Methods

contextDestroyed(ServletContextEvent)

public void contextDestroyed(ServletContextEvent sce)

Final Version

The javax.serviet package 184

Notification that the servlet context is about to be shut down. All servletsand
filters have been destroy()ed before any ServletContextL isteners are notified
of context destruction.

contextl nitialized(ServletContextEvent)

public void contextInitialized(ServletContextEvent sce)

Notification that the web application initialization processis starting. All
ServletContextListeners are notified of context initialization before any filter
or servlet in the web application isinitialized.

SRV.14.2.13 ServletException

public class Servl et Excepti on extends java.lang.Exception
All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses. UnavailableException

Defines a general exception a servlet can throw when it encounters difficulty.

SRV.14.2.13.1 Constructors

ServletException()
pubTlic ServletException()

Constructs a new servlet exception.

ServletException(String)

public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The message
can be written to the server log and/or displayed for the user.

Parameters:
message - a String specifying the text of the exception message

ServletException(String, Throwable)

public ServletException(java.lang.String message,
java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered
with its normal operation, including a description message.

Parameters:
message - & String containing the text of the exception message

185 JAVAX.SERVLET

rootCause - the Throwable exception that interfered with the servlet’s
normal operation, making this servlet exception necessary

ServletException(Throwable)

pubTlic ServletException(java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered
with its normal operation. The exception’s message is based on the localized
message of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable
exception to get alocalized exception message. When subclassing Servlet-
Exception, this method can be overridden to create an exception message
designed for a specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the servlet’s
normal operation, making the servlet exception necessary

SRV.14.2.13.2 Methods

getRootCause()
public java.lang.Throwable getRootCause()

Returns the exception that caused this serviet exception.
Returns: the Throwable that caused this servlet exception

SRV.14.2.14 ServletinputStream

public abstract class Servl et | nput Stream extends java.io.InputStream

Provides an input stream for reading binary data from a client request, including
an efficient readLine method for reading data one line a a time. With some pro-
tocols, such as HTTP POST and PUT, aServletInputStream object can be used
to read data sent from the client.

A ServletInputStream object is normaly retrieved via the
ServletRequest.getInputStream() method.

This is an abstract class that a servlet container implements. Subclasses of this
class must implement the java.io.InputStream.read() method.

See Also: ServletRequest

Final Version

The javax.serviet package 186

SRV.14.2.14.1 Constructors

ServletlnputStream()
protected ServletInputStream()

Does nothing, because this is an abstract class.

SRV.14.2.14.2 Methods

readLine(byt€]], int, int)

public int readLine(byte[] b, int off, int Tlen)
throws IOException

Reads the input stream, one line at atime. Starting at an offset, reads bytes
into an array, until it reads a certain number of bytes or reaches a newline
character, which it reads into the array as well.

Thismethod returns -1 if it reaches the end of the input stream before reading
the maximum number of bytes.

Parameters:
b - an array of bytesinto which dataisread

off - an integer specifying the character at which this method begins reading
Ten - an integer specifying the maximum number of bytesto read

Returns: an integer specifying the actual number of bytesread, or -1 if the
end of the stream is reached

Throws:
IOException - if aninput or output exception has occurred

SRV.14.2.15 ServletOutputStream

public abstract class Servl et Qut put St ream extends
java.io.OutputStream

Provides an output stream for sending binary data to the client. A Serviet-
OutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

Thisis an abstract class that the servlet container implements. Subclasses of this
class must implement the java.io.OutputStream.write(int) method.

See Also: ServletResponse

187

JAVAX.SERVLET

SRV.14.2.15.1 Constructors

ServletOutputStream()
protected ServletOutputStream()

Does nothing, because thisis an abstract class.

SRV.14.2.15.2 Methods

print(boolean)
pubTlic void print(boolean b)

throws IOException

Writes aboolean value to the client, with no carriage return-line feed
(CRLF) character at the end.

Parameters:
b - the booTlean value to send to the client

Throws:
IOException - if aninput or output exception occurred

print(char)

pubTlic void print(char c)

throws IOException

Writes a character to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters;
c - the character to send to the client

Throws:
IOException - if aninput or output exception occurred

print(double)
public void print(double d)

throws IOException

Writes adouble value to the client, with no carriage return-line feed (CRLF)
at the end.

Parameters:
d - the double value to send to the client

Throws:
IOException - if aninput or output exception occurred

print(float)

Final Version

The javax.serviet package 188

public void print(float f)
throws IOException

Writes a f1oat value to the client, with no carriage return-line feed (CRLF)
at theend.

Parameters:
f - the float value to send to the client

Throws:
IOException - if aninput or output exception occurred

print(int)

public void print(int i)
throws IOException

Writes an int to the client, with no carriage return-line feed (CRLF) at the
end.

Parameters:
i - theint to send to the client

Throws:
IOException - if aninput or output exception occurred

print(long)
public void print(long 1)
throws IOException

Writes a Tong value to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters:
1 - the Tong value to send to the client

Throws:
IOException - if aninput or output exception occurred

print(String)

public void print(java.lang.String s)
throws IOException

Writes a String to the client, without a carriage return-line feed (CRLF)
character at the end.

Parameters:
s - the String to send to the client

Throws:
IOException - if aninput or output exception occurred

189

JAVAX.SERVLET

printin()
public void println()

throws IOException
Writes a carriage return-line feed (CRLF) to the client.

Throws:
IOException - if aninput or output exception occurred

printin(boolean)
pubTlic void printin(boolean b)

throws IOException

Writes aboolean value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:

b - the booTean value to write to the client

Throws:
IOException - if aninput or output exception occurred

println(char)

pubTlic void println(char c)

throws IOException

Writes a character to the client, followed by a carriage return-line feed
(CRLF).

Parameters:

c - the character to write to the client

Throws:
IOException - if aninput or output exception occurred

printin(double)
public void println(double d)

throws IOException

Writes adouble value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:

d - the double value to write to the client

Throws:
IOException - if aninput or output exception occurred

printIn(float)

Final Version

The javax.servlet package 190

public void printin(float f)
throws IOException

Writes a float value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:

f - the float value to write to the client

Throws:
IOException - if aninput or output exception occurred

printIn(int)

public void println(int i)
throws IOException

Writes an int to the client, followed by a carriage return-line feed (CRLF)
character.

Parameters:
i - theint to write to the client

Throws:
IOException - if aninput or output exception occurred

printin(long)

public void printin(long 1)
throws IOException

Writes a Tong value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
1 - the Tong value to write to the client

Throws:
IOException - if aninput or output exception occurred

printin(String)

public void printin(java.lang.String s)
throws IOException

Writesa String to the client, followed by a carriage return-line feed (CRLF).

Par ameters:
s - the String to write to the client

Throws:
IOException - if aninput or output exception occurred

191 JAVAX.SERVLET

SRV.14.2.16 ServletRequest

pubTlic interface Servl et Request

All Known Subinterfaces: javax.servlet.http.HttpServletRequest

All Known Implementing Classes. ServletRequestWrapper

Defines an object to provide client request information to a servlet. The servlet
container creates a ServletRequest object and passes it as an argument to the
servlet’s service method.

A ServletRequest object provides data including parameter name and values,
attributes, and an input stream. Interfaces that extend ServletRequest can pro-
vide additional protocol-specific data (for example, HTTP data is provided by
javax.servlet.http.HttpServletRequest .

See Also; javax.servlet.http.HttpServletRequest

RV.14.2.16.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as an Object, or nul1 if no attribute
of the given name exists.

Attributes can be set two ways. The servlet container may set attributes to
make available custom information about arequest. For example, for requests
made using HTTPS, the attribute
javax.servlet.request.X509Certificate can be used to retrieve informa-
tion on the certificate of the client. Attributes can also be set programatically
using setAttribute(String, Object) . Thisalowsinformation to be
embedded into a request before aRequestDispatcher call.

Attribute names should follow the same conventions as package names. This
specification reserves names matching java. *, javax.*, and sun. *.

Parameters:
name - a String specifying the name of the attribute

Returns: an Object containing the value of the attribute, or nu11 if the
attribute does not exist

getAttributeNames()

public java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the names of the attributes available to
this request. This method returns an empty Enumeration if the request has no
attributes availableto it.

Final Version

The javax.serviet package 192

Returns: an Enumeration oOf strings containing the names of the request’s
attributes

getChar acter Encoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request.
This method returns nu11 if the request does not specify a character encoding

Returns. aString containing the name of the character encoding, or nu11 if
the request does not specify a character encoding

getContentL ength()
public int getContentLength()
Returns the length, in bytes, of the request body and made available by the

input stream, or -1 if thelength is not known. For HTTP servlets, same asthe
vaue of the CGI variable CONTENT_LENGTH.

Returns: aninteger containing the length of the request body or -1 if the
length is not known

getContentType()
public java.lang.String getContentType()
Returns the MIME type of the body of the request, or nu11 if the typeis not

known. For HTTP servlets, same as the value of the CGI variable
CONTENT _TYPE.

Returns: aString containing the name of the MIME type of the request, or
null if the typeis not known

getlnputStream()

public ServletInputStream getInputStream()
throws IOException

Retrieves the body of the request as binary datausing a
ServletInputStream . Either thismethod or getReader () may be called to
read the body, not both.

Returns. aServletInputStream object containing the body of the request

Throws:
ITlegalStateException - if the getReader() method has aready been
called for this request

IOException - if aninput or output exception occurred

193 JAVAX.SERVLET

getL ocalAddr()
pubTlic java.lang.String getLocalAddr()

Returns the Internet Protocol (1P) address of the interface on which the
reguest was received.

Returns. aString containing the |P address on which the request was
received.

Since: 2.4

getL ocale()

pubTlic java.util.Locale getLocale()

Returns the preferred Locale that the client will accept content in, based on
the Accept-Language header. If the client request doesn’t provide an Accept-
Language header, this method returns the default locale for the server.

Returns: the preferred Locale for the client

getL ocales()

pubTlic java.util.Enumeration getLocales()

Returns an Enumeration of Locale objectsindicating, in decreasing order
starting with the preferred locale, the locales that are acceptable to the client
based on the A ccept-L anguage header. If the client request doesn’t provide an
Accept-Language header, this method returns an Enumeration containing
one Locale, the default locale for the server.

Returns. an Enumeration of preferred Locale objectsfor the client

getL ocalName()
public java.lang.String getLocalName()

Returns the host name of the Internet Protocol (1P) interface on which the
reguest was received.

Returns: aString containing the host name of the IP on which the request
was received.

Since: 2.4

getL ocalPort()
public int getLocalPort()

Returns the Internet Protocol (IP) port number of the interface on which the
request was received.

Returns: an integer specifying the port number

Final Version

The javax.servlet package 194

Since: 2.4

getParameter (String)

public java.lang.String getParameter(java.lang.String name)

Returnsthe value of arequest parameter asaString, or nul11 if the parameter
does not exist. Request parameters are extra information sent with the
request. For HTTP servlets, parameters are contained in the query string or
posted form data.

You should only use this method when you are sure the parameter has only
one value. If the parameter might have more than one value, use
getParameterValues(String) .

If you use this method with a multivalued parameter, the value returned is
equal to the first value in the array returned by getParameterValues.

If the parameter data was sent in the request body, such as occurs with an
HTTP POST request, then reading the body directly viagetInputStream()
or getReader() can interfere with the execution of this method.

Parameters:
name - @ String specifying the name of the parameter

Returns. aString representing the single value of the parameter
See Also: getParameterValues(String)

getParameter Map()
public java.util.Map getParameterMap()

Returns ajava.util.Map of the parameters of this request. Request parameters
are extrainformation sent with the request. For HTTP servlets, parameters
are contained in the query string or posted form data.

Returns: an immutable java.util.Map containing parameter names as keys
and parameter values as map values. The keys in the parameter map are of
type String. The values in the parameter map are of type String array.

getPar ameter Names()

public java.util.Enumeration getParameterNames()

Returns an Enumeration of String objects containing the names of the
parameters contained in this request. If the request has no parameters, the
method returns an empty Enumeration.

Returns: an Enumeration Of String objects, each String containing the
name of arequest parameter; or an empty Enumeration if the request has no
parameters

195

JAVAX.SERVLET

getParameter Values(String)

pubTlic java.lang.String[] getParameterValues(java.lang.String name)

Returns an array of String objects containing all of the values the given
request parameter has, or nu11 if the parameter does not exist.

If the parameter has asingle value, the array has alength of 1.

Parameters:
name - & String containing the name of the parameter whose value is
requested

Returns: an array of String objects containing the parameter’s values

See Also: getParameter(String)

getProtocol ()
public java.lang.String getProtocol ()

Returns the name and version of the protocol the request uses in the form
protocol/majorVersion.minorVersion, for example, HTTP/1.1. For HTTP
servlets, the value returned is the same as the value of the CGI variable
SERVER_PROTOCOL.

Returns. aString containing the protocol name and version number

getReader ()
public java.io.BufferedReader getReader()

throws IOException

Retrieves the body of the request as character data using a BufferedReader.
The reader trandates the character data according to the character encoding
used on the body. Either this method or getInputStream() may be calledto
read the body, not both.

Returns: aBufferedReader containing the body of the request

Throws:
UnsupportedEncodingException - if the character set encoding used is not
supported and the text cannot be decoded

ITlegalStateException - if getInputStream() method has been called on
this request

IOException - if aninput or output exception occurred

See Also: getInputStream()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Final Version

The javax.serviet package 196

Deprecated. Asof Version 2.1 of the Java Servlet API, use
ServletContext.getRealPath(String) instead

getRemoteAddr ()
public java.lang.String getRemoteAddr ()

Returns the Internet Protocol (1P) address of the client or last proxy that sent
the request. For HTTP servlets, same as the value of the CGI variable
REMOTE_ADDR.

Returns: aString containing the IP address of the client that sent the
request

getRemoteH ost()
public java.lang.String getRemoteHost()

Returns the fully qualified name of the client or the last proxy that sent the
request. If the engine cannot or chooses not to resolve the hostname (to
improve performance), this method returns the dotted-string form of the IP
address. For HTTP servlets, same as the value of the CGlI variable
REMOTE_HOST.

Returns: aString containing the fully qualified name of the client

getRemotePort()
public int getRemotePort()

Returns the Internet Protocol (1P) source port of the client or last proxy that
sent the request.

Returns: an integer specifying the port number
Since: 24

getRequestDispatcher (String)

public RequestDispatcher getRequestDispatcher(java.lang.String
path)

Returns aRequestDispatcher object that acts as awrapper for the resource
located at the given path. A RequestDispatcher object can be used to for-
ward areguest to the resource or to include the resource in aresponse. The
resource can be dynamic or static.

The pathname specified may berelative, although it cannot extend outside the
current servlet context. If the path beginswitha*“/” itisinterpreted asrelative
to the current context root. This method returns nu11 if the servlet container
cannot return aRequestDispatcher.

197

JAVAX.SERVLET

The difference between this method and
ServletContext.getRequestDispatcher(String) isthat this method can
take arelative path.

Parameters:
path - aString specifying the pathname to the resource. If it isrelative, it
must be relative against the current servlet.

Returns. aRequestDispatcher object that acts as a wrapper for the
resource at the specified path, or nu11 if the servlet container cannot return a
RequestDispatcher

See Also: RequestDispatcher,
ServletContext.getRequestDispatcher(String)

getScheme()
public java.lang.String getScheme()

Returnsthe name of the scheme used to make this request, for example, http,
https, or ftp. Different schemes have different rules for constructing URLSs,
as noted in RFC 1738.

Returns. aString containing the name of the scheme used to make this
request

getServer Name()

public java.lang.String getServerName()

Returns the host name of the server to which the request was sent. It isthe
value of the part before“:” in the Host header value, if any, or the resolved
server name, or the server |P address.

Returns: aString containing the name of the server

getServer Port()
pubTlic int getServerPort()

Returns the port number to which the request was sent. It isthe value of the
part after “:” in the Host header value, if any, or the server port where the cli-
ent connection was accepted on.

Returns: an integer specifying the port number

isSecure()

public boolean isSecure()

Returns a bool ean indicating whether this request was made using a secure
channel, such asHTTPS.

Final Version

The javax.serviet package 198

Returns: aboolean indicating if the request was made using a secure
channel

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally needed
as attributes only persist as long as the request is being handled.

Attribute names should follow the same conventions as package names.
Names beginning with java.*, javax.*, and com.sun.*, are reserved for use
by Sun Microsystems.

Parameters:
name - a String specifying the name of the attribute to remove

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests. This
method is most often used in conjunction with RequestDispatcher .

Attribute names should follow the same conventions as package names.
Names beginning with java. *, javax.*, and com.sun.*, are reserved for use
by Sun Microsystems.

If the object passed inis null, the effect is the same as calling
removeAttribute(String) .

It iswarned that when the request is dispatched from the servlet residesin a
different web application by RequestDispatcher, the object set by this
method may not be correctly retrieved in the caller servlet.

Parameters:
name - a String specifying the name of the attribute

o - the Object to be stored

setCharacter Encoding(String)
public void setCharacterEncoding(java.lang.String env)
throws UnsupportedEncodingException
Overrides the name of the character encoding used in the body of this
request. This method must be called prior to reading request parameters or
reading input using getReader ().
Parameters:
env - aString containing the name of the character encoding.

Throws:
java.io.UnsupportedEncodingException - if thisisnot avalid encoding

199 JAVAX.SERVLET

SRV.14.2.17 ServletRequestAttributeEvent

public class Servl et Request AttributeEvent extends
javax.servlet.ServletRequestEvent

All Implemented Interfaces. java.io.Serializable

This is the event class for notifications of changes to the attributes of Servlet-
Request in an application.

Since: Servlet 2.4

RV.14.2.17.1 Constructors

ServletRequestAttributeEvent(ServletContext, ServletRequest, String,
Object)
pubTlic ServletRequestAttributeEvent(ServiletContext sc,

ServletRequest request, java.lang.String name,
java.lang.Object value)

Construct a ServletRequestAttributeEvent giving the servlet context of this
web application, the ServletRequest whose attributes are changing and the
name and value of the attribute.

Parameters:
sc - the ServletContext that is sending the event

request - the ServletReguest that is sending the event
name - the name of the request attribute

value - the value of the request attribute

RV.14.2.17.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletRequest
Returns: the name of the changed request attribute

getValue()
public java.lang.Object getValue()
Returnsthe value of the attribute that has been added, removed or replaced. I
the attribute was added, this is the value of the attribute. If the attribute was

removed, thisis the value of the removed attribute. If the attribute was
replaced, thisisthe old value of the attribute.

Final Version

The javax.servlet package 200
Returns: the vaue of the changed request attribute

SRV.14.2.18 ServletRequestAttributel istener
public interface Servl et Request Attri buteLi stener

A ServletRequestAttributelistener can be implemented by the developer inter-
ested in being notified of request attribute changes. Notifications will be gener-
ated while the request is within the scope of the web application in which the
listener isregistered. A request is defined as coming into scope when it is about to
enter the first servlet or filter in each web application, as going out of scope when
it exitsthe last servlet or the first filter in the chain.

Since; Servlet 2.4

RV.14.2.18.1 Methods

attributeAdded(ServletRequestAttributeEvent)
public void attributeAdded(ServietRequestAttributeEvent srae)

Notification that a new attribute was added to the servlet request. Called after
the attribute is added.

attributeRemoved(ServietRequestAttributeEvent)

public void attributeRemoved(ServletRequestAttributeEvent srae)

Notification that a new attribute was removed from the servlet request.
Called after the attribute is removed.

attributeReplaced(ServletRequestAttributeEvent)
public void attributeReplaced(ServletRequestAttributeEvent srae)

Notification that an attribute was replaced on the servlet request. Called after
the attribute is replaced.

SRV.14.2.19 ServletRequestEvent

public class Servl et Request Event extends java.util.EventObject
All Implemented Interfaces. java.io.Serializable
Direct Known Subclasses. ServletRequestAttributeEvent

Events of this kind indicate lifecycle events for a ServletRequest. The source of
the event is the ServletContext of thisweb application.

Since; Servlet 2.4

201 JAVAX.SERVLET

See Also; ServletRequestlListener

SRV.14.2.19.1 Constructors

ServletRequestEvent(ServietContext, ServlietRequest)

public ServletRequestEvent(ServletContext sc,
ServletRequest request)

Construct a ServletRequestEvent for the given ServletContext and Servlet-
Request.

Parameters:
sc - the ServletContext of the web application

request - the ServletReguest that is sending the event

SRV.14.2.19.2 Methods

getServletContext()
pubTlic ServletContext getServletContext()

Returns the ServletContext of this web application.

getServletRequest()
public ServletRequest getServletRequest()

Returns the ServletRequest that is changing.

SRV.14.2.20 ServletRequestListener
pubTlic interface Servl et Request Li st ener

A ServletRequestListener can be implemented by the developer interested in
being notified of requests coming in and out of scope in a web component. A
request is defined as coming into scope when it is about to enter the first servlet or
filter in each web application, as going out of scope when it exits the last servlet
or thefirst filter in the chain.

Since: Servlet 2.4

SRV.14.2.20.1 Methods

requestDestroyed(ServletRequestEvent)

pubTlic void requestDestroyed(ServletRequestEvent rre)

The request is about to go out of scope of the web application.

Final Version

The javax.serviet package 202

requestl nitialized(ServletRequestEvent)

public void requestInitialized(ServletRequestEvent rre)

The request is about to come into scope of the web application.

SRV.14.2.21 ServletRequestWrapper

public class Servl et Request W apper implements
javax.servlet.ServletRequest

All Implemented Interfaces: ServletRequest
Direct Known Subclasses; javax.servlet.http.HttpServletRequestWrapper

Provides a convenient implementation of the ServletRequest interface that can be
subclassed by developers wishing to adapt the request to a Servlet. This class
implements the Wrapper or Decorator pattern. Methods default to calling through
to the wrapped request object.

Since: v 2.3
See Also: ServletRequest

SRV.14.2.21.1 Constructors

ServletRequestWrapper (ServietRequest)
public ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adaptor wrapping the given request object.

Throws:
java.lang.I1legalArgumentException - if the request isnull

RV.14.2.21.2 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

The default behavior of this method is to call getAttribute(String name) on
the wrapped request object.

Specified By: ServletRequest.getAttribute(String) ininterface
ServletRequest

getAttributeNames()

public java.util.Enumeration getAttributeNames()

The default behavior of this method is to return getAttributeNames() on the
wrapped reguest object.

203 JAVAX.SERVLET

Specified By: ServletRequest.getAttributeNames() ininterface
ServletRequest

getChar acter Encoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped request object.

Specified By: ServletRequest.getCharacterEncoding() ininterface
ServiletRequest

getContentL ength()
pubTlic int getContentLength()

The default behavior of this method is to return getContentL ength() on the
wrapped request object.

Specified By: ServletRequest.getContentlLength() ininterface
ServiletRequest

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped request object.

Specified By: ServletRequest.getContentType() ininterface
ServletRequest

getlnputStream()

public ServletInputStream getInputStream()
throws IOException

The default behavior of this method is to return getl nputStream() on the
wrapped request object.

Specified By: ServletRequest.getInputStream() ininterface
ServiletRequest

Throws:
IOException

getL ocalAddr()
pubTlic java.lang.String getLocalAddr()

The default behavior of this method is to return getL ocal Addr() on the
wrapped request object.

Final Version

The javax.serviet package

Specified By: ServletRequest.getlLocalAddr() ininterface
ServletRequest

Since: 2.4

getL ocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getL ocale() on the wrapped
reguest object.

Specified By: ServletRequest.getlocale() ininterface ServletRequest

getL ocales()

public java.util.Enumeration getLocales()
The default behavior of this method is to return getL ocales() on the wrapped
reguest object.

Specified By: ServletRequest.getlocales() ininterface
ServletRequest

getL ocalName()
public java.lang.String getLocalName()

The default behavior of this method is to return getl ocalName() on the
wrapped request object.

Specified By: ServletRequest.getlLocalName() ininterface
ServiletRequest

Since: 2.4

getL ocalPort()
public int getLocalPort()

The default behavior of this method is to return getL ocalPort() on the
wrapped request object.

Specified By: ServletRequest.getlocalPort() ininterface
ServiletRequest

Since 2.4

getParameter (String)

public java.lang.String getParameter(java.lang.String name)

The default behavior of this method is to return getParameter(String name)
on the wrapped request object.

204

205

JAVAX.SERVLET

Specified By: ServletRequest.getParameter(String) ininterface
ServletRequest

getParameterM ap()
pubTlic java.util.Map getParameterMap()

The default behavior of this method is to return getParameterMap() on the
wrapped request object.

Specified By: ServletRequest.getParameterMap() ininterface
ServiletRequest

getPar ameter Names()

pubTlic java.util.Enumeration getParameterNames()

The default behavior of this method is to return getParameterNames() on the
wrapped request object.

Specified By: ServletRequest.getParameterNames() ininterface
ServiletRequest

getParameter Values(String)

pubTlic java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method isto return getParameterValues(String
name) on the wrapped request object.

Specified By: ServletRequest.getParameterValues(String) ininterface
ServletRequest

getProtocol()
public java.lang.String getProtocol ()

The default behavior of this method isto return getProtocol () on the wrapped
request object.

Specified By: ServletRequest.getProtocol() ininterface
ServletRequest

getReader ()

public java.io.BufferedReader getReader()
throws IOException

The default behavior of this method is to return getReader() on the wrapped
request object.

Specified By: ServletRequest.getReader() ininterface ServietRequest

Throws:

Final Version

The javax.serviet package 206

IOException

getReal Path(String)
public java.lang.String getRealPath(java.lang.String path)

The default behavior of this method is to return getReal Path(String path) on
the wrapped request object.

Specified By: ServletRequest.getRealPath(String) ininterface
ServletRequest

getRemoteAddr ()
public java.lang.String getRemoteAddr()

The default behavior of this method is to return getRemoteAddr() on the
wrapped reguest object.

Specified By: ServletRequest.getRemoteAddr() ininterface
ServletRequest

getRemoteH ost()
public java.lang.String getRemoteHost()

The default behavior of this method is to return getRemoteHost() on the
wrapped reguest object.

Specified By: ServletRequest.getRemoteHost() in interface
ServletRequest

getRemotePort()
public int getRemotePort()

The default behavior of this method is to return getRemotePort() on the
wrapped reguest object.

Specified By: ServletRequest.getRemotePort() ininterface
ServletRequest

Since: 2.4

getRequest()
public ServletRequest getRequest()
Return the wrapped request object.

getRequestDispatcher (String)

public RequestDispatcher getRequestDispatcher(java.lang.String
path)

207

JAVAX.SERVLET

The default behavior of this method is to return getRequestDispatcher(String
path) on the wrapped request object.

Specified By: ServletRequest.getRequestDispatcher(String) in
interface ServletRequest

getScheme()
pubTlic java.lang.String getScheme()

The default behavior of this method is to return getScheme() on the wrapped
reguest object.

Specified By: ServletRequest.getScheme() ininterface ServietRequest

getServer Name()

public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the
wrapped request object.

Specified By: ServletRequest.getServerName() ininterface
ServiletRequest

getServerPort()
pubTlic int getServerPort()

The default behavior of this method is to return getServerPort() on the
wrapped request object.

Specified By: ServletRequest.getServerPort() ininterface
ServletRequest

isSecure()

pubTlic boolean -isSecure()

The default behavior of this method is to return isSecure() on the wrapped
request object.

Specified By: ServletRequest.isSecure() ininterface ServletRequest

removeAttribute(String)

public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String name)
on the wrapped request object.

Specified By: ServletRequest.removeAttribute(String) ininterface
ServletRequest

Final Version

The javax.serviet package 208

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object o)

The default behavior of this method is to return setAttribute(String name,
Object 0) on the wrapped request object.

Specified By: ServletRequest.setAttribute(String, Object) in
interface ServletRequest

setCharacter Encoding(String)

public void setCharacterEncoding(java.lang.String enc)
throws UnsupportedEncodingException

The default behavior of this method is to set the character encoding on the
wrapped reguest object.

Specified By: ServletRequest.setCharacterEncoding(String) in
interface ServletRequest

Throws:
UnsupportedEncodingException

setRequest(ServletRequest)

pubTlic void setRequest(ServletRequest request)

Sets the request object being wrapped.

Throws:
java.lang.I1legalArgumentException - if the requestisnull.

SRV.14.2.22 ServletResponse

public interface Servl et Response

All Known Subinterfaces: javax.servlet.http.HttpServletResponse

All Known Implementing Classes: ServletResponseWrapper

Defines an object to assist a servlet in sending aresponse to the client. The servlet
container creates a ServletResponse oObject and passes it as an argument to the
servlet’s service method.

To send binary data in a MIME body response, use the ServletOutputStream
returned by getOutputStream() . To send character data, use the PrintWriter
object returned by getWriter() . To mix binary and text data, for example, to
create a multipart response, use a ServletOutputStream and manage the charac-
ter sections manually.

The charset for the MIME body response can be specified explicitly using the
setCharacterEncoding(String) and setContentType(String) methods, or

209

JAVAX.SERVLET

implicitly using the setLocale(Locale) method. Explicit specifications take
precedence over implicit specifications. If no charset is specified, 1SO-8859-1
will be used. The setCharacterEncoding, setContentType, Or setlLocale
method must be called before getwriter and before committing the response for
the character encoding to be used.

See the Internet RFCs such as RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) for
more information on MIME. Protocols such as SMTP and HTTP define profiles
of MIME, and those standards are still evolving.

See Also; ServletOutputStream

SRV.14.2.22.1 Methods

flushBuffer ()

pubTlic void flushBuffer()
throws IOException
Forces any content in the buffer to be written to the client. A call to this
method automatically commits the response, meaning the status code and
headers will be written.

Throws:
IOException

See Also: setBufferSize(int), getBufferSize(), isCommitted()
reset()

getBuffer Size()
pubTlic int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is used,
this method returns O.

Returns; the actual buffer size used
See Also: setBufferSize(int), flushBuffer(), isCommitted(), reset()

getChar acter Encoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding (MIME charset) used for the
body sent in this response. The character encoding may have been specified
explicitly using the setCharacterEncoding(String) oOf
setContentType(String) methods, or implicitly using the
setlocale(Locale) method. Explicit specifications take precedence over
implicit specifications. Calls made to these methods after getWriter has
been called or after the response has been committed have no effect on the

Final Version

The javax.servlet package 210

character encoding. If no character encoding has been specified, 150-8859-1
isreturned.

See RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt) for more information
about character encoding and MIME.

Returns: aString specifying the name of the character encoding, for
example, UTF-8

getContentType()
public java.lang.String getContentType()

Returns the content type used for the MIME body sent in this response. The
content type proper must have been specified using
setContentType(String) beforethe response is committed. If no content
type has been specified, this method returns null. If a content type has been
specified and a character encoding has been explicitly or implicitly specified
asdescribed in getCharacterEncoding() , the charset parameter isincluded
in the string returned. If no character encoding has been specified, the charset
parameter is omitted.

Returns: astring specifying the content type, for example, text/html;
charset=UTF-8, or null

Since: 2.4

getL ocale()

public java.util.Locale getLocale()

Returns the locale specified for this response using the setLocale(lLocale)
method. Calls made to setLocale after the response is committed have no
effect. If no locale has been specified, the container’s default localeis
returned.

See Also: setlocale(locale)

getOutputStream()

public ServletOutputStream getQutputStream()
throws IOException

Returns aServletOutputStream Suitable for writing binary datain the
response. The servlet container does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either this
method or getWriter() may be called to write the body, not both.

Returns. aServletOutputStream for writing binary data

Throws:

211

JAVAX.SERVLET

I1legalStateException - if the getWriter method has been called on this
response

I0Exception - if aninput or output exception occurred
See Also: getWriter()

getWriter ()
public java.io.PrintWriter getWriter()

throws IOException

ReturnsaPrintWriter object that can send character text to the client. The
PrintWriter usesthe character encoding returned by
getCharacterEncoding() . If the response’s character encoding has not
been specified as described in getCharacterEncoding (i.e., the method just
returns the default value 150-8859-1), getWriter updatesit to IS0-8859-1.

Calling flush() on the PrintWriter commits the response.

Either this method or getOutputStream() may be called to write the body,
not both.

Returns. aPrintWriter object that can return character data to the client

Throws:
UnsupportedEncodingException - if the character encoding returned by
getCharacterEncoding cannot be used

I1legalStateException - if the getOutputStream method has already been
called for this response object

IOException - if aninput or output exception occurred

See Also: getOutputStream(), setCharacterEncoding(String)

isCommitted()

public boolean isCommitted()

reset()

Returns a boolean indicating if the response has been committed. A commit-
ted response has already had its status code and headers written.

Returns: abooleanindicating if the response has been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
reset()

public void reset()

Final Version

The javax.serviet package 212

Clears any datathat existsin the buffer aswell as the status code and headers.
If the response has been committed, this method throws an I17egalState-
Exception.

Throws:
I1legalStateException - if the response has already been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
isCommitted()

resetBuffer ()
public void resetBuffer()

Clears the content of the underlying buffer in the response without clearing
headers or status code. If the response has been committed, this method
throws an I11egalStateException.

Since: 2.3

See Also: setBufferSize(int), getBufferSize(), isCommitted(),
reset()

setBuffer Size(int)

public void setBufferSize(int size)

Setsthe preferred buffer size for the body of the response. The servlet con-
tainer will use abuffer at least aslarge asthe size requested. The actual buffer
size used can be found using getBufferSize.

A larger buffer allows more content to be written before anything is actualy
sent, thus providing the servlet with more time to set appropriate status codes
and headers. A smaller buffer decreases server memory load and allows the
client to start receiving data more quickly.

This method must be called before any response body content is written; if
content has been written or the response object has been committed, this
method throws an I17egalStateException.

Par ameters:

size - the preferred buffer size

Throws:

I1legalStateException - if this method is called after content has been
written

See Also: getBufferSize(), flushBuffer(), isCommitted(), reset()

setChar acter Encoding(String)

public void setCharacterEncoding(java.lang.String charset)

213

JAVAX.SERVLET

Sets the character encoding (MIME charset) of the response being sent to the
client, for example, to UTF-8. If the character encoding has already been set
by setContentType(String) Of setlLocale(Locale) , this method over-
ridesit. Calling setContentType(String) withtheString of text/html
and calling this method with the String of UTF-8 is equivalent with calling
setContentType With the String of text/html; charset=UTF-8.

This method can be called repeatedly to change the character encoding. This
method has no effect if it iscalled after getwriter hasbeen called or after the
response has been committed.

Containers must communicate the character encoding used for the servlet
response’ s writer to the client if the protocol provides away for doing so. In
the case of HTTP, the character encoding is communicated as part of the
Content-Type header for text mediatypes. Note that the character encoding
cannot be communicated viaHTTP headersif the serviet does not specify a
content type; however, it is still used to encode text written via the servlet
response’s writer.

Parameters:
charset - a String specifying only the character set defined by IANA
Character Sets (http://www.iana.org/assignments/character-sets)

Since: 2.4

See Also: setContentType(String)

setContentL ength(int)
public void setContentLength(int Ten)

Sets the length of the content body in the response In HTTP servlets, this
method sets the HTTP Content-Length header.

Parameters:
Ten - an integer specifying the length of the content being returned to the
client; sets the Content-L ength header

setContentType(String)
public void setContentType(java.lang.String type)

Sets the content type of the response being sent to the client, if the response
has not been committed yet. The given content type may include a character
encoding specification, for example, text/htm1;charset=UTF-8. The
response’s character encoding is only set from the given content type if this
method is called before getwriter is caled.

This method may be called repeatedly to change content type and character
encoding. This method has no effect if called after the response has been

Final Version

The javax.servlet package 214

committed. It does not set the response’s character encoding if itis called
after getWriter has been called or after the response has been committed.

Containers must communicate the content type and the character encoding
used for the servlet response’s writer to the client if the protocol provides a
way for doing so. In the case of HTTP, the Content-Type header is used.

Parameters:
type - aString specifying the MIME type of the content

See Also: setLocale(Locale), setCharacterEncoding(String)
getOutputStream(), getWriter()

setL ocale(L ocale)

public void setlocale(java.util.Locale Tloc)

Setsthelocale of the response, if the response has not been committed yet. It
also sets the response’s character encoding appropriately for the locale, if the
character encoding has not been explicitly set using
setContentType(String) Or setCharacterEncoding(String) , get-
Writer hasn't been called yet, and the response hasn’t been committed yet. If
the deployment descriptor contains a 1ocale-encoding-mapping-Tist ele-
ment, and that element provides a mapping for the given local e, that mapping
is used. Otherwise, the mapping from locale to character encoding is con-
tainer dependent.

This method may be called repeatedly to change locale and character encod-
ing. The method has no effect if called after the response has been commit-
ted. It does not set the response’s character encoding if it is called after
setContentType(String) hasbeen called with acharset specification, after
setCharacterEncoding(String) hasbeen called, after getWriter hasbeen
called, or after the response has been committed.

Containers must communicate the locale and the character encoding used for
the servlet response’ s writer to the client if the protocol provides away for
doing so. In the case of HTTR, the locale is communicated viathe Content-
Language header, the character encoding as part of the Content-Type header
for text mediatypes. Note that the character encoding cannot be communi-
cated viaHTTP headersif the servlet does not specify a content type; how-
ever, it istill used to encode text written viathe servlet response’s writer.

Parameters:
Toc - the locale of the response

See Also: getlocale(), setContentType(String)
setCharacterEncoding(String)

215 JAVAX.SERVLET

SRV.14.2.23 ServletResponseWrapper

public class Servl et ResponseW apper implements
javax.servlet.ServletResponse

All Implemented Interfaces. ServletResponse

Direct Known Subclasses: javax.servlet.http.HttpServletResponseWrap-
per

Provides a convenient implementation of the ServletResponse interface that can
be subclassed by developers wishing to adapt the response from a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling
through to the wrapped response object.

Since: v 23

See Also: ServletResponse

SRV.14.2.23.1 Constructors

ServletResponseWr apper (ServletResponse)

public ServletResponseWrapper(ServletResponse response)

Creates a ServletResponse adaptor wrapping the given response object.

Throws:
java.lang.I1legalArgumentException - if theresponseisnull.

RV.14.2.23.2 Methods

flushBuffer ()

pubTlic void flushBuffer()
throws IOException

The default behavior of this method is to call flushBuffer() on the wrapped
response object.

Specified By: ServletResponse.flushBuffer() ininterface
ServletResponse

Throws:
IOException

getBuffer Size()
pubTlic int getBufferSize()

The default behavior of this method is to return getBufferSize() on the
wrapped response object.

Final Version

The javax.serviet package 216

Specified By: ServletResponse.getBufferSize() ininterface
ServletResponse

getChar acter Encoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped response object.

Specified By: ServletResponse.getCharacterEncoding() ininterface
ServletResponse

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped response object.

Specified By: ServletResponse.getContentType() ininterface
ServletResponse

Since 2.4

getL ocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getL ocale() on the wrapped
response object.

Specified By: ServletResponse.getlocale() ininterface
ServletResponse

getOutputStream()

pubTlic ServletOutputStream getOutputStream()
throws IOException

The default behavior of this method is to return getOutputStream() on the
wrapped response object.

Specified By: ServletResponse.getOutputStream() ininterface
ServletResponse

Throws:
IOException

getResponse()

public ServletResponse getResponse()

Return the wrapped ServletResponse object.

217 JAVAX.SERVLET

getWriter ()

public java.io.PrintWriter getWriter()
throws IOException

The default behavior of this method isto return getWriter() on the wrapped
response object.

Specified By: ServletResponse.getWriter() ininterface
ServletResponse

Throws:
IOException

isCommitted()
pubTlic boolean +isCommitted()

The default behavior of this method is to return isCommitted() on the
wrapped response object.

Specified By: ServletResponse.isCommitted() ininterface
ServletResponse

reset()

pubTlic void reset()

The default behavior of thismethod isto call reset() on the wrapped response
object.

Specified By: ServletResponse.reset() ininterface ServletResponse

resetBuffer()
pubTlic void resetBuffer()

The default behavior of this method isto call resetBuffer() on the wrapped
response object.

Specified By: ServletResponse.resetBuffer() ininterface
ServletResponse

setBuffer Size(int)
pubTlic void setBufferSize(int size)

The default behavior of this method isto call setBufferSize(int size) on the
wrapped response object.

Specified By: ServletResponse.setBufferSize(int) ininterface
ServletResponse

setCharacter Encoding(String)

Final Version

The javax.serviet package 218

public void setCharacterEncoding(java.lang.String charset)

The default behavior of this method isto call setCharacterEncoding(String
charset) on the wrapped response object.

Specified By: ServletResponse.setCharacterEncoding(String) in
interface ServletResponse

Since: 2.4

setContentL ength(int)
public void setContentLength(int len)

The default behavior of this method is to call setContentLength(int len) on
the wrapped response object.

Specified By: ServletResponse.setContentlLength(int) ininterface
ServletResponse

setContentType(String)
public void setContentType(java.lang.String type)

The default behavior of this method isto call setContentType(String type) on
the wrapped response object.

Specified By: ServletResponse.setContentType(String) ininterface
ServletResponse

setL ocale(L ocale)

public void setLocale(java.util.Locale loc)

The default behavior of this method isto call setlocale(Locale loc) on the
wrapped response object.

Specified By: ServletResponse.setlocale(lLocale) ininterface
ServletResponse

setResponse(Ser vletResponse)

public void setResponse(ServietResponse response)

Sets the response being wrapped.

Throws:
java.lang.I1legalArgumentException - if the responseisnull.

SRV.14.2.24 SingleThreadModel

public interface Singl eThr eadMbde
Deprecated. Asof Java Servlet API 2.4, with no direct replacement.

219

JAVAX.SERVLET

Ensures that serviets handle only one request at a time. This interface has no
methods.

If aservlet implementsthisinterface, you are guaranteed that no two threads will
execute concurrently in the servlet’s service method. The servlet container can
make this guarantee by synchronizing access to a single instance of the servlet, or
by maintaining a pool of servlet instances and dispatching each new request to a
free servlet.

Note that SingleThreadModel does not solve all thread safety issues. For exam-
ple, session attributes and static variables can still be accessed by multiple
requests on multiple threads at the same time, even when SingleThreadM odel
servlets are used. It is recommended that a devel oper take other means to resolve
those issues instead of implementing this interface, such as avoiding the usage of
an instance variable or synchronizing the block of the code accessing those
resources. Thisinterface is deprecated in Servlet APl version 2.4.

SRV.14.2.25 UnavailableException

public class Unavai |l abl eExcepti on extends
javax.servlet.ServletException

All Implemented Interfaces. java.io.Serializable

Defines an exception that a servlet or filter throws to indicate that it is perma-
nently or temporarily unavailable.

When a servlet or filter is permanently unavailable, something is wrong with it,
and it cannot handle requests until some action is taken. For example, a servlet
might be configured incorrectly, or afilter's state may be corrupted. The compo-
nent should log both the error and the corrective action that is needed.

A servlet or filter is temporarily unavailable if it cannot handle requests momen-
tarily due to some system-wide problem. For example, a third-tier server might
not be accessible, or there may be insufficient memory or disk storage to handle
requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in the
same way. However, treating temporary unavailability effectively makes the serv-
let container more robust. Specifically, the servlet container might block requests
to the servlet or filter for a period of time suggested by the exception, rather than
rejecting them until the servlet container restarts.

SRV.14.2.25.1 Constructors

UnavailableException(int, Servlet, String)

Final Version

The javax.servlet package 220

public UnavailableException(int seconds, Servlet servlet,
java.lang.String msg)

Deprecated. Asof Java Servlet APl 2.2, use
UnavailableException(String, int) instead

Parameters:

seconds - an integer specifying the number of seconds the servlet expects to
be unavailable; if zero or negative, indicates that the servlet can’t make an
estimate

servlet - the Servlet that is unavailable

msg - a String specifying the descriptive message, which can be written to a
log file or displayed for the user.

UnavailableException(Servlet, String)

public UnavailableException(Servlet servlet, java.lang.String msg)

Deprecated. Asof Java Servlet APl 2.2, use
UnavailableException(String) instead.

Parameters:
serviet - the Servlet instance that is unavailable

msg - a String specifying the descriptive message

UnavailableException(String)

public UnavailableException(java.lang.String msg)

Constructs a new exception with a descriptive message indicating that the
servlet is permanently unavailable.

Parameters:
msg - a String specifying the descriptive message

UnavailableException(String, int)

public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that the
servlet istemporarily unavailable and giving an estimate of how long it will
be unavailable.

In some cases, the servlet cannot make an estimate. For example, the servlet
might know that a server it needsis not running, but not be able to report how
long it will take to be restored to functionality. This can be indicated with a
negative or zero value for the seconds argument.

Parameters:

221

JAVAX.SERVLET

msg - a String specifying the descriptive message, which can be writtento a
log file or displayed for the user.

seconds - an integer specifying the number of seconds the servlet expectsto
be unavailable; if zero or negative, indicates that the servlet can’t make an
estimate

SRV.14.2.25.2 Methods

getServlet()
pubTlic Servlet getServlet()

Deprecated. Asof Java Servlet API 2.2, with no replacement. Returns the
servlet that is reporting its unavailability.

Returns. the Serviet object that isthrowing the UnavailableException

getUnavailableSeconds()
pubTlic int getUnavailableSeconds ()

Returns the number of seconds the servlet expects to be temporarily unavail-
able.

If this method returns a negative number, the servlet is permanently unavail-
able or cannot provide an estimate of how long it will be unavailable. No
effort is made to correct for the time elapsed since the exception was first
reported.

Returns: an integer specifying the number of seconds the servlet will be
temporarily unavailable, or a negative number if the servlet is permanently
unavailable or cannot make an estimate

isPermanent()

public boolean 1isPermanent()

Returns aboolean indicating whether the servlet is permanently unavailable.
If so, something iswrong with the servlet, and the system administrator must
take some corrective action.

Returns. true if the servlet is permanently unavailable; false if the serviet
is available or temporarily unavailable

Final Version

cneren DRV 1D

javax.servl et.httb

This chapter describes the javax.servlet.http package. The chapter includes content
that is generated automatically from the javadoc embedded in the actual Java classes
and interfaces. This allows the creation of a single, authoritative, specification docu-
ment.

SRV.15.1 ServletsUsing HT TP Protocol

The javax.serviet.http package contains a number of classes and interfaces that
describe and define the contracts between a servlet class running under the HTTP
protocol and the runtime environment provided for an instance of such aclassby a
conforming servlet container.

The class HttpServiet implements the Serviet interface and provides a base
developers will extend to implement servlets for implementing web applications
employing the HTTP protocol. In addition to generic Servlet interface methods,
the class HttpServiet implements interfaces providing HTTP functionality.

The basic Servlet interface defines a service method for handling client
requests. Thismethod is called for each request that the servlet container routesto
an instance of a servlet.

Class Summary

Interfaces

HttpServletRequest Extends the javax.servlet.ServletRequest
interface to provide request information for
HTTP servlets.

222

223

JAVAX.SERVLET.HTTP

Class Summary

HttpServletResponse

HttpSession

HttpSessionActivation-
Listener

HttpSessionAt-
tributelistener

HttpSessionBindinglLis-
tener

HttpSessionContext

HttpSessionlListener

Classes

Cookie

HttpServlet

HttpServletRequestWrap-

per

HttpServletResponse-
Wrapper

Extends the javax.servlet.ServletResponse
interface to provide HTTP-specific functionality
in sending a response.

Provides a way to identify a user across more
than one page request or visit to a Web site and
to store information about that user.

Obijects that are bound to a session may listen
to container events notifying them that sessions
will be passivated and that session will be
activated.

This listener interface can be implemented in
order to get notifications of changes to the
attribute lists of sessions within this web
application.

Causes an object to be notified when it is bound
to or unbound from a session.

Implementations of this interface are notified of
changes to the list of active sessions in a web
application.

Creates a cookie, a small amount of information
sent by a servlet to a Web browser, saved by the
browser, and later sent back to the server.

Provides an abstract class to be subclassed to
create an HTTP servlet suitable for a Web site.

Provides a convenient implementation of the
HttpServietRequest interface that can be
subclassed by developers wishing to adapt the
request to a Servlet.

Provides a convenient implementation of the
HttpServietResponse interface that can be
subclassed by developers wishing to adapt the
response from a Servlet.

Final Version

Servlets Using HTTP Protocol

Class Summary

HttpSessionBindingEvent Events of this type are either sent to an object
that implements HttpSessionBindinglListener
when it is bound or unbound from a session, or
to a HttpSessionAttributelistener that has
been configured in the deployment descriptor
when any attribute is bound, unbound or
replaced in a session.

HttpSessionEvent This is the class representing event notifications
for changes to sessions within a web
application.

HttpUtils

SRV.15.1.1 Cookie

public class Cookie implements java.lang.Cloneable

All Implemented Interfaces. java.lang.Cloneable

Creates a cookie, a small amount of information sent by a servlet to a Web
browser, saved by the browser, and later sent back to the server. A cookie's value
can uniquely identify aclient, so cookies are commonly used for session manage-
ment.

A cookie has a name, a single value, and optional attributes such as a comment,
path and domain qualifiers, a maximum age, and a version number. Some Web
browsers have bugs in how they handle the optional attributes, so use them spar-
ingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using the
HttpServletResponse.addCookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time. The
browser is expected to support 20 cookies for each Web server, 300 cookies total,
and may limit cookie sizeto 4 KB each.

The browser returns cookies to the servlet by adding fieldsto HTTP request head-
ers. Cookies can be retrieved from a reguest by wusing the
HttpServletRequest.getCookies() method. Several cookies might have the
same name but different path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not
cache pages that use cookies created with this class. This class does not support
the cache control defined with HTTP 1.1.

224

225

JAVAX.SERVLET.HTTP

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC
2109) cookie specifications. By default, cookies are created using Version O to
ensure the best interoperability.

SRV.15.1.1.1 Constructors

Cookie(String, String)

public Cookie(java.lang.String name, java.lang.String value)

Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only ASCII
alphanumeric characters and cannot contain commas, semicolons, or white
space or begin with a$ character. The cookie's name cannot be changed after
creation.

The value can be anything the server chooses to send. Its value is probably of
interest only to the server. The cooki€e's value can be changed after creation
with the setvalue method.

By default, cookies are created according to the Netscape cookie specifica-
tion. The version can be changed with the setVersion method.

Parameters:
name - a String specifying the name of the cookie

value - aString specifying the value of the cookie

Throws:

I1legalArgumentException - if the cookie name containsillegal characters
(for example, a comma, space, or semicolon) or it is one of the tokens
reserved for use by the cookie protocol

See Also: setValue(String), setVersion(int)

RV.151.1.2 Methods

public java.lang.Object clone()

Overridesthe standard java.lang.0Object.clone method to return acopy of
this cookie.

Overrides. javalang.Object.clone() in class java.lang.Object

getComment()
public java.lang.String getComment()

Final Version

Servlets Using HTTP Protocol 226

Returns the comment describing the purpose of this cookie, or nul11 if the
cookie has no comment.

Returns. aString containing the comment, or nu11 if none

See Also; setComment(String)

getDomain()
public java.lang.String getDomain()

Returns the domain name set for this cookie. The form of the domain nameis
set by RFC 2109.

Returns: aString containing the domain name

See Also: setDomain(String)

getMaxAge()
public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By default, -1
indicating the cookie will persist until browser shutdown.

Returns: aninteger specifying the maximum age of the cookie in seconds; if
negative, means the cookie persists until browser shutdown

See Als0: setMaxAge(int)

getName()
public java.lang.String getName()

Returns the name of the cookie. The name cannot be changed after creation.

Returns: aString specifying the cookie's name

getPath()
public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie. The
cookieisvisibleto al subpaths on the server.

Returns. aString specifying a path that contains a servlet name, for
example, /catalog

See Also; setPath(String)

getSecure()

public boolean getSecure()

Returns true if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

227 JAVAX.SERVLET.HTTP

Returns. true if the browser uses a secure protocol; otherwise, true

See Also: setSecure(boolean)

getValue()
pubTlic java.lang.String getValue()

Returns the value of the cookie.
Returns: aString containing the cookie's present value
See Also: setValue(String), Cookie

getVersion()
public int getVersion()
Returns the version of the protocol this cookie complies with. Version 1 com-
plieswith RFC 2109, and version 0 complies with the original cookie specifi-

cation drafted by Netscape. Cookies provided by a browser use and identify
the browser’s cookie version.

Returns: 0if the cookie complieswith the original Netscape specification; 1
if the cookie complies with RFC 2109

See AlsO: setVersion(int)

setComment(String)

public void setComment(java.lang.String purpose)

Specifies acomment that describes a cooki€’s purpose. The comment is use-
ful if the browser presents the cookie to the user. Comments are not sup-
ported by Netscape Version 0 cookies.

Parameters:
purpose - aString specifying the comment to display to the user

See Also: getComment()

setDomain(String)
public void setDomain(java.lang.String pattern)
Specifies the domain within which this cookie should be presented.

The form of the domain name is specified by RFC 2109. A domain name
beginswith adot (. foo.com) and meansthat the cookieisvisibleto serversin
a specified Domain Name System (DNS) zone (for example, www . foo. com,
but not a.b. foo.com). By default, cookies are only returned to the server that
sent them.

Parameters:

Final Version

Servlets Using HTTP Protocol 228

pattern - aString containing the domain name within which this cookieis
visible; form is according to RFC 2109

See Also: getDomain()
setM axAge(int)

public void setMaxAge(int expiry)
Sets the maximum age of the cookiein seconds.

A positive value indicates that the cookie will expire after that many seconds
have passed. Note that the value is the maximum age when the cookie will
expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and will be
deleted when the Web browser exits. A zero value causes the cookie to be
deleted.

Parameters:
expiry - aninteger specifying the maximum age of the cookie in seconds; if
negative, means the cookie is not stored; if zero, deletes the cookie

See Also: getMaxAge()

setPath(String)
public void setPath(java.lang.String uri)

Specifies a path for the cookie to which the client should return the cookie.

The cookieisvisible to all the pagesin the directory you specify, and all the
pages in that directory’s subdirectories. A cookie's path must include the
servlet that set the cookie, for example, /catalog, which makes the cookie vis-
ible to all directories on the server under /catal og.

Consult RFC 2109 (avail able on the Internet) for more information on setting
path names for cookies.

Parameters:
uri - aString specifying apath

See Also: getPath()

setSecure(boolean)

public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a
secure protocol, suchasHTTPS or SSL.

The default valueis false.

Parameters:

229 JAVAX.SERVLET.HTTP

flag - if true, sends the cookie from the browser to the server only when
using a secure protocol; if false, sent on any protocol

See Also: getSecure()
setValue(String)

public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookieis created. If you use a
binary value, you may want to use BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets,
parentheses, equals signs, commas, double quotes, slashes, question marks, at
signs, colons, and semicolons. Empty values may not behave the same way
on al browsers.

Parameters:
newValue - aString specifying the new value

See Also: getValue(), Cookie

setVersion(int)
public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version O
complies with the original Netscape cookie specification. Version 1 complies
with RFC 21009.

Since RFC 2109 is till somewhat new, consider version 1 as experimental;
do not use it yet on production sites.

Par ameters:
v - 0if the cookie should comply with the original Netscape specification; 1 if
the cookie should comply with RFC 2109

See Also: getVersion()

SRV.15.1.2 HttpServlet

pubTlic abstract class HttpServlet extends
javax.servlet.GenericServlet implements java.io.Serializable

All Implemented Interfaces: java.io.Serializable, javax.servlet.Serv-
let, javax.servlet.ServletConfig

Provides an abstract class to be subclassed to create an HTTP servlet suitable for
aWeb site. A subclass of HttpServlet must override at least one method, usually
one of these:

*doGet, if the serviet supports HTTP GET requests

edoPost, for HTTP POST requests

Final Version

Servlets Using HTTP Protocol 230

edoPut, for HTTP PUT requests

edoDelete, for HTTP DELETE requests

«init and destroy, to manage resources that are held for the life of the serv-
let

egetServletInfo, which the servlet usesto provide information about itself

There's almost no reason to override the service method. service handles stan-
dard HTTP requests by dispatching them to the handler methods for each HTTP
reguest type (the doXXX methods listed above).

Likewise, there’'s almost no reason to override the doOptions and doTrace meth-
ods.

Servlets typically run on multithreaded servers, so be aware that a servlet must
handle concurrent requests and be careful to synchronize access to shared
resources. Shared resources include in-memory data such as instance or class
variables and external objects such as files, database connections, and network
connections. See the Java Tutoriad on Multithreaded Programming (http://
java.sun.com/Series/Tutorial/javalthreads/multithreaded.html) for more informa-
tion on handling multiple threads in a Java program.

SRV.15.1.2.1 Constructors

HttpServlet()
public HttpServlet()

Does nothing, because thisis an abstract class.

SRV.15.1.2.2 Methods

doDelete(HttpServietRequest, HttpServlietResponse)

protected void doDelete(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to alow a servlet to handle a
DELETE request. The DELETE operation alows a client to remove a docu-
ment or Web page from the server.

This method does not need to be either safe or idempotent. Operations
reguested through DELETE can have side effects for which users can be held
accountable. When using this method, it may be useful to save a copy of the
affected URL in temporary storage.

If the HTTP DELETE request isincorrectly formatted, doDelete returns an
HTTP “Bad Request” message.

231

JAVAX.SERVLET.HTTP

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse oObject that contains the response the
servlet returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the DELETE request

javax.servlet.ServletException - if the request for the DELETE cannot
be handled

doGet(HttpServietRequest, HttpServletResponse)
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to allow a servlet to handle a
GET request.

Overriding this method to support a GET request also automatically supports
an HTTP HEAD request. A HEAD request isa GET request that returns no
body in the response, only the request header fields.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It’s best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing the PrintwWriter object.

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has
a Transfer-Encoding header), do not set the Content-L ength header.

The GET method should be safe, that is, without any side effects for which
users are held responsible. For example, most form queries have no side
effects. If aclient request isintended to change stored data, the request
should use some other HTTP method.

Final Version

Servlets Using HTTP Protocol 232

The GET method should also be idempotent, meaning that it can be safely
repeated. Sometimes making a method safe also makes it idempotent. For
example, repeating queriesis both safe and idempotent, but buying a product
online or modifying data is neither safe nor idempotent.

If therequest isincorrectly formatted, doGet returnsan HTTP “ Bad Request”
message.
Parameters:

req - an HttpServletRequest object that contains the request the client has
made of the servlet

resp - anHttpServietResponse object that containsthe response the servlet
sends to the client

Throws:
IOException - if aninput or output error is detected when the servlet handles
the GET request

javax.servlet.ServletException - if therequest for the GET could not be
handled

See Also; javax.servlet.ServietResponse.setContentType(String)

doHead(HttpServietRequest, HttpServlietResponse)

protected void doHead(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Receives an HTTP HEAD request from the protected service method and
handles the request. The client sends a HEAD request when it wants to see
only the headers of aresponse, such as Content-Type or Content-Length. The
HTTP HEAD method counts the output bytes in the response to set the Con-
tent-Length header accurately.

If you override this method, you can avoid computing the response body and
just set the response headers directly to improve performance. Make sure that
the doHead method you write is both safe and idempotent (that is, protects
itself from being called multiple times for one HTTP HEAD request).

If theHTTP HEAD request isincorrectly formatted, doHead returnsan HTTP
“Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headersto the
clien

Throws:

233 JAVAX.SERVLET.HTTP

IOException - if aninput or output error occurs

javax.servlet.ServletException - if the request for the HEAD could not
be handled

doOptions(HttpServletRequest, HttpServlietResponse)

protected void doOptions(HttpServietRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to allow a servlet to handle a
OPTIONS request. The OPTIONS request determines which HTTP methods
the server supports and returns an appropriate header. For example, if a serv-
let overrides doGet, this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There's no need to override this method unless the servlet implements new
HTTP methods, beyond those implemented by HTTP 1.1.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the OPTIONS request

javax.servlet.ServletException - if therequest for the OPTIONS cannot
be handled

doPost(HttpServletRequest, HttpServietResponse)

protected void doPost(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to allow a servlet to handle a
POST request. The HTTP POST method allows the client to send data of
unlimited length to the Web server asingle time and is useful when posting
information such as credit card numbers.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It’s best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing the PrintwWriter object.

Final Version

Servlets Using HTTP Protocol

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-L ength header (with the
javax.servlet.ServletResponse.setContentlLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has
a Transfer-Encoding header), do not set the Content-L ength header.

This method does not need to be either safe or idempotent. Operations
requested through POST can have side effects for which the user can be held
accountable, for example, updating stored data or buying items online.

If the HTTP POST request isincorrectly formatted, doPost returnsan HTTP
“Bad Request” message.

Parameters:
req - an HttpServletRequest object that contains the request the client has
made of the servlet

resp - anHttpServietResponse object that containsthe response the servlet
sends to the client

Throws:
IOException - if aninput or output error is detected when the servlet handles
the request

javax.servlet.ServletException - if the request for the POST could not
be handled

See Also: javax.servlet.ServletOutputStream,
javax.servlet.ServletResponse.setContentType(String)

doPut(HttpServletRequest, HttpServietResponse)

protected void doPut(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to allow a servlet to handle a
PUT request. The PUT operation allows a client to place afile on the server
and is similar to sending afile by FTP.

When overriding this method, leave intact any content headers sent with the
reguest (including Content-L ength, Content-Type, Content-Transfer-Encod-
ing, Content-Encoding, Content-Base, Content-L anguage, Content-L ocation,
Content-M D5, and Content-Range). If your method cannot handle a content
header, it must issue an error message (HTTP 501 - Not Implemented) and

234

235

JAVAX.SERVLET.HTTP

discard the request. For more information on HTTP 1.1, see RFC 2616
(http://www.ietf.org/rfc/rfc2616.txt).

This method does not need to be either safe or idempotent. Operations that
doPut performs can have side effects for which the user can be held account-
able. When using this method, it may be useful to save a copy of the affected
URL in temporary storage.

If the HTTP PUT request isincorrectly formatted, doPut returnsan HTTP
“Bad Request” message.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the PUT request

javax.servlet.ServletException - if the request for the PUT cannot be
handled

doTrace(HttpServietRequest, HttpServietResponse)
protected void doTrace(HttpServietRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (viathe service method) to allow a servlet to handle a

TRACE request. A TRACE returnsthe headers sent with the TRACE request
to the client, so that they can be used in debugging. There's no need to over-
ride this method.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

getL astM odified(HttpServlietRequest)

Final Version

Servlets Using HTTP Protocol 236

protected long getLastModified(HttpServletRequest req)

Returns the time the HttpServletRequest object was last modified, in milli-
seconds since midnight January 1, 1970 GMT. If the time is unknown, this
method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their
last modification time should override this method. This makes browser and
proxy cacheswork more effectively, reducing the load on server and network
resources.

Parameters:
req - the HttpServletRequest oObject that is sent to the serviet

Returns: along integer specifying thetimethe HttpServletRequest object
was last modified, in milliseconds since midnight, January 1, 1970 GMT, or -
1if thetimeisnot known

service(HttpServletRequest, HttpServietResponse)

protected void service(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Receives standard HTTP requests from the public service method and dis-
patches them to the doXXX methods defined in this class. This method isan
HTTP-specific version of the javax.serviet.Serviet.service(Servle-
tRequest, ServletResponse) method. There's no need to override this
method.

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

resp - the HttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the HTTP request

javax.servlet.ServletException - if the HTTP request cannot be handled

See Also; javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

service(ServietRequest, ServletResponse)

public void service(javax.servlet.ServletRequest req,
javax.servlet.ServletResponse res)
throws ServletException, IOException

237

JAVAX.SERVLET.HTTP

Dispatches client requests to the protected service method. There's no need
to override this method.

Specified By: javax.servlet.Servlet.service(ServletRequest,
ServletResponse) ininterface javax.servlet.Servlet

Overrides. javax.servlet.GenericServlet.service(ServletRequest,
ServletResponse) inclass javax.serviet.GenericServlet

Parameters:
req - the HttpServletRequest object that contains the request the client
made of the servlet

res - theHttpServletResponse object that contains the response the servlet
returns to the client

Throws:
IOException - if aninput or output error occurs while the servlet is handling
the HTTP request

javax.servlet.ServletException - if the HTTP request cannot be handled

See Also: javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

SRV.15.1.3 HttpServiletRequest

pubTlic interface HttpServl et Request extends
javax.servlet.ServletRequest

All Superinterfaces. javax.servlet.ServletRequest

All Known Implementing Classes. HttpServletRequestWrapper

Extendsthe javax.servlet.ServletRequest interfaceto provide request infor-
mation for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it as an
argument to the servlet’s service methods (doGet, doPost, €tc).

SRV.15.1.31 Fields

BASIC_AUTH
pubTlic static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH
pubTlic static final java.lang.String CLIENT_CERT_AUTH

Final Version

Servlets Using HTTP Protocol

String identifier for Client Certificate authentication. Vaue
“CLIENT_CERT”

DIGEST_AUTH
public static final java.lang.String DIGEST_AUTH

String identifier for Digest authentication. Value “DIGEST”

FORM_AUTH
public static final java.lang.String FORM_AUTH

String identifier for Form authentication. Value “FORM”

SRV.15.1.3.2 Methods

getAuthType()
public java.lang.String getAuthType()

Returns the name of the authentication scheme used to protect the servlet. All
servlet containers support basic, form and client certificate authentication,
and may additionally support digest authentication. If the servlet is not
authenticated nul11 is returned.

Same as the value of the CGlI variable AUTH_TYPE.

Returns: one of the static members BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH, DIGEST_AUTH (suitable for == comparison) or
the contai ner-specific string indicating the authentication scheme, or nu11 if
the request was not authenticated.

getContextPath()
public java.lang.String getContextPath()

Returns the portion of the request URI that indicates the context of the
reguest. The context path always comesfirst in arequest URI. The path starts
with a“/” character but does not end with a*“/” character. For servletsin the
default (root) context, this method returns “”. The container does not decode
this string.

Returns: aString specifying the portion of the request URI that indicates
the context of the request

getCookies()
public Cookie[] getCookies()

Returns an array containing al of the Cookie objects the client sent with this
reguest. This method returns nu11 if no cookies were sent.

238

239 JAVAX.SERVLET.HTTP

Returns: an array of al the Cookies included with this request, or nu11 if
the request has no cookies

getDateHeader (String)
pubTlic Tong getDateHeader(java.lang.String name)
Returns the value of the specified request header as a 1ong value that repre-

sents aDate object. Use this method with headers that contain dates, such as
If-Modified-Since.

The date is returned as the number of milliseconds since January 1, 1970
GMT. The header name is case insensitive.

If the request did not have a header of the specified name, this method returns
-1. If the header can’t be converted to a date, the method throws an I11egal-
ArgumentException.

Parameters:
name - a String specifying the name of the header

Returns. along vaue representing the date specified in the header
expressed as the number of milliseconds since January 1, 1970 GMT, or -1 if
the named header was not included with the request

Throws:
IT11egalArgumentException - If the header value can’t be converted to a date

getHeader (String)
pubTlic java.lang.String getHeader(java.lang.String name)
Returns the value of the specified request header asa String. If the request
did not include a header of the specified name, this method returns nu11. If
there are multiple headers with the same name, this method returns the first
head in the request. The header name is case insensitive. You can use this
method with any request header.

Parameters:
name - & String specifying the header name

Returns. aString containing the value of the requested header, or nul11 if
the request does not have a header of that name

getHeader Names()
pubTlic java.util.Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains. If the
reguest has no headers, this method returns an empty enumeration.

Final Version

Servlets Using HTTP Protocol 240

Some servlet containers do not allow servlets to access headers using this
method, in which case this method returns nu11

Returns: an enumeration of al the header names sent with this request; if
the request has no headers, an empty enumeration; if the servlet container
does not allow servlets to use this method, nu11

getHeader s(String)
public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header as an Enumeration of
String objects.

Some headers, such as Accept-Language can be sent by clients as several
headers each with a different value rather than sending the header as a
comma separated list.

If the request did not include any headers of the specified name, this method
returns an empty Enumeration. The header nameis case insensitive. You can
use this method with any request header.

Parameters:
name - @ String specifying the header name

Returns. an Enumeration containing the values of the requested header. If
the request does not have any headers of that name return an empty
enumeration. If the container does not allow access to header information,
return null

getIntHeader (String)
public int getIntHeader(java.lang.String name)

Returns the value of the specified request header as an int. If the request
does not have a header of the specified name, this method returns -1. If the
header cannot be converted to an integer, this method throws a Number-
FormatException.

The header name is case insensitive.

Parameters:
name - @ String specifying the name of arequest header

Returns: aninteger expressing the value of the request header or -1 if the
regquest doesn’t have a header of this name

Throws:
NumberFormatException - |f the header value can’t be converted to an int

getMethod()

241

JAVAX.SERVLET.HTTP

public java.lang.String getMethod()

Returns the name of the HTTP method with which this request was made, for
example, GET, POST, or PUT. Same as the value of the CGlI variable
REQUEST_METHOD.

Returns. asString specifying the name of the method with which this
request was made

getPathl nfo()
public java.lang.String getPathInfo()

Returns any extra path information associated with the URL the client sent
when it made this request. The extra path information follows the servlet path
but precedes the query string and will start witha*“/” character.

This method returns nu11 if there was no extra path information.
Same as the value of the CGlI variable PATH_INFO.

Returns: aString, decoded by the web container, specifying extra path
information that comes after the servlet path but before the query string in the
request URL; or nu11 if the URL does not have any extra path information

getPathTranslated()
public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the
query string, and trandates it to areal path. Same as the value of the CGI
variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method returns
nul1 or the servlet container cannot translate the virtual path to areal path for
any reason (such as when the web application is executed from an archive).
The web container does not decode this string.

Returns. asString specifying the real path, or nu11 if the URL does not
have any extra path information

getQuerysString()
public java.lang.String getQueryString()

Returns the query string that is contained in the request URL after the path.
This method returns nu11 if the URL does not have a query string. Same as
the value of the CGI variable QUERY _STRING.

Returns. aString containing the query string or nu11 if the URL contains
no query string. The valueisnot decoded by the container.

Final Version

Servlets Using HTTP Protocol

getRemoteUser ()

public java.lang.String getRemoteUser()

Returns the login of the user making this request, if the user has been authen-
ticated, or nu11 if the user has not been authenticated. Whether the user name

is sent with each subsequent request depends on the browser and type of
authentication. Same as the value of the CGlI variable REMOTE_USER.

Returns. aString specifying the login of the user making this request, or

nu11 if the user login is not known

getRequestedSessionl d()

public java.lang.String getRequestedSessionId()

Returns the session | D specified by the client. This may not be the same as

the ID of the current valid session for this request. If the client did not specify

asession |D, this method returns nu11.

Returns. aString specifying the session ID, or nu11 if the request did not

specify asession ID

See Also: isRequestedSessionIdvalid()

getRequestURI ()

public java.lang.String getRequestURI()

Returnsthe part of thisrequest’s URL from the protocol name up to the query

string in the first line of the HTTP request. The web container does not

decode this String. For example:

First line of HTTP request

Returned Value

POST /some/path.html HTTP/1.1
GET http://foo.bar/a.html HTTP/1.0
HEAD /xyz?a=b HTTP/1.1

/some/path.html
/a.html
/Xxyz

To reconstruct an URL with a scheme and host, use
HttpUtils.getRequestURL (HttpServietRequest) .

Returns. aString containing the part of the URL from the protocol name

up to the query string

See Also: HttpUtils.getRequestURL (HttpServletRequest)

getRequestURL ()

242

243 JAVAX.SERVLET.HTTP

public java.lang.StringBuffer getRequestURL()

Reconstructs the URL the client used to make the request. The returned URL
contains a protocol, server name, port number, and server path, but it does not
include query string parameters.

Because this method returns a StringBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.
Returns. aStringBuffer object containing the reconstructed URL

getServletPath()
public java.lang.String getServletPath()

Returns the part of this request’'s URL that calls the servlet. This path starts
with a“/" character and includes either the servlet name or a path to the serv-
let, but does not include any extra path information or aquery string. Same as
the value of the CGI variable SCRIPT_NAME.

This method will return an empty string (“”) if the servlet used to processthis
request was matched using the “/*” pattern.

Returns. aString containing the name or path of the servlet being called,
as specified in the request URL, decoded, or an empty string if the serviet
used to process the request is matched using the “/*” pattern.

getSession()
pubTlic HttpSession getSession()

Returns the current session associated with this request, or if the request does
not have a session, creates one.

Returns: the HttpSession associated with this request

See Also: getSession(boolean)

getSession(boolean)
pubTlic HttpSession getSession(boolean create)

Returnsthe current HttpSession associated with this request or, if thereisno
current session and create istrue, returns anew session.

If create is false and the request has no valid HttpSession, this method
returns nulT.

To make sure the session is properly maintained, you must call this method
before the response is committed. If the container is using cookies to main-

Final Version

Serviets Using HTTP Protocol 244

tain session integrity and is asked to create a new session when the response
is committed, an |llegal StateException is thrown.

Parameters:
create - true to create a new session for thisrequest if necessary; false to
return nul1 if there’s no current session

Returns: the HttpSession associated with thisrequest or nu11 if create is
false and the request has no valid session

See Also: getSession()

getUser Principal ()
public java.security.Principal getUserPrincipal()

Returnsajava.security.Principal object containing the name of the cur-
rent authenticated user. If the user has not been authenticated, the method
returns null.

Returns. ajava.security.Principal containing the name of the user
making this request; nu11 if the user has not been authenticated

isRequestedSessionl dFromCookie()

public boolean 1isRequestedSessionIdFromCookie()
Checks whether the requested session ID camein as a cookie.
Returns. true if the session ID camein as acookie; otherwise, false

See Also: getSession(boolean)

isRequestedSessionl dFromUrl()

public boolean isRequestedSessionIdFromUrl()

Deprecated. Asof Version 2.1 of the Java Servlet API, use
isRequestedSessionIdFromURL() instead.

isRequestedSessionl dFromURL ()
public boolean 1isRequestedSessionIdFromURL()

Checks whether the requested session ID camein as part of the request URL.
Returns: true if the session ID camein as part of a URL; otherwise, false

See Also: getSession(boolean)

isRequestedSessionldValid()
pubTlic boolean {isRequestedSessionIdvalid()

Checks whether the requested session ID is still valid.

245

JAVAX.SERVLET.HTTP

Returns: true if thisrequest hasanid for avalid session in the current
session context; false otherwise

See Also: getRequestedSessionId(), getSession(boolean),
HttpSessionContext

isUserlnRole(String)

pubTic boolean -disUserInRole(java.lang.String role)

Returns a bool ean indicating whether the authenticated user isincluded in the
specified logical “role”’. Roles and role membership can be defined using
deployment descriptors. If the user has not been authenticated, the method
returns false.

Parameters:
role - aString specifying the name of therole

Returns: aboolean indicating whether the user making this request belongs
to agivenrole; false if the user has not been authenticated

SRV.15.14 HttpServietRequestWrapper

pubTlic class HttpServl et Request W apper extends
javax.servlet.ServletRequestWrapper implements
javax.servlet.http.HttpServletRequest

All Implemented Interfaces. HttpServletRequest, javax.servlet.Servie-
tRequest

Provides a convenient implementation of the HitpServlietRequest interface that
can be subclassed by developers wishing to adapt the request to a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling
through to the wrapped request object.

Since: v 2.3

See Also: HttpServletRequest

SRV.15.1.4.1 Constructors

HttpServlietRequestWrapper (HttpServietRequest)

pubTic HttpServletRequestWrapper (HttpServietRequest request)

Constructs a reguest object wrapping the given request.

Throws:
java.lang.I1legalArgumentException - if the request isnull

Final Version

Servlets Using HTTP Protocol 246

RV.15.1.4.2 Methods

getAuthType()
public java.lang.String getAuthType()

The default behavior of this method is to return getAuthType() on the
wrapped reguest object.

Specified By: HttpServletRequest.getAuthType() ininterface
HttpServletRequest

getContextPath()
public java.lang.String getContextPath()

The default behavior of this method is to return getContextPath() on the
wrapped request object.

Specified By: HttpServletRequest.getContextPath() ininterface
HttpServletRequest

getCookies()
pubTlic Cookie[] getCookies()

The default behavior of this method isto return getCookies() on the wrapped
reguest object.

Specified By: HttpServletRequest.getCookies() ininterface
HttpServletRequest

getDateHeader (String)
public Tong getDateHeader(java.lang.String name)

The default behavior of this method isto return getDateHeader (String name)
on the wrapped request object.

Specified By: HttpServletRequest.getDateHeader(String) ininterface
HttpServletRequest

getHeader (String)

public java.lang.String getHeader(java.lang.String name)

The default behavior of this method is to return getHeader(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeader(String) ininterface
HttpServletRequest

getHeader Names()

247 JAVAX.SERVLET.HTTP

public java.util.Enumeration getHeaderNames()

The default behavior of this method is to return getHeaderNames() on the
wrapped request object.

Specified By: HttpServletRequest.getHeaderNames() ininterface
HttpServletRequest

getHeader s(String)

public java.util.Enumeration getHeaders(java.lang.String name)

The default behavior of this method is to return getHeaders(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeaders(String) ininterface
HttpServletRequest

getlntHeader (String)
public int getIntHeader(java.lang.String name)

The default behavior of this method is to return getintHeader(String name)
on the wrapped request object.

Specified By: HttpServletRequest.getIntHeader(String) ininterface
HttpServletRequest

getM ethod()
public java.lang.String getMethod()

The default behavior of this method is to return getMethod() on the wrapped
request object.

Specified By: HttpServletRequest.getMethod() ininterface
HttpServletRequest

getPathlnfo()
pubTlic java.lang.String getPathInfo()

The default behavior of this method isto return getPathinfo() on the wrapped
request object.

Specified By: HttpServletRequest.getPathInfo() ininterface
HttpServletRequest

getPathTranslated()
public java.lang.String getPathTranslated()

The default behavior of this method isto return getPathTranslated() on the
wrapped request object.

Final Version

Servlets Using HTTP Protocol 248

Specified By: HttpServletRequest.getPathTranslated() ininterface
HttpServletRequest

getQuerystring()
public java.lang.String getQueryString()

The default behavior of this method is to return getQueryString() on the
wrapped request object.

Specified By: HttpServletRequest.getQueryString() ininterface
HttpServletRequest

getRemoteUser ()
public java.lang.String getRemoteUser ()

The default behavior of this method is to return getRemoteUser() on the
wrapped request object.

Specified By: HttpServletRequest.getRemoteUser() ininterface
HttpServletRequest

getRequestedSessionl d()
public java.lang.String getRequestedSessionId()

The default behavior of this method is to return getRequestedSessionld() on
the wrapped request object.

Specified By: HttpServletRequest.getRequestedSessionId() in
interface HttpServletRequest

getRequestURI ()
public java.lang.String getRequestURI()

The default behavior of this method is to return getRequestURI() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURI() ininterface
HttpServletRequest

getRequestURL ()
public java.lang.StringBuffer getRequestURL()

The default behavior of this method is to return getRequestURL () on the
wrapped request object.

Specified By: HttpServiletRequest.getRequestURLQ) ininterface
HttpServletRequest

249

JAVAX.SERVLET.HTTP

getServletPath()
public java.lang.String getServletPath()

The default behavior of this method is to return getServletPath() on the
wrapped request object.

Specified By: HttpServletRequest.getServietPath() ininterface
HttpServletRequest

getSession()
pubTlic HttpSession getSession()

The default behavior of this method is to return getSession() on the wrapped
reguest object.

Specified By: HttpServletRequest.getSession() ininterface
HttpServletRequest

getSession(boolean)
pubTlic HttpSession getSession(boolean create)

The default behavior of this method is to return getSession(boolean create)
on the wrapped request object.

Specified By: HttpServletRequest.getSession(boolean) ininterface
HttpServletRequest

getUser Principal ()

public java.security.Principal getUserPrincipal()

The default behavior of this method is to return getUserPrincipal () on the
wrapped request object.

Specified By: HttpServletRequest.getUserPrincipal() ininterface
HttpServletRequest

isRequestedSessionl dFromCookie()
public boolean 1isRequestedSessionIdFromCookie()
The default behavior of this method is to return isRequestedSessi onl dFrom-
Cookie() on the wrapped request object.
Specified By:
HttpServletRequest.isRequestedSessionIdFromCookie() ininterface
HttpServletRequest

isRequestedSessionl dFromUr|()

public boolean 1isRequestedSessionIdFromUrl()

Final Version

Servlets Using HTTP Protocol

The default behavior of this method is to return isRequestedSessionldFrom-
Url() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromUr1() in
interface HttpServletRequest

isRequestedSessionl dFromURL ()

pubTlic boolean +isRequestedSessionIdFromURL()

The default behavior of this method is to return isRequestedSessionldFrom-
URL () on the wrapped request object.

Specified By: HttpServletRequest.1isRequestedSessionIdFromURL() in
interface HttpServletRequest

isRequestedSessionldValid()
pubTlic boolean 1isRequestedSessionIdvalid()

The default behavior of this method is to return isRequestedSessionl dVvalid()
on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdvalid() in
interface HttpServletRequest

isUser InRole(String)

public boolean -disUserInRole(java.lang.String role)

The default behavior of this method is to return isUserlnRole(String role) on
the wrapped request object.

Specified By: HttpServletRequest.isUserInRole(String) ininterface
HttpServletRequest

SRV.15.15 HttpServletResponse

pubTlic interface Htt pServl et Response extends
javax.servlet.ServletResponse

All Superinterfaces: javax.servlet.ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Extends the javax.servlet.ServietResponse interface to provide HTTP-spe-
cific functionality in sending a response. For example, it has methods to access
HTTP headers and cookies.

The servlet container creates an HttpServietResponse object and passesit as an
argument to the servlet’s service methods (doGet, doPost, €tc).

See Also: javax.servlet.ServletResponse

250

251 JAVAX.SERVLET.HTTP

SRV.15.151 Fidds

SC_ACCEPTED
public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing, but
was not completed.

SC_BAD_GATEWAY
public static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid
response from a server it consulted when acting as a proxy or gateway.

SC_ BAD_REQUEST
pubTlic static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactically
incorrect.

SC CONFLICT
pubTlic static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due to a
conflict with the current state of the resource.

SC _CONTINUE
pubTic static final int SC_CONTINUE

Status code (100) indicating the client can continue.

SC CREATED
public static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new
resource on the server.

SC_ EXPECTATION_FAILED
pubTlic static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectation
given in the Expect request header.

SC FORBIDDEN
pubTlic static final int SC_FORBIDDEN

Final Version

Servlets Using HTTP Protocol

Status code (403) indicating the server understood the request but refused to
fulfill it.

SC_FOUND
public static final int SC_FOUND

Status code (302) indicating that the resource reside temporarily under a dif-
ferent URI. Since the redirection might be atered on occasion, the client
should continue to use the Request-URI for future requests.(HTTP/1.1) To
represent the status code (302), it is recommended to use this variable.

SC_GATEWAY_TIMEOUT
pubTlic static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive atimely response
from the upstream server while acting as a gateway or proxy.

SC_GONE
public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at the
server and no forwarding address is known. This condition SHOULD be con-
sidered permanent.

SC_HTTP_VERSION_NOT_SUPPORTED
pubTlic static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refusesto sup-
port the HTTP protocol version that was used in the request message.

SC_INTERNAL_SERVER_ERROR
public static final int SC_INTERNAL_SERVER_ERROR

Status code (500) indicating an error inside the HT TP server which prevented
it from fulfilling the request.

SC LENGTH_REQUIRED
pubTlic static final int SC_LENGTH_REQUIRED

Status code (411) indicating that the request cannot be handled without a
defined Content-Length.

SC_METHOD_NOT_ALLOWED
public static final int SC_METHOD_NOT_ALLOWED

252

253 JAVAX.SERVLET.HTTP

Status code (405) indicating that the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI.

SC MOVED_PERMANENTLY
public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to a
new location, and that future references should use a new URI with their
requests.

SC MOVED_TEMPORARILY
pubTlic static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to
another location, but that future references should still usethe original URI to
access the resource. This definition is being retained for backwards compati-
bility. SC_FOUND is now the preferred definition.

SC MULTIPLE_CHOICES
public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to any
one of a set of representations, each with its own specific location.

SC_NO_CONTENT
public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there was no
new information to return.

SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NON_AUTHORITATIVE_INFORMATION

Status code (203) indicating that the metainformation presented by the client
did not originate from the server.

SC NOT_ACCEPTABLE
pubTlic static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request isonly
capable of generating response entities which have content characteristics not
acceptable according to the accept headers sent in the request.

SC_NOT_FOUND
pubTlic static final int SC_NOT_FOUND

Final Version

Serviets Using HTTP Protocol 254

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED
public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functional -
ity needed to fulfill the request.

SC_NOT_MODIFIED
public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that the
resource was available and not modified.

SC_OK
public static final int SC_OK
Status code (200) indicating the request succeeded normally.

SC PARTIAL _CONTENT
public static final int SC_PARTIAL_CONTENT

Status code (206) indicating that the server has fulfilled the partial GET
request for the resource.

SC_PAYMENT_REQUIRED
public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.

SC _PRECONDITION_FAILED
public static final int SC_PRECONDITION_FAILED

Status code (412) indicating that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the server.

SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_PROXY_AUTHENTICATION_REQUIRED

Status code (407) indicating that the client MUST first authenticate itself with
the proxy.

SC_REQUEST_ENTITY_TOO LARGE
public static final int SC_REQUEST_ENTITY_TOO_LARGE

255 JAVAX.SERVLET.HTTP

Status code (413) indicating that the server is refusing to process the request
because the request entity is larger than the server iswilling or able to pro-
CESss.

SC_REQUEST TIMEOUT
pubTlic static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a request within
the time that the server was prepared to wait.

SC REQUEST_URI_TOO LONG
public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the request
because the Request-URI islonger than the server iswilling to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte
range.

SC_RESET_CONTENT
public static final int SC_RESET_CONTENT

Status code (205) indicating that the agent SHOULD reset the document view
which caused the request to be sent.

SC SEE OTHER
public static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be found
under adifferent URI.

SC_SERVICE_UNAVAILABLE
public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overloaded,
and unable to handle the request.

SC_SWITCHING_PROTOCOLS
pubTlic static final int SC_SWITCHING_PROTOCOLS

Status code (101) indicating the server is switching protocols according to
Upgrade header.

Final Version

Servlets Using HTTP Protocol 256

SC TEMPORARY_REDIRECT
public static final int SC_TEMPORARY_REDIRECT

Status code (307) indicating that the requested resource resides temporarily
under a different URI. The temporary URI SHOULD be given by the
Location field in the response.

SC_UNAUTHORIZED
public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authentication.

SC UNSUPPORTED_MEDIA TYPE
public static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the request
because the entity of the request isin aformat not supported by the requested
resource for the requested method.

SC _USE_PROXY
public static final int SC_USE_PROXY

Status code (305) indicating that the requested resource MUST be accessed
through the proxy given by the Location field.

SRV.15.1.5.2 Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

Addsthe specified cookie to the response. This method can be called multiple
times to set more than one cookie.

Parameters:
cookie - the Cookie to return to the client

addDateHeader (String, long)

public void addDateHeader(java.lang.String name, long date)

Adds aresponse header with the given name and date-value. The date is spec-
ified in terms of milliseconds since the epoch. This method allows response
headers to have multiple values.

Parameters:
name - the name of the header to set

date - the additional date value

257 JAVAX.SERVLET.HTTP

See Also: setDateHeader(String, long)

addHeader (String, String)

public void addHeader(java.lang.String name,
java.lang.String value)

Adds aresponse header with the given name and value. This method allows
response headers to have multiple values.

Parameters:
name - the name of the header

value - the additional header value If it contains octet string, it should be
encoded according to RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt)

See Also: setHeader(String, String)

addIntHeader (String, int)

pubTlic void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This method
allows response headers to have multiple values.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: setIntHeader(String, int)

containsHeader (String)

pubTlic boolean containsHeader(java.lang.String name)

Returns a bool ean indicating whether the named response header has aready
been set.

Parameters:
name - the header name

Returns: true if the named response header has already been set; false
otherwise

encodeRedirectUr[(String)

public java.lang.String encodeRedirectUrl(java.lang.String url)
Deprecated. Asof version 2.1, use encodeRedirectURL (String url) instead

Parameters:
url - the url to be encoded.

Final Version

Servlets Using HTTP Protocol 258

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeRedirectURL (String)
public java.lang.String encodeRedirectURL(java.lang.String url)

Encodes the specified URL for usein the sendRed1i rect method or, if encod-
ing is not needed, returns the URL unchanged. The implementation of this
method includes the logic to determine whether the session ID needs to be
encoded in the URL. Because the rules for making this determination can dif-
fer from those used to decide whether to encode anormal link, this method is
separated from the encodeURL method.

All URLs sent to the HttpServletResponse.sendRedirect method should
be run through this method. Otherwise, URL rewriting cannot be used with
browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

See Also: sendRedirect(String), encodeUr1(String)

encodeUr|(String)

public java.lang.String encodeUrl(java.lang.String url)
Deprecated. Asof version 2.1, use encodeURL (String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeURL (String)
public java.lang.String encodeURL(java.lang.String url)

Encodesthe specified URL by including thesession ID init, or, if encoding is
not needed, returns the URL unchanged. The implementation of this method
includesthelogic to determine whether the session ID needsto be encoded in
the URL. For example, if the browser supports cookies, or session tracking is
turned off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run
through this method. Otherwise, URL rewriting cannot be used with brows-
ers which do not support cookies.

259

JAVAX.SERVLET.HTTP

Parameters;
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

sendError (int)

pubTlic void sendError(int sc)

throws IOException

Sends an error response to the client using the specified status code and clear-
ing the buffer.

If the response has already been committed, this method throws an Illegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

Throws:
IOException - If aninput or output exception occurs

I1legalStateException - If the response was committed before this method
call

sendError (int, String)

public void sendError(int sc, java.lang.String msg)

throws IOException

Sends an error response to the client using the specified status. The server
defaultsto creating the response to look like an HTM L -formatted server error
page containing the specified message, setting the content type to “ text/html”,
leaving cookies and other headers unmodified. If an error-page declaration
has been made for the web application corresponding to the status code
passed in, it will be served back in preference to the suggested msg parame-
ter.

If the response has already been committed, this method throws an Illegal -
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message

Throws:
IOException - If aninput or output exception occurs

Final Version

Servlets Using HTTP Protocol 260

ITlegalStateException - If the response was committed

sendRedirect(String)

public void sendRedirect(java.lang.String location)
throws IOException

Sends a temporary redirect response to the client using the specified redirect
location URL. This method can accept relative URLSs; the servlet container
must convert the relative URL to an absolute URL before sending the
response to the client. If the location is relative without aleading '/’ the con-
tainer interpretsit as relative to the current request URI. If the location isrel-
ativewith aleading '/’ the container interpretsit as relative to the servlet
container root.

If the response has aready been committed, this method throws an Illegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters;
Tocation - the redirect location URL

Throws:
IOException - If an input or output exception occurs

I1legalStateException - If the response was committed or if a partial URL
is given and cannot be converted into avalid URL

setDateHeader (String, long)

public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is speci-
fied in terms of milliseconds since the epoch. If the header had already been
set, the new value overwrites the previous one. The containsHeader method
can be used to test for the presence of a header before setting its value.

Parameters:
name - the name of the header to set

date - the assigned date value

See Also: containsHeader(String), addDateHeader(String, long)

setHeader (String, String)

public void setHeader(java.lang.String name,
java.lang.String value)

Sets a response header with the given name and value. If the header had
already been set, the new value overwrites the previous one. The contains-

261

JAVAX.SERVLET.HTTP

Header method can be used to test for the presence of a header before setting
itsvalue.

Parameters:
name - the name of the header

value - the header value If it contains octet string, it should be encoded
according to RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt)

See Also: containsHeader(String), addHeader(String, String)

setlntHeader (String, int)

public void setIntHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the header
had already been set, the new value overwrites the previous one. The
containsHeader method can be used to test for the presence of a header
before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See AlsO: containsHeader(String), addIntHeader(String, int)

setStatus(int)

public void setStatus(int sc)

Sets the status code for this response. This method is used to set the return
status code when there is no error (for example, for the status codes SC_OK
or SC MOVED_TEMPORARILY). If thereisan error, and the caller wishes
to invoke an error-page defined in the web application, the sendError method
should be used instead.

The container clearsthe buffer and sets the L ocation header, preserving cook-
ies and other headers.

Parameters:
sc - the status code

See Also: sendError(int, String)

setStatus(int, String)

public void setStatus(int sc, java.lang.String sm)

Deprecated. Asof version 2.1, due to ambiguous meaning of the message
parameter. To set a status code use setStatus(int), to send an error with a
description use sendError(int, String). Setsthe status code and message
for this response.

Final Version

Servlets Using HTTP Protocol

Parameters;
sc - the status code

sm - the status message

SRV.15.1.6 HttpServletResponseWrapper

public class HttpServl et ResponseW apper extends
javax.servlet.ServletResponseWrapper implements
javax.servlet.http.HttpServletResponse

All Implemented Interfaces. HttpServletResponse, javax.servlet.Servile-
tResponse

Provides a convenient implementation of the HttpServletResponse interface that
can be subclassed by developers wishing to adapt the response from a Servlet.
This class implements the Wrapper or Decorator pattern. Methods default to call-
ing through to the wrapped response object.

Since: v23

See Also: HttpServletResponse

SRV.15.1.6.1 Constructors

HttpServietResponseWr apper (HttpServietResponse)
public HttpServletResponseWrapper (HttpServletResponse response)

Constructs a response adaptor wrapping the given response.

Throws:
java.lang.I1legalArgumentException - if theresponseisnull

SRV.15.1.6.2 Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

The default behavior of this method is to call addCookie(Cookie cookie) on
the wrapped response object.

Specified By: HttpServletResponse.addCookie(Cookie) ininterface
HttpServletResponse

addDateHeader (String, long)
public void addDateHeader(java.lang.String name, Tong date)

The default behavior of this method isto call addDateHeader(String name,
long date) on the wrapped response object.

262

263

JAVAX.SERVLET.HTTP

Specified By: HttpServletResponse.addDateHeader(String, long) in
interface HttpServletResponse

addHeader (String, String)

public void addHeader(java.lang.String name,
java.lang.String value)

The default behavior of this method is to return addHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.addHeader(String, String) in
interface HttpServletResponse

addIntHeader (String, int)

public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addintHeader(String name, int
value) on the wrapped response object.

Specified By: HttpServletResponse.addIntHeader(String, int) in
interface HttpServletResponse

containsHeader (String)

pubTlic boolean containsHeader(java.lang.String name)

The default behavior of this method isto call containsHeader(String name)
on the wrapped response object.

Specified By: HttpServletResponse.containsHeader(String) in
interface HttpServletResponse

encodeRedirectUr [(String)

public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl (String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectUr1(String) in
interface HttpServletResponse

encodeRedirectURL (String)
pubTlic java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL (String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectURL(String) in
interface HttpServletResponse

Final Version

Serviets Using HTTP Protocol 264

encodeUr|(String)

public java.lang.String encodeUrl(java.lang.String url)

The default behavior of this method isto call encodeUrl(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeUr1(String) ininterface
HttpServletResponse

encodeURL (String)
public java.lang.String encodeURL(java.lang.String url)

The default behavior of this method isto call encodeURL (String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeURL(String) ininterface
HttpServletResponse

sendError (int)

public void sendError(int sc)
throws IOException

The default behavior of this method is to call sendError(int sc) on the
wrapped response object.

Specified By: HttpServletResponse.sendError(int) ininterface
HttpServletResponse

Throws:
IOException

sendError (int, String)

public void sendError(int sc, java.lang.String msg)
throws IOException

The default behavior of thismethod isto call sendError(int sc, String msg) on
the wrapped response object.

Specified By: HttpServletResponse.sendError(int, String) in
interface HttpServletResponse

Throws:
IOException

sendRedirect(String)

public void sendRedirect(java.lang.String location)
throws IOException

The default behavior of this method isto return sendRedirect(String location)
on the wrapped response object.

265 JAVAX.SERVLET.HTTP

Specified By: HttpServletResponse.sendRedirect(String) ininterface
HttpServletResponse

Throws:
IOException

setDateHeader (String, long)

public void setDateHeader(java.lang.String name, long date)

The default behavior of this method isto call setDateHeader(String name,
long date) on the wrapped response object.

Specified By: HttpServletResponse.setDateHeader(String, long) in
interface HttpServletResponse

setHeader (String, String)

pubTlic void setHeader(java.lang.String name,
java.lang.String value)

The default behavior of this method is to return setHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.setHeader(String, String) in
interface HttpServletResponse

setintHeader (String, int)

public void setIntHeader(java.lang.String name, int value)

The default behavior of this method isto call setintHeader(String name, int
value) on the wrapped response object.

Specified By: HttpServletResponse.setIntHeader(String, int) in
interface HttpServletResponse

setStatus(int)

public void setStatus(int sc)

The default behavior of this method isto call setStatus(int sc) on the wrapped
response object.

Specified By: HttpServletResponse.setStatus(int) ininterface
HttpServletResponse

setStatus(int, String)

pubTlic void setStatus(int sc, java.lang.String sm)

The default behavior of this method isto call setStatus(int sc, String sm) on
the wrapped response object.

Final Version

Servlets Using HTTP Protocol 266

Specified By: HttpServletResponse.setStatus(int, String) in
interface HttpServietResponse

SRV.15.1.7 HttpSession

public interface HttpSession

Provides a way to identify a user across more than one page request or visit to a
Web site and to store information about that user.

The servlet container uses thisinterface to create a session between an HTTP cli-
ent and an HTTP server. The session persists for a specified time period, across
more than one connection or page request from the user. A session usually corre-
sponds to one user, who may visit a site many times. The server can maintain a
session in many way's such as using cookies or rewriting URLS.

Thisinterface allows servlets to
*View and manipulate information about a session, such as the session identi-
fier, creation time, and last accessed time
*Bind objects to sessions, allowing user information to persist across multiple
user connections

When an application stores an object in or removes an object from a session, the
session checks whether the object implements HttpSessionBindingListener .
If it does, the servlet notifies the object that it has been bound to or unbound from
the session. Natifications are sent after the binding methods complete. For session
that are invalidated or expire, notifications are sent after the session has been
invalidated or expired.

When container migrates a session between VMs in a distributed container set-
ting, al session attributes implementing the HttpSessionActivationListener
interface are notified.

A servlet should be able to handle cases in which the client does not choose to
join a session, such as when cookies are intentionally turned off. Until the client
joins the session, isNew returns true. If the client chooses not to join the session,
getSession will return a different session on each request, and i sNew will always
return true.

Session information is scoped only to the current web application
(ServletContext), SO information stored in one context will not be directly visi-
blein another.

See Also: HttpSessionBindinglListener, HttpSessionContext

267 JAVAX.SERVLET.HTTP

RV.15.1.7.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this session, or nu11 if
no object is bound under the name.

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
I1legalStateException - if thismethod is called on an invalidated session

getAttributeNames()

pubTlic java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the names of all the
objects bound to this session.

Returns: an Enumeration of String objects specifying the names of all the
objects bound to this session

Throws:
I1legalStateException - if thismethod is called on an invalidated session

getCreationTime()
pubTlic Tong getCreationTime()

Returns the time when this session was created, measured in milliseconds
since midnight January 1, 1970 GMT.

Returns: along specifying when this session was created, expressed in
milliseconds since 1/1/1970 GMT

Throws:
ITlegalStateException - if thismethod is called on an invalidated session

getld()
public java.lang.String getId()

Returns a string containing the unique identifier assigned to this session. The
identifier is assigned by the servlet container and isimplementation depen-
dent.

Returns: astring specifying the identifier assigned to this session

getL astAccessedTime()

Final Version

Servlets Using HTTP Protocol 268

public Tong getLastAccessedTime()

Returns the last time the client sent a request associated with this session, as
the number of milliseconds since midnight January 1, 1970 GMT, and
marked by the time the container received the request.

Actions that your application takes, such as getting or setting a val ue associ-
ated with the session, do not affect the accesstime.

Returns: along representing the last time the client sent a request
associated with this session, expressed in milliseconds since 1/1/1970 GMT

getMaxlInactivel nterval()

public int getMaxInactivelnterval()

Returns the maximum time interval, in seconds, that the servlet container will
keep this session open between client accesses. After thisinterval, the serviet
container will invalidate the session. The maximum time interval can be set
with the setMaxInactiveInterval method. A negative timeindicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session remains
open between client requests

See Also; setMaxInactiveInterval(int)

getServletContext()
public javax.servlet.ServietContext getServletContext()

Returns the ServletContext to which this session belongs.
Returns: The ServletContext object for the web application
Since: 2.3

getSessionContext()
pubTlic HttpSessionContext getSessionContext()

Deprecated. Asof Version 2.1, this method is deprecated and has no
replacement. It will be removed in afuture version of the Java Servlet API.

getValue(String)
public java.lang.Object getValue(java.lang.String name)

Deprecated. Asof Version 2.2, this method is replaced by
getAttribute(String) .

Parameters:
name - a string specifying the name of the object

269 JAVAX.SERVLET.HTTP

Returns: the object with the specified name

Throws:
I1legalStateException - if thismethod is called on an invalidated session

getValueNames()
public java.lang.String[] getValueNames()

Deprecated. Asof Version 2.2, this method is replaced by
getAttributeNames ()

Returns: an array of String objects specifying the names of all the objects
bound to this session

Throws:
I1legalStateException - if thismethod is called on an invalidated session

invalidate()
pubTlic void invalidate()

Invalidates this session then unbinds any objects bound to it.

Throws:
I1legalStateException - if thismethod is called on an already invalidated
session
isNew()
pubTlic boolean +isNew()
Returns true if the client does not yet know about the session or if the client
chooses not to join the session. For example, if the server used only cookie-

based sessions, and the client had disabled the use of cookies, then a session
would be new on each request.

Returns. true if the server has created a session, but the client has not yet
joined
Throws:
I1legalStateException - if thismethod is called on an already invalidated
session
putValue(String, Object)
pubTlic void putValue(java.lang.String name, java.lang.Object value)

Deprecated. Asof Version 2.2, this method is replaced by
setAttribute(String, Object)

Parameters;
name - the name to which the object is bound; cannot be null

Final Version

Servlets Using HTTP Protocol 270

value - the object to be bound; cannot be null

Throws:
I1legalStateException - if thismethod is called on an invalidated session

removeAttribute(String)
public void removeAttribute(java.lang.String name)
Removes the object bound with the specified name from this session. If the

session does not have an object bound with the specified name, this method
does nothing.

After this method executes, and if the object implements HttpSession-
BindingListener, the container calls HttpSessionBinding-
Listener.valueUnbound. The container then notifies any
HttpSessionAttributelListenersin the web application.

Parameters:
name - the name of the object to remove from this session

Throws:
I1legalStateException - if thismethod is called on an invalidated session

removeValue(String)

public void removeValue(java.lang.String name)

Deprecated. Asof Version 2.2, this method is replaced by
removeAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws:
I1legalStateException - if thismethod is called on an invalidated session

setAttribute(String, Object)

public void setAttribute(java.lang.String name,
java.lang.Object value)

Binds an object to this session, using the name specified. If an object of the
same name is aready bound to the session, the object is replaced.

After this method executes, and if the new object implements HttpSession-
BindinglListener, the container callsHttpSessionBinding-
Listener.valueBound. The container then notifies any
HttpSessionAttributelListenersin the web application.

271

JAVAX.SERVLET.HTTP

If an object was aready bound to this session of this name that implements
HttpSessionBindingListener, itSHttpSessionBindinglListener.value-
Unbound method is called.

If the value passed in is null, this has the same effect as calling remove-
Attribute().

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound

Throws:
I1legalStateException - if thismethod is caled on an invalidated session

setM ax| nactivel nterval(int)

public void setMaxInactiveInterval (int interval)

Specifies the time, in seconds, between client requests before the servlet con-
tainer will invalidate this session. A negative time indicates the session
should never timeout.

Parameters:
interval - Aninteger specifying the number of seconds

SRV.15.1.8 HttpSessionActivationListener

public interface HttpSessionActivationLi stener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Objects that are bound to a session may listen to container events notifying them
that sessionswill be passivated and that session will be activated. A container that
migrates session between VMs or persists sessions is required to notify all
attributes bound to sessions implementing HttpSessionA ctivationListener.

Since: 2.3

SRV.15.1.8.1 Methods

sessionDidActivate(HttpSessionEvent)

public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)

public void sessionWillPassivate(HttpSessionEvent se)

Final Version

Servlets Using HTTP Protocol 272

Notification that the session is about to be passivated.

SRV.15.1.9 HttpSessionAttributel istener

public interface HttpSessi onAttributeLi stener extends
java.util.EventListener

All Superinterfaces. java.util.EventListener

This listener interface can be implemented in order to get notifications of
changes to the attribute lists of sessions within thisweb application.

Since: v23

RV.1519.1 Methods

attributeAdded(HttpSessionBindingEvent)
public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session. Called after the
attribute is added.

attributeRemoved(HttpSessionBindingEvent)

public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session. Called after
the attribute is removed.

attributeReplaced(HttpSessionBindingEvent)
public void attributeReplaced(HttpSessionBindingEvent se)

Notification that an attribute has been replaced in a session. Called after the
attribute is replaced.

SRV.15.1.10 HttpSessionBindingEvent

public class HttpSessi onBi ndi ngEvent extends
javax.servlet.http.HttpSessionEvent

All Implemented Interfaces: java.io.Serializable

Events of this type are either sent to an object that implements
HttpSessionBindinglListener when it is bound or unbound from a session, or
to a HttpSessionAttributeListener that has been configured in the deploy-
ment descriptor when any attribute is bound, unbound or replaced in a session.

The session binds the object by acall to HttpSession. setAttribute and unbinds
the object by acall to HttpSession. removeAttribute.

273 JAVAX.SERVLET.HTTP

See Also: HttpSession, HttpSessionBindinglListener, HttpSessionAt-
tributelistener

SRV.15.1.10.1 Constructors

HttpSessionBindingEvent(HttpSession, String)
public HttpSessionBindingEvent(HttpSession session,
java.lang.String name)
Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindinglListener.

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound
See Also: getName(), getSession()

HttpSessionBindingEvent(HttpSession, String, Object)
pubTic HttpSessionBindingEvent(HttpSession session,
java.lang.String name, java.lang.Object value)
Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindinglListener.

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound
See Also: getName(), getSession()

SRV.15.1.10.2 Methods

getName()
public java.lang.String getName()

Returns the name with which the attribute is bound to or unbound from the
session.

Returns: astring specifying the name with which the object is bound to or
unbound from the session

getSession()
pubTlic HttpSession getSession()

Final Version

Servlets Using HTTP Protocol 274

Return the session that changed.

Overrides; HttpSessionEvent.getSession() inclassHttpSessionEvent

getValug()
public java.lang.Object getValue()
Returnsthe value of the attribute that has been added, removed or replaced. If
the attribute was added (or bound), thisis the value of the attribute. If the

attribute was removed (or unbound), thisisthe value of the removed attribute.
If the attribute was replaced, this isthe old value of the attribute.

Since: 2.3

SRV.15.1.11 HttpSessionBindingListener

public interface Htt pSessi onBi ndi ngLi st ener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Causes an object to be notified when it is bound to or unbound from a session.
The object is notified by an HttpSessionBindingEvent object. Thismay beasa
result of a servlet programmer explicitly unbinding an attribute from a session,
due to a session being invalidated, or due to a session timing out.

See Also: HttpSession, HttpSessionBindingEvent

SRV.15.1.11.1 Methods

valueBound(HttpSessionBindingEvent)

public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the ses-
sion.

Parameters:
event - the event that identifies the session

See Also: valueUnbound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)

pubTlic void valueUnbound(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from a session and identifies the
session.

Parameters:
event - the event that identifies the session

275 JAVAX.SERVLET.HTTP

See Also: valueBound(HttpSessionBindingEvent)

SRV.15.1.12 HttpSessionContext

pubTlic interface Htt pSessi onCont ext

Deprecated. Asof Java(tm) Serviet API 2.1 for security reasons, with no replace-

ment. Thisinterface will be removed in afuture version of this API.

See Also: HttpSession, HttpSessionBindingEvent, HttpSessionBind-
inglListener

RV.15.1.12.1 Methods

getlds()

public java.util.Enumeration getIds()

Deprecated. Asof Java Servlet API 2.1 with no replacement. This method
must return an empty Enumeration and will be removed in afuture version of
thisAPI.

getSession(String)
pubTlic HttpSession getSession(java.lang.String sessionId)

Deprecated. Asof Java Servlet APl 2.1 with no replacement. This method
must return null and will be removed in afuture version of this API.

SRV.15.1.13 HttpSessionEvent
pubTlic class Htt pSessi onEvent extends java.util.EventObject
All Implemented Interfaces. java.io.Serializable
Direct Known Subclasses. HttpSessionBindingEvent

This is the class representing event notifications for changes to sessions within a
web application.

Since: v 2.3

SRV.15.1.13.1 Constructors

HttpSessionEvent(HttpSession)
pubTlic HttpSessionEvent(HttpSession source)
Construct a session event from the given source.

Final Version

Servlets Using HTTP Protocol

SRV.15.1.13.2 Methods

getSession()
public HttpSession getSession()
Return the session that changed.

SRV.15.1.14 HttpSessionListener

pubTlic interface Htt pSessi onLi st ener extends java.util.EventListener

All Superinterfaces. java.util.EventListener

Implementations of this interface are notified of changes to the list of active ses-
sions in a web application. To receive notification events, the implementation

class must be configured in the deployment descriptor for the web application.
Since: v 23

See Also: HttpSessionEvent

SRV.15.1.14.1 Methods

sessionCreated(HttpSessionEvent)

public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session is about to be invalidated.

Parameters:
se - the notification event

SRV.15.1.15 HttpUtils

public class HtpUtils

Deprecated. Asof Java(tm) Servliet APl 2.3. These methods were only useful
with the default encoding and have been moved to the request interfaces.

SRV.15.1.15.1 Constructors

HttpUtils()

277

JAVAX.SERVLET.HTTP

public HttpUtils(

Constructs an empty HttpUtils object.

SRV.15.1.15.2 Methods

getRequestURL (HttpServietRequest)
pubTlic static java.lang.StringBuffer

getRequestURL(HttpServletRequest req)

Reconstructs the URL the client used to make the request, using information
in the HttpServletRequest object. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query
string parameters.

Because this method returns a StringBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Parameters:
req - aHttpServletRequest object containing the client’s request

Returns. aStringBuffer object containing the reconstructed URL

par sePostData(int, Servletl nputStream)

public static java.util.Hashtable parsePostData(int Ten,

javax.servlet.ServletInputStream 1in)

Parses data from an HTML form that the client sendsto the server using the
HTTP POST method and the applicati on/x-www-form-urlencoded MIME

type.
The data sent by the POST method contains key-value pairs. A key can
appear more than once in the POST data with different values. However, the

key appears only once in the hashtable, with its value being an array of
strings containing the multiple values sent by the POST method.

The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xx) are converted to ASCII characters.

Parameters:
Ten - an integer specifying the length, in characters, of the
ServiletInputStream object that is also passed to this method

in - the ServletInputStream object that contains the data sent from the
client

Returns. aHashTable object built from the parsed key-value pairs

Final Version

Servlets Using HTTP Protocol 278

Throws:
ITlegalArgumentException - if the data sent by the POST method isinvalid

parseQueryString(String)
public static java.util.Hashtable parseQueryString(java.lang.String

s)
Parses a query string passed from the client to the server and builds aHash-
Tab1le object with key-value pairs. The query string should bein the form of a
string packaged by the GET or POST method, that is, it should have key-
value pairsin the form key=value, with each pair separated from the next by a
& character.

A key can appear more than once in the query string with different values.
However, the key appears only once in the hashtable, with its value being an
array of strings containing the multiple values sent by the query string.

The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xx) are converted to ASCI| characters.

Parameters:
s - astring containing the query to be parsed

Returns: aHashTable object built from the parsed key-value pairs

Throws:
I1legalArgumentException - if the query stringisinvalid

279 JAVAX.SERVLET.HTTP

Final Version

Changes since version'
2.3

This document is the Proposed Final Draft version of the Java Servlet 2.4 Specifica
tion developed under the Java Community Process™ (JCP).

The order of sections in this chapter was reversed in Proposed Final Draft
version3.

SRV.S.16 Final: Changesin thisdocument since Proposed
Final Draft version3

» Optional “X-Powered-By” header is added in the response (5.2)
« Clarification of “overlapping constraint” (12.8.1, 12.8.2)

» Add the section to clarify the process order at the time of web application de-
ployment (9.12)

« Clarification that the security model is also applied to filter (12.2)

« Change the status code from 401 to 200 when FORM authentication isfailed
asthere isno appropriate error status code in HTTP/1.1 (12.5.3)

« Clarification of the wrapper objects (6.2.2)
 Clarification of overriding the platform classes (9.7.2)
« Clarification of welcomefile (9.10)

« Clarification of internationalization - the relationship among setLocale, set-
ContentType, and setCharacterEncoding (5.4, 14.2.22)

280

281 CHANGES SINCE VERSON 2.3

* Clarification of ServletRequestListener and ServletRequestAttributel istener
description (14.2.18, 14.2.20)

» Add HttpSessionActivationListener and HttpSessionBindingListener into the
Table 10-1.

» Change the word "auth constraint" to "authorization constraint" (12.8)

SRV.S.17 PFD3: Changesin thisdocument since Proposed
Final Draft version2

* Add*“Since’ tag in the newly added methods in javadoc(14.2.16, 14.2.22)

* Fix the datatype of <session-timeout> tO xsdIntegerType in schema(13.3)
* Clarification when the listener throws the unhandled exception(10.6)

* Clarification of the “shared library”(9.7.1)

* Clarification of the container’s mechanism for the extension(9.7.1, third para-
graph)
* HttpSession.logout method was removed. The portable authentication

mechanism will be addressed in the next version of this specification and lo-
gout will also be discussed in that scope.(12.10)

* Itisnow arecommendation, instead of arequirement, that the referenceto the
reguest and response object should not be given to the abject in other threads -
based on the requirement from JSR-168. Warnings are added when the thread
created by the application uses the objects managed by the container.(2.3.3.3)

* Itisnow arecommendation, that the dispatch should occur in the same thread
of the same JVM asthe original request - based on the requirement from JSR-
168(8.2)

* Clarification of “wrap” (6.2.2)
* Clarification of handling the path parameter for the mapping(11.1)

» Add the description about the “HTTP chunk” in HttpServiet.doGet meth-
0d(15.1.2)

Final Version

PFD2: Changes in this document since Proposed Final Draft 282

SRV.S.18 PFD2: Changesin thisdocument since Proposed
Final Draft

o J2SE 1.3 isthe minimum version of the underlying Java platform with which
servlet containers must be built (1.2)

* Clarification of ServletResponse.setBufferSize method (5.1)

« Clarification of ServletRequest.getServerName and getServerPort (14.2.16.1)

 Clarification of Internationalization (5.4, 14.2.22)

* Clarification of the redirection of the welcome file (9.10)

« Clarification of ServletContextListener.contextinitialized (14.2.12.1)

« Clarification of HttpServletRequest.getRequestedSessionld - making it clear
that it returns the session 1D specified by the client (15.1.3.2)

» Clarification of the class loader for the extensions - the class |loader must be
the same for al web applications within the sasme VM (9.7.1)

« Clarification of the case when ServletRequestListener throws an unhandled
exception (10.6, 14.2.20)

« Clarification of the scope of ServletRequestListener (14.2.20)

 Add the description about the case when the container has a caching mecha-
nism (1.2)

« Validating deployment descriptor against the schemalis required for J2EE
containers (13.2)

 Sub elements under <web-app> can be in an arbitrary order (13.2)

« One example of the container’s rejecting the web application was removed
due to the contradiction with SRV.11.1 (9.5)

« url-patternType is changed from j2ee:string to xsd:string (13)

» The sub-elements under <web-app> in deployment descriptor can be in the ar-
bitrary order (13)

» The container must inform a devel oper with a descriptive error message when
deployment descriptor file contains an illegal character or multiple elements
of <session-config>, <jsp-config>, Or <login-config> (13)

 Extensibility of deployment descriptor was removed (13)

283

CHANGES SINCE VERSON 2.3

Section SRV.1.6 added - describing the compatibility issue with the previous
version of this specification (1.6)

New attributes are added in RequestDispatcher.forward method (8.4.2)

New methods in ServletRequest interface and ServletRequestWrapper
(14.2.16.1)

The interface SingleThreadModel was deprecated ((2.2.1, 2.3.3.1, 14.2.24)

Change the name of the method ServletRequestEvent.getRequest to Servle-
tRequestEvent.getServletRequest (14.2.19.2)

Clarification of the “request” to access to WEB-INF directory (9.5)

Clarification of the behavior of ServletRequest.setAttribute - change “value”
to “object” in “If thevalue passed inisnull,” (14.2.16.1)

Fix the inconsistency between this specification and HttpServletRequest, get-
ServletPath - the return value starts with “/” (15.1.3.2)

Fix the inconsistency between this specification and HttpServletRequest.get-
Pathinfo - the return value starts with “/” (15.1.3.2)

Fix the inconsistency between this specification and HttpServletRequest.get-
PathTrandlated - add the case when the container cannot translate the path
(15.12.3.2)

Allow HttpServletRequest.getAuthType to return not only pre-defined four
authentication scheme but also the container-specific scheme (15.1.3.2)

Change the behavior of ttpSessionListener.sessionDestroyed to notify before
the session isinvalidated (15.1.14.1)

Fix the wrong status code of 403 to 404 (9.5, 9.6)
Element “taglib” should be “jsp-config” (13.2)
Fix the version number of JSP specification to 2.0
Fix the wrong formats (5.5, 6.2.5, 12.8.3, 12.9)

SRV.S.19 PFD: Changesin thisdocument sincethe Public

Dr aft

* HTTP/1.1isnow required (1.2)

e <url-pattern> in <web-resource-collection> is mandatory (13.4)

Final Version

Changes in this document since version 2.3 284

Clarification of 11legal ArgumentException in the distributed environments
(7.7.2)

Clarification of error page handling (9.9.1, 9.9.2, 9.9.3, 6.2.5)

Clarification of Security Constraints, especially in the case of overlapping
constraints (12.8)

Clarification of the case when <session-timeout> element is not specified
(13.49)

Clarification of the case when the resource is permanently unavailable
(23.3.2)

Add missing getParameterMap() in the enumerated list (4.1)

Clarification of the status code when /WEB-INF/ resource is accessed (9.5)
Clarification of the status code when /IMETA-INF/ resource is accessed (9.6)
Change xsd:string to j2ee:string in deployment descriptor (13.4)

SRV.S20 Changesin thisdocument sinceversion 2.3

The Java Servlet 2.3 Specification wasthe last released version of the servlet specifi-
cation. The following changes have been made since version 2.3:

Extensibility of deployment descriptors (SRV.13)
XML Schema definition of deployment descriptor (SRV.13)

Request listeners (SRV.10 and API change)
New API: ServletRequestListener, ServletRequestAttributelistener and asso-
ciated event classes

Ability to use Filters under the Request Dispatcher (6.2.5)
Required class loader extension mechanism (9.7.1)
Listener exception handling (10.6)

Listener order vs. servlet init()/destroy() clarification (ServletContextL istener
javadoc change)

Servlets mapped to WEB-INF / response handling (9.5)
Request dispatcher / path matching rules (8.1)

285

CHANGES SINCE VERSON 2.3

Welcome files can be servlets (9.10)
I nternationalization enhancements (5.4, 14,2,22, 15.1.5)
SC_FOUND(302) addition (15.1.5)

“Relative path” in getRequestDispatcher() must be relative against the current
servlet (8.1)

Bug fix in the example of XML (13.7.2)
Clarification of access by getResource “only to the resource” (3.5)

Clarification of SERVER_NAME and SERVER _PORT in getServerName()
and getServerPort() (14.2.16)

Clarification: “run-as’ identity must apply to all callsfrom aservlet including
init() and destroy() (12.7)

Login/logout description and methods added (12.10, 15.1.7)

Final Version

cerenor ORV LA

Deployment Descri ptor'
Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web containers
are required to support web applications using the 2.2 deployment descriptor.

SRV.A.1 Deployment Descriptor DOCTY PE

All valid web application deployment descriptors must contain the following
DOCTY PE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

SRV.A.2 DTD

The DTD that follows defines the XML grammar for aweb application deployment
descriptor.

<!--

The web-app element is the root of the deployment descriptor for a
web application

-—>

286

287

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param®, servlet*, servlet-mapping*,
session-config?, mime-mapping*, welcome-file-1ist?, error-page*,
taglib*, resource-ref*, security-constraint®, login-config?,
security-role*, env-entry*, ejb-ref+*)>

<l--

The +icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small and
Tlarge image used to represent the web application in a GUI tool. At a
minimum, tools must accept GIF and JPEG format images.

-—>

<!ELEMENT 1icon (small-icon?, large-icon?)>

<!l--

The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-——>

<!ELEMENT small-icon (#PCDATA)>

<l--

The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-—>

<!ELEMENT Targe-icon (#PCDATA)>

<!--

The display-name element contains a short name that 1is intended
to be displayed by GUI tools

-—>

<!ELEMENT display-name (#PCDATA)>

<l--

The description element is used to provide descriptive text about
the parent element.

-—>

<!ELEMENT description (#PCDATA)>

<l--
The distributable element, by +its presence in a web application
deployment descriptor, indicates that this web application is

Final Version

programmed appropriately to be deployed into a distributed servlet
container
-—>

<!ELEMENT distributable EMPTY>

<l--

The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-—>

<!ELEMENT context-param (param-name, param-value, description?)>

<!l--

The param-name element contains the name of a parameter.
-—>

<!ELEMENT param-name (#PCDATA)>

<!l--

The param-value element contains the value of a parameter.
-—>

<!ELEMENT param-value (#PCDATA)>

<!l--

The servlet element contains the declarative data of a
servlet.

If a jsp-file is specified and the load-on-startup element is
present, then the ISP should be precompiled and Tloaded.

-—>

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?,
security-role-ref+*)>

<l--

The servlet-name element contains the canonical name of the
servlet.

-—>

<!ELEMENT servlet-name (#PCDATA)>

<l--
The servlet-class element contains the fully qualified class name

288

289

of the servlet.
-—>

<!ELEMENT servlet-class (#PCDATA)>

<!--

The jsp-file element contains the full path to a ISP file within
the web application.

-=>

<!ELEMENT jsp-file (#PCDATA)>

<!l--

The 1init-param element contains a name/value pair as an
initialization param of the servlet

-=>

<!ELEMENT 1init-param (param-name, param-value, description?)>

<!l--

The load-on-startup element indicates that this servlet should be
lToaded on the startup of the web application.

The optional contents of these element must be a positive integer
indicating the order in which the servlet should be loaded.

Lower integers are loaded before higher integers.

If no value is specified, or if the value specified is not a positive
integer, the container is free to load it at any time in the startup
sequence.

-=>

<!ELEMENT Toad-on-startup (#PCDATA)>

<l--

The servlet-mapping element defines a mapping between a servlet and
a url pattern

-——>

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The url-pattern element contains the url pattern of the

mapping. Must follow the rules specified in Section 10 of the Servlet
API Specification.

-=>

<!ELEMENT url-pattern (#PCDATA)>

Final Version

<l--

The session-config element defines the session parameters for this
web application.

-—>

<!ELEMENT session-config (session-timeout?)>

<!l--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application.

The specified timeout must be expressed in a whole number of minutes.
-=>

<!ELEMENT session-timeout (#PCDATA)>

<!l--

The mime-mapping element defines a mapping between an extension and
a mime type.
-—>

<!ELEMENT mime-mapping (extension, mime-type)>

<!l--

The extension element contains a string describing an
extension. example: "txt"
-—>

<!ELEMENT extension (#PCDATA)>

<!--

The mime-type element contains a defined mime type. example: "text/
plain”

-——>

<!ELEMENT mime-type (#PCDATA)>

<!l--

The welcome-file-1ist contains an ordered 1ist of welcome files
elements.

-—>

<!ELEMENT welcome-file-Tist (welcome-file+)>

290

2901

<!--

The welcome-file element contains file name to use as a default
welcome file, such as index.html

-=>

<!ELEMENT welcome-file (#PCDATA)>

<!--

The taglib element 1is used to describe a JSP tag library.
-=>

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!l--

The taglib-uri element describes a URI, relative to the location of
the web.xml document, identifying a Tag Library used in the Web
Application.

-—>

<!ELEMENT taglib-uri (#PCDATA)>

<!l--

the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.

-——>

<!ELEMENT taglib-location (#PCDATA)>

<!l--

The error-page element contains a mapping between an error code or
exception type to the path of a resource in the web application
-—>

<!ELEMENT error-page ((error-code | exception-type), location)>

<!l--
The error-code contains an HTTP error code, ex: 404
-—>

<!ELEMENT error-code (#PCDATA)>

<l--

The exception type contains a fully qualified class name of a Java
exception type.

-—>

Final Version

<!ELEMENT exception-type (#PCDATA)>

<!l--

The Tocation element contains the location of the resource in the
web application
-—>

<!ELEMENT Tocation (#PCDATA)>

<!l--

The resource-ref element contains a declaration of a Web
Application’s reference to an external resource.
-—>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth)>

<!l--

The res-ref-name element specifies the name of the resource factory
reference name.

-——>

<!ELEMENT res-ref-name (#PCDATA)>

<!l--

The res-type element specifies the (Java class) type of the data
source.

-—>

<!ELEMENT res-type (#PCDATA)>

<l--

The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer.

Must be CONTAINER or SERVLET

-—>
<!ELEMENT res-auth (#PCDATA)>

<!l--

The security-constraint element is used to associate security
constraints with one or more web resource collections

-——>

292

293

<!ELEMENT security-constraint (web-resource-collection+, auth-
constraint?, user-data-constraint?)>

<!l--

The web-resource-collection element is used to identify a subset of
the resources and HTTP methods on those resources within a web
application to which a security constraint applies.

If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

-—>

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern®, http-method*)>

<!--

The web-resource-name contains the name of this web resource
collection

-=>

<!ELEMENT web-resource-name (#PCDATA)>

<!l--

The http-method contains an HTTP method (GET | POST |...)
-=>

<!ELEMENT http-method (#PCDATA)>

<!l--

The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-—>

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<l--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the application does not require any transport
guarantees.

A value of INTEGRAL means that the application requires that the data
sent between the client and server be sent in such a way that it
can’t be changed 1in transit.

CONFIDENTIAL means that the application requires that the data be
transmitted in a fashion that prevents other entities from observing
the contents of the transmission.

Final Version

In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag will
indicate that the use of SSL 1is required.
-—>

<!ELEMENT transport-guarantee (#PCDATA)>

<l--

The auth-constraint element indicates the user roles that should be
permitted access to this resource collection.

The role used here must appear in a security-role-ref element.

-=>

<!ELEMENT auth-constraint (description?, role-name*)>

<l--

The role-name element contains the name of a security role.
-—>

<!ELEMENT role-name (#PCDATA)>

<!l--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login mechanism.

-=>

<!ELEMENT Togin-config (auth-method?, realm-name?, form-login-
config?)>

<!l--

The realm name element specifies the realm name to use in HTTP Basic
authorization
-——>

<!ELEMENT realm-name (#PCDATA)>

<!l--

The form-login-config element specifies the login and error pages
that should be used in form based login.

If form based authentication is not used, these elements are ignored.

-—>

<!ELEMENT form-login-config (form-login-page, form-error-page)>

294

295

<!--

The form-login-page element defines the Tocation in the web app where
the page that can be used for login can be found

-—>

<!ELEMENT form-login-page (#PCDATA)>

<!--

The form-error-page element defines the Tocation in the web app where
the error page that is displayed when 1ogin is not successful can be
found

-——>

<!ELEMENT form-error-page (#PCDATA)>

<!--

The auth-method element 1is used to configure the authentication
mechanism for the web application.

As a prerequisite to gaining access to any web resources which are
protected by an authorization constraint, a user must have
mechanism.

Legal values for this element are "BASIC", "DIGEST", "FORM", or
"CLIENT-CERT".

-=>

<!ELEMENT auth-method (#PCDATA)>

<!--

The security-role element contains the declaration of a security role
which is used in the security-constraints placed on the web
application.

-=>

<!ELEMENT security-role (description?, role-name)>

<l--

The role-name element contains the name of a role. This element must
contain a non-empty string.

-—>

<!ELEMENT security-role-ref (description?, role-name, role-1ink)>
<!--

The role-1ink element 1is used to 1ink a security role reference to
a defined security role.

Final Version

The role-1ink element must contain the name of one of the security
roles defined in the security-role elements.
-—>

<!ELEMENT role-T1ink (#PCDATA)>

<l--

The env-entry element contains the declaration of an application’s
environment entry.

This element 1is required to be honored on in J2EE compliant servlet
containers.

-=>

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
value?, env-entry-type)>

<l--

The env-entry-name contains the name of an application’s environment
entry

-—>

<!ELEMENT env-entry-name (#PCDATA)>

<!l--

The env-entry-value element contains the value of an application’s
environment entry

-=>

<!ELEMENT env-entry-value (#PCDATA)>

<!l--

The env-entry-type element contains the fully qualified Java type of
the environment entry value that is expected by the application
code.

The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.

-=>

<!ELEMENT env-entry-type (#PCDATA)>

<l--

The ejb-ref element is used to declare a reference to an enterprise
bean.

-=>

296

297

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<!l--

The ejb-ref-name element contains the name of an EJB

reference. This is the INDI name that the servlet code uses to get a
reference to the enterprise bean.

-=>

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected java class type of
the referenced EJB.

-=>

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The ejb-home element contains the fully qualified name of the EJB’s
home 1interface

-—>

<!ELEMENT home (#PCDATA)>

<!--

The ejb-remote element contains the fully qualified name of the EJB’s
remote interface

-——>

<!ELEMENT remote (#PCDATA)>

<l--

The ejb-1ink element is used in the ejb-ref element to specify that
an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package.

The value of the ejb-T1ink element must be the ejb-name of and EJB 1in
the J2EE application package.

-—>

<!ELEMENT ejb-Tink (#PCDATA)>
<!l--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

Final Version

This allows tools that produce additional deployment information
(i.e information beyond the standard deployment descriptor
information) to store the non-standard information in a separate

file, and

easily refer from these tools-specific files to the

information in the standard web-app deployment descriptor.

-=>

<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

web-app id ID #IMPLIED>

icon id ID #IMPLIED>

small-icon id ID #IMPLIED>
large-icon id ID #IMPLIED>
display-name id ID #IMPLIED>
description id ID #IMPLIED>
distributable id ID #IMPLIED>
context-param id ID #IMPLIED>
param-name id ID #IMPLIED>
param-value +id ID #IMPLIED>
servlet id ID #IMPLIED>
servlet-name id ID #IMPLIED>
servlet-class id ID #IMPLIED>
jsp-file id ID #IMPLIED>
init-param id ID #IMPLIED>
load-on-startup id ID #IMPLIED>
servlet-mapping id ID #IMPLIED>
url-pattern id ID #IMPLIED>
session-config id ID #IMPLIED>
session-timeout id ID #IMPLIED>
mime-mapping id ID #IMPLIED>
extension id ID #IMPLIED>
mime-type id ID #IMPLIED>
welcome-file-Tist id ID #IMPLIED>
welcome-file id ID #IMPLIED>
taglib id ID #IMPLIED>

taglib-uri id ID #IMPLIED>
taglib-Tlocation id ID #IMPLIED>
error-page id ID #IMPLIED>
error-code id ID #IMPLIED>
exception-type id ID #IMPLIED>
location id ID #IMPLIED>
resource-ref id ID #IMPLIED>
res-ref-name id ID #IMPLIED>
res-type id ID #IMPLIED>

res-auth id ID #IMPLIED>
security-constraint id ID #IMPLIED>
web-resource-collection id ID #IMPLIED>
web-resource-name id ID #IMPLIED>
http-method id ID #IMPLIED>
user-data-constraint id ID #IMPLIED>

298

299

<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method +id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-1link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home +id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST ejb-1ink id ID #IMPLIED>

Final Version

ceeenor ORV . B

Deployment Descri ptor'
Version 2.3

This appendix defines the deployment descriptor for version 2.3. All web containers
are required to support web applications using the 2.3 deployment descriptor.

SRV.B.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors for version 2.3 of this
specification must contain the following DOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

SRV.B.2 DTD

The DTD that follows defines the XML grammar for aweb application deployment
descriptor.

<!l--

The web-app element is the root of the deployment descriptor for
a web application.

-—>

300

301

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param®, filter*, filter-mapping*,
Tistener*, servlet*, servlet-mapping*, session-config?, mime-
mapping®, welcome-file-1ist?, error-page*, taglib®, resource-
env-ref*, resource-ref*, security-constraint®, login-config?,
security-role*, env-entry*, ejb-ref*, ejb-local-ref*)>

<!--

The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role-name
used here must either correspond to the role-name of one of the
security-role elements defined for this web application, or be

the specially reserved role-name "*" that is a compact syntax for
indicating all roles in the web application. If both "*" and
rolenames appear, the container interprets this as all roles.

If no roles are defined, no user is allowed access to the portion of
the web application described by the containing security-constraint.
The container matches role names case sensitively when determining
access.

Used in: security-constraint
-—>

<!ELEMENT auth-constraint (description?, role-name*)>

<l--

The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".

Used in: login-config
-->

<!ELEMENT auth-method (#PCDATA)>

<!l--
The context-param element contains the declaration of a web
application’s servlet context initialization parameters.

Used in: web-app
-=>

Final Version

302

<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The description element is used to provide text describing the parent
element. The description element should include any information that
the web application war file producer wants to provide to the
consumer of the web application war file (i.e., to the Deployer).
Typically, the tools used by the web application war file consumer
will display the description when processing the parent element that
contains the description.

Used in: auth-constraint, context-param, ejb-local-ref, ejb-ref,
env-entry, filter, init-param, resource-env-ref, resource-ref, run-
as, security-role, security-role-ref, servlet, user-data-
constraint, web-app, web-resource-collection

-——>

<!ELEMENT description (#PCDATA)>

<!l--
The display-name element contains a short name that is intended to be
displayed by tools. The display name need not be unique.

Used 1in: filter, security-constraint, servlet, web-app
Example:

<display-name>Employee Self Service</display-name>

-——>
<!ELEMENT display-name (#PCDATA)>

<!--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container

Used in: web-app
-—>

<!ELEMENT distributable EMPTY>

<l--
The ejb-1ink element is used in the ejb-ref or ejb-local-ref

303

elements to specify that an EJB reference is linked to an
enterprise bean.

The name in the ejb-Tink element is composed of a

path name specifying the ejb-jar containing the referenced
enterprise bean with the ejb-name of the target bean appended and
separated from the path name by "#". The path name is relative to
the war file containing the web application that is referencing the
enterprise bean.

This allows multiple enterprise beans with the same ejb-name to be
uniquely identified.

Used in: ejb-local-ref, ejb-ref
Examples:
<ejb-Tink>EmpTloyeeRecord</ejb-Tink>

<ejb-1ink>../products/product. jar#ProductEJB</ejb-11ink>

<!ELEMENT ejb-11ink (#PCDATA)>

<!--
The ejb-local-ref element is used for the declaration of a reference
to an enterprise bean’s local home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the web application
that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected local home and local interfaces of the referenced
enterprise bean

- optional ejb-1ink information, used to specify the referenced
enterprise bean

Used in: web-app
-=>

<!ELEMENT ejb-local-ref (description?, ejb-ref-name, ejb-ref-type,
Tocal-home, local, ejb-1ink?)>

<!l--

Final Version

The ejb-ref element is used for the declaration of a reference to
an enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of
the web application that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced
enterprise bean

- optional ejb-1ink information, used to specify the referenced
enterprise bean

Used in: web-app

-—>

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the web application’s environment and is
relative to the java:comp/env context. The name must be unique
within the web application.

It is recommended that name 1is prefixed with "ejb/".

Used in: ejb-local-ref, ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>
-——>

<!ELEMENT ejb-ref-name (#PCDATA)>

<l--

The ejb-ref-type element contains the expected type of the
referenced enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-local-ref, ejb-ref

304

305

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of a web application’s
environment entry. The declaration consists of an optional
description, the name of the environment entry, and an optional
value. If a value is not specified, one must be supplied

during deployment.

-—>

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
value?, env-entry-type)>

<l--

The env-entry-name element contains the name of a web applications’s
environment entry. The name is a JNDI name relative to the
java:comp/env context. The name must be unique within a web
application.

Example:
<env-entry-name>minAmount</env-entry-name>

Used in: env-entry
-—>

<!ELEMENT env-entry-name (#PCDATA)>

<l--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the web application’s
code.

The following are the Tegal values of env-entry-type:

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.String
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float

Final Version

java.lang.Double

Used in: env-entry
-——>

<IELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of a web application’s
environment entry. The value must be a String that is valid for the
constructor of the specified type that takes a single String
parameter, or for java.lang.Character, a single character.

Example:
<env-entry-value>100.00</env-entry-value>

Used 1in: env-entry
-—>

<!ELEMENT env-entry-value (#PCDATA)>

<l--
The error-code contains an HTTP error code, ex: 404

Used in: error-page
-—>

<!ELEMENT error-code (#PCDATA)>

<l--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application

Used in: web-app
-—>

<!ELEMENT error-page ((error-code | exception-type), location)>
<l--
The exception type contains a fully qualified class name of a

Java exception type.

Used 1in: error-page
-—>

306

307

<!ELEMENT exception-type (#PCDATA)>

<!--
The extension element contains a string describing an
extension. example: "txt"

Used in: mime-mapping
-->

<!ELEMENT extension (#PCDATA)>

<!--

Declares a filter in the web application. The filter is mapped to
either a servlet or a URL pattern in the filter-mapping element,
using the filter-name value to reference. Filters can access the
initialization parameters declared in the deployment descriptor at
runtime via the FilterConfig interface.

Used in: web-app
-—>

<!ELEMENT filter (icon?, filter-name, display-name?, description?,
filter-class, init-param*)>

<l--
The fully qualified classname of the filter.

Used in: filter
-=>

<!ELEMENT filter-class (#PCDATA)>

<!--

Declaration of the filter mappings in this web application. The
container uses the filter-mapping declarations to decide which
filters to apply to a request, and in what order. The container
matches the request URI to a Servlet in the normal way. To determine
which filters to apply it matches filter-mapping declarations either
on servlet-name, or on url-pattern for each filter-mapping element,
depending on which style 1is used. The order in which filters are
invoked is the order in which filter-mapping declarations that match
a request URI for a servlet appear in the 1list of filter-mapping
elements.The filter-name value must be the value of the <filter-name>
sub-elements of one of the <filter> declarations in the deployment
descriptor.

Final Version

Used in: web-app
-——>

<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-
name))>

<!l--
The Togical name of the filter. This name is used to map the filter.
Each filter name 1is unique within the web application.

Used 1in: filter, filter-mapping
-

<!ELEMENT filter-name (#PCDATA)>

<l--

The form-error-page element defines the location in the web app
where the error page that is displayed when Togin is not successful
can be found. The path begins with a leading / and is interpreted
relative to the root of the WAR.

Used in: form-login-config
-—>

<!ELEMENT form-error-page (#PCDATA)>

<l--

The form-Togin-config element specifies the login and error pages
that should be used in form based login. If form based authentication
is not used, these elements are ignored.

Used 1in: Togin-config
-—>

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--

The form-login-page element defines the location in the web app
where the page that can be used for Togin can be found. The path
begins with a leading / and is interpreted relative to the root of
the WAR.

Used in: form-login-config
-—>

308

309

<!ELEMENT form-login-page (#PCDATA)>

<!--
The home element contains the fully-qualified name of the enterprise
bean’s home interface.

Used in: ejb-ref
Example:

<home>com.aardvark.payrol1.Payrol1Home</home>
-—>

<!ELEMENT home (#PCDATA)>

<!--
The http-method contains an HTTP method (GET | POST |...).

Used in: web-resource-collection
-—>

<!ELEMENT http-method (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that
specify the file names for small and a large GIF or JPEG icon images
used to represent the parent element in a GUI tool.

Used in: filter, serviet, web-app
-=>

<!ELEMENT 1icon (small-icon?, large-icon?)>

<!l--
The init-param element contains a name/value pair as an
initialization param of the servlet

Used in: filter, servlet
-—>

<!ELEMENT 1init-param (param-name, param-value, description?)>

<!--
The jsp-file element contains the full path to a JSP file within
the web application beginning with a ‘/’.

Final Version

Used in: servlet

-—>
<!ELEMENT jsp-file (#PCDATA)>

<!--

The large-icon element contains the name of a file
containing a large (32 x 32) icon image. The file
name is a relative path within the web application’s
war file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: 1icon
Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>
-—>

<!ELEMENT Tlarge-icon (#PCDATA)>

<l--
The listener element indicates the deployment properties for a web
application listener bean.

Used in: web-app

-——>
<!ELEMENT T1istener (listener-class)>

<!--

The Tistener-class element declares a class in the application must
be registered as a web application Tistener bean. The value is the
fully qualified classname of the listener class.

Used in: Tistener
-—>

<!ELEMENT Tlistener-class (#PCDATA)>

<l--
The load-on-startup element indicates that this servlet should be

310

311

loaded (instantiated and have its init() called) on the startup
of the web application. The optional contents of

these element must be an integer indicating the order in which
the servilet should be loaded. If the value is a negative integer,
or the element is not present, the container 1is free to load the
serviet whenever it chooses. If the value 1is a positive integer
or 0, the container must load and initialize the servlet as the
application is deployed. The container must guarantee that
serviets marked with Tower integers are Toaded before serviets
marked with higher integers. The container may choose the order
of loading of servlets with the same load-on-start-up value.

Used in: servlet
-=>

<!ELEMENT Tload-on-startup (#PCDATA)>

<!l--

The Tlocal element contains the fully-qualified name of the
enterprise bean’s local interface.

Used in: ejb-local-ref
-—>

<!ELEMENT Tlocal (#PCDATA)>

<!--
The local-home element contains the fully-qualified name of the
enterprise bean’s local home interface.

Used in: ejb-local-ref
-—>

<!ELEMENT Tlocal-home (#PCDATA)>

<l--

The location element contains the location of the resource in the web
application relative to the root of the web application. The value of
the Tocation must have a Teading ‘/’.

Used 1in: error-page
-=>

<!ELEMENT Tocation (#PCDATA)>

Final Version

<l--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login mechanism.

Used in: web-app
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-
config?)>

<l--
The mime-mapping element defines a mapping between an extension
and a mime type.

Used 1in: web-app
-——>

<!ELEMENT mime-mapping (extension, mime-type)>

<!l--
The mime-type element contains a defined mime type. example:
"text/plain"

Used in: mime-mapping
-—>

<!ELEMENT mime-type (#PCDATA)>

<l--
The param-name element contains the name of a parameter. Each
parameter name must be unique in the web application.

Used 1in: context-param, init-param
-—>

<!ELEMENT param-name (#PCDATA)>

<l--
The param-value element contains the value of a parameter.

Used in: context-param, init-param
-—>

312

313

<!ELEMENT param-value (#PCDATA)>

<!l--
The realm name element specifies the realm name to use in HTTP
Basic authorization.

Used in: login-config
-->

<!ELEMENT realm-name (#PCDATA)>

<!--
The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref
Example:

<remote>com.wombat.empl.EmployeeService</remote>
-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the web application code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the web
application. In the latter case, the Container uses information that
is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

Used in: resource-ref
-—>

<!ELEMENT res-auth (#PCDATA)>

<!--
The res-ref-name element specifies the name of a resource manager

Final Version

314

connection factory reference. The name is a JNDI name relative to
the

java:comp/env context. The name must be unique within a web
application.

Used in: resource-ref
-—>

<!ELEMENT res-ref-name (#PCDATA)>

<l--

The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can
be

shared. The value of this element, if specified, must be one of the
two following:

<res-sharing-scope>Shareable</res-sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref
-—>

<!ELEMENT res-sharing-scope (#PCDATA)>

<l--

The res-type element specifies the type of the data source. The type
is specified by the fully qualified Java language class or interface
expected to be implemented by the data source.

Used in: resource-ref

-=>
<!ELEMENT res-type (#PCDATA)>

<l--

The resource-env-ref element contains a declaration of a web
application’s reference to an administered object associated with a
resource in the web application’s environment. It consists of an
optional description, the resource environment reference name, and
an indication of the resource environment reference type expected by
the web application code.

Used in: web-app

315

Example:

<resource-env-ref>
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<l--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the web application code. The name is a JNDI name relative to the
java:comp/env context and must be unique within a web application.

Used in: resource-env-ref
-

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource
environment reference. It is the fully qualified name of a Java
Tanguage class or interface.

Used in: resource-env-ref
-—>

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of a web
application’s reference to an external resource. It consists of an
optional description, the resource manager connection factory
reference name, the indication of the resource manager connection
factory type expected by the web application code, the type of
authentication (Application or Container), and an optional
specification of the shareability of connections obtained from the
resource (Shareable or Unshareable).

Used in: web-app

Final Version

316

Example:

<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth, res-sharing-scope?)>

<l--

The role-Tink element is a reference to a defined security role. The
role-Tink eTement must contain the name of one of the security roles
defined in the security-role elements.

Used 1in: security-role-ref
-—>

<!ELEMENT role-11ink (#PCDATA)>

<l--
The role-name element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.

Used in: auth-constraint, run-as, security-role, security-role-ref

-——>
<!ELEMENT role-name (#PCDATA)>

<!--

The run-as element specifies the run-as identity to be used for the
execution of the web application. It contains an optional
description, and

the name of a security role.

Used in: servlet
-—>

<!ELEMENT run-as (description?, role-name)>

<l--

317

The security-constraint element is used to associate security
constraints with one or more web resource collections

Used in: web-app
-—>

<!ELEMENT security-constraint (display-name?, web-resource-
collection+, auth-constraint?, user-data-constraint?)>

<l--

The security-role element contains the definition of a security
role. The definition consists of an optional description of the
security role, and the security role name.

Used in: web-app
Example:

<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>

<!ELEMENT security-role (description?, role-name)>

<!--

The security-role-ref element contains the declaration of a security
role reference in the web application’s code. The declaration
consists

of an optional description, the security role name used in the code,
and an optional Tink to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method

or the HttpServletRequest.isUserInRole(String role) method.

Used in: servlet

Final Version

<!ELEMENT security-role-ref (description?, role-name, role-1ink?)>

<!--

The servlet element contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup element
is present, then the JSP should be precompiled and loaded.

Used 1in: web-app
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, run-
as?, security-role-ref+*)>

<l--
The servlet-class element contains the fully qualified class name
of the servlet.

Used in: servlet
-—>

<!ELEMENT servlet-class (#PCDATA)>

<l--
The servlet-mapping element defines a mapping between a servlet
and a url pattern

Used in: web-app
-—>

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!l--
The servlet-name element contains the canonical name of the
servlet. Each servlet name is unique within the web application.

Used 1in: filter-mapping, servlet, servlet-mapping
-—>

<!ELEMENT servlet-name (#PCDATA)>

<l--
The session-config element defines the session parameters for
this web application.

318

319

Used in: web-app
-=>

<!ELEMENT session-config (session-timeout?)>

<!--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
If the timeout is @ or less, the container ensures the default
behaviour of sessions is never to time out.

Used in: session-config
-=>

<!ELEMENT session-timeout (#PCDATA)>

<!--

The small-icon element contains the name of a file
containing a small (16 x 16) icon image. The file
name is a relative path within the web application’s

war file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: {con
Example:

<small-icon>employee-service-iconl6x16.jpg</small-icon>
-—>

<!ELEMENT small-icon (#PCDATA)>

<l--
The taglib element is used to describe a JSP tag library.

Used in: web-app
-—>

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--

Final Version

the taglib-location element contains the Tocation (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.

Used 1in: taglib
-=>

<!ELEMENT taglib-Tlocation (#PCDATA)>

<l--

The taglib-uri element describes a URI, relative to the Tocation
of the web.xml document, identifying a Tag Library used in the Web
Application.

Used 1in: taglib

-—>
<!ELEMENT taglib-uri (#PCDATA)>

<!--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.

Used in: user-data-constraint

-—>
<!ELEMENT transport-guarantee (#PCDATA)>

<l--

The url-pattern element contains the url pattern of the mapping. Must
follow the rules specified in Section 11.2 of the Servlet API
Specification.

Used 1in: filter-mapping, servlet-mapping, web-resource-collection
-—>

<!ELEMENT url-pattern (#PCDATA)>

320

321

<!--
The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected.

Used in: security-constraint
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--

The web-resource-collection element is used to identify a subset
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods are specified, then the security constraint applies to all
HTTP methods.

Used in: security-constraint
-—>

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern®, http-method*)>

<!l--
The web-resource-name contains the name of this web resource
collection.

Used in: web-resource-collection
-—>

<!ELEMENT web-resource-name (#PCDATA)>

<!l--
The welcome-file element contains file name to use as a default
welcome file, such as index.html

Used in: welcome-file-Tist
-

<!ELEMENT welcome-file (#PCDATA)>
<!--

The welcome-file-1ist contains an ordered 1list of welcome files
elements.

Final Version

322

Used in: web-app
-——>

<!ELEMENT welcome-file-1ist (welcome-file+)>

<!l--

The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to the
information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the
standard deployment descriptor.

-——>

<!ATTLIST auth-constraint +id ID #IMPLIED>

<!ATTLIST auth-method +id ID #IMPLIED>

<!ATTLIST context-param id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name +id ID #IMPLIED>

<!ATTLIST distributable id ID #IMPLIED>

<!ATTLIST ejb-1ink id ID #IMPLIED>

<!ATTLIST ejb-local-ref id ID #IMPLIED>

<!ATTLIST ejb-ref +id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

323

<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST filter id ID #IMPLIED>
<!ATTLIST filter-class id ID #IMPLIED>
<!ATTLIST filter-mapping id ID #IMPLIED>
<!ATTLIST filter-name id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST home +id ID #IMPLIED>

<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST 1icon id ID #IMPLIED>

<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST listener id ID #IMPLIED>
<!ATTLIST listener-class id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST local id ID #IMPLIED>

<!ATTLIST local-home +id ID #IMPLIED>

Final Version

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

location id ID #IMPLIED>
login-config id ID #IMPLIED>
mime-mapping id ID #IMPLIED>
mime-type id ID #IMPLIED>
param-name id ID #IMPLIED>
param-value id ID #IMPLIED>
realm-name id ID #IMPLIED>

remote id ID #IMPLIED>

res-auth id ID #IMPLIED>
res-ref-name id ID #IMPLIED>
res-sharing-scope id ID #IMPLIED>
res-type id ID #IMPLIED>
resource-env-ref id ID #IMPLIED>
resource-env-ref-name id ID #IMPLIED>
resource-env-ref-type id ID #IMPLIED>
resource-ref id ID #IMPLIED>
role-Tink id ID #IMPLIED>

role-name id ID #IMPLIED>

run-as id ID #IMPLIED>
security-constraint id ID #IMPLIED>
security-role id ID #IMPLIED>
security-role-ref +id ID #IMPLIED>

servlet id ID #IMPLIED>

324

325

<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST taglib id ID #IMPLIED>

<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>

<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST web-app id ID #IMPLIED>

<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>

<!ATTLIST welcome-file-Tlist id ID #IMPLIED>

Final Version

cereno ORV.C

Glossary

Application Developer The producer of aweb application. The output of an
Application Developer is a set of servlet classes, JSP pages, HTML pages,
and supporting libraries and files (such asimages, compressed archivefiles,
etc.) for the web application. The Application Developer is typically an appli-
cation domain expert. The developer isrequired to be aware of the servlet
environment and its consequences when programming, including concurrency
considerations, and create the web application accordingly.

Application Assembler Takesthe output of the Application Developer and
ensures that it is a deployable unit. Thus, the input of the Application Assem-
bler isthe servlet classes, JSP pages, HTML pages, and other supporting
libraries and files for the web application. The output of the Application
Assembler is aweb application archive or aweb application in an open direc-
tory structure.

Deployer The Deployer takes one or more web application archive files or
other directory structures provided by an Application Developer and deploys
the application into a specific operational environment. The operational envi-
ronment includes a specific servlet container and web server. The Deployer
must resolve all the external dependencies declared by the devel oper. To per-
form hisrole, the deployer uses tools provided by the Servlet Container Pro-
vider.

The Deployer is an expert in a specific operational environment. For example,
the Deployer is responsible for mapping the security roles defined by the
Application Developer to the user groups and accounts that exist in the opera-
tional environment where the web application is deployed.

326

327

CHAPTER

principal A principal isan entity that can be authenticated by an authentication
protocol. A principa isidentified by aprincipal name and authenticated by
using authentication data. The content and format of the principal name and
the authentication data depend on the authentication protocol.

role (development) The actions and responsibilities taken by various parties
during the development, deployment, and running of aweb application. In
some scenarios, asingle party may perform severa roles; in others, each role
may be performed by a different party.

role (security) An abstract notion used by an Application Developer in an
application that can be mapped by the Deployer to a user, or group of users, in
a security policy domain.

security policy domain The scope over which security policies are defined
and enforced by a security administrator of the security service. A security
policy domain is also sometimes referred to asarealm.

security technology domain The scope over which the same security mecha-
nism, such as Kerberos, is used to enforce a security policy. Multiple security
policy domains can exist within a single technology domain.

Servlet Container Provider A vendor that providesthe runtime environment,
namely the servlet container and possibly the web server, in which aweb
application runs as well as the tools necessary to deploy web applications.

The expertise of the Container Provider isin HTTP-level programming. Since
this specification does not specify the interface between the web server and
the servlet container, it isleft to the Container Provider to split the implemen-
tation of the required functionality between the container and the server.

servlet definition A unique name associated with afully qualified class name
of aclassimplementing the Servlet interface. A set of initialization parameters
can be associated with a servlet definition.

servlet mapping A servlet definition that is associated by a servlet container
with a URL path pattern. All requests to that path pattern are handled by the
servlet associated with the servlet definition.

System Administrator The person responsible for the configuration and
administration of the servlet container and web server. The administrator is

328

also responsible for overseeing the well-being of the deployed web applica-
tions at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and man-
agement tools provided by the Container Provider and server vendors to
accomplish these tasks.

uniform resource locator (URL) A compact string representation of
resources available via the network. Once the resource represented by a URL
has been accessed, various operations may be performed on that resource.* A
URL isatype of uniform resource identifier (URI). URLs are typically of the
form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT-
based URL s which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/serviet/index.html
https://javashop.sun.com/purchase

In HTTP-based URLSs, the ‘/' character is reserved to separate a hierarchical
path structure in the URL-path portion of the URL. The server is responsible
for determining the meaning of the hierarchical structure. There is no corre-
spondence between a URL -path and a given file system path.

web application A collection of servlets, JSP pages, HTML documents, and
other web resources which might include image files, compressed archives,
and other data. A web application may be packaged into an archive or exist in
an open directory structure.

All compatible servlet containers must accept a web application and perform
a deployment of its contents into their runtime. This may mean that a con-
tainer can run the application directly from aweb application archivefile or it
may mean that it will move the contents of a web application into the appro-
priate locations for that particular container.

. See RFC 1738

329 CHAPTER

web application archive A singlefilethat containsall of the components of a
web application. This archivefileis created by using standard JAR tools
which alow any or all of the web components to be signed.

Web application archive files are identified by the .war extension. A new
extension is used instead of .jar because that extension is reserved for files
which contain a set of class files and that can be placed in the classpath or
double clicked using a GUI to launch an application. Asthe contents of aweb
application archive are not suitable for such use, anew extension was in order.

web application, distributable A web application that is written so that
it can be deployed in a web container distributed across multiple Java
virtual machines running on the same host or different hosts. The

deployment descriptor for such an application uses the di stri but abl e
element.

330

	Java™ Servlet Specification Version 2.4
	Preface
	SRV.P.1 Additional Sources
	SRV.P.2 Who Should Read This Specification
	SRV.P.3 API Reference
	SRV.P.4 Other Java Platform Specifications
	SRV.P.5 Other Important References
	SRV.P.6 Providing Feedback
	SRV.P.7 Acknowledgements

	Overview
	SRV.1.1 What is a Servlet?
	SRV.1.2 What is a Servlet Container?
	SRV.1.3 An Example
	SRV.1.4 Comparing Servlets with Other Technologies
	SRV.1.5 Relationship to Java 2 Platform, Enterprise Edition
	SRV.1.6 Compatibility with Java Servlet Specification Version 2.3
	SRV.1.6.1 HttpSessionListener.sessionDestroyed
	SRV.1.6.2 ServletRequest methods getRemotePort, getLocalName, getLocalAddr, getLocaPort

	The Servlet Interface
	SRV.2.1 Request Handling Methods
	SRV.2.1.1 HTTP Specific Request Handling Methods
	SRV.2.1.2 Additional Methods
	SRV.2.1.3 Conditional GET Support

	SRV.2.2 Number of Instances
	SRV.2.2.1 Note About The Single Thread Model

	SRV.2.3 Servlet Life Cycle
	SRV.2.3.1 Loading and Instantiation
	SRV.2.3.2 Initialization
	SRV.2.3.3 Request Handling
	SRV.2.3.4 End of Service

	Servlet Context
	SRV.3.1 Introduction to the ServletContext Interface
	SRV.3.2 Scope of a ServletContext Interface
	SRV.3.3 Initialization Parameters
	SRV.3.4 Context Attributes
	SRV.3.4.1 Context Attributes in a Distributed Container

	SRV.3.5 Resources
	SRV.3.6 Multiple Hosts and Servlet Contexts
	SRV.3.7 Reloading Considerations
	SRV.3.7.1 Temporary Working Directories

	The Request
	SRV.4.1 HTTP Protocol Parameters
	SRV.4.1.1 When Parameters Are Available

	SRV.4.2 Attributes
	SRV.4.3 Headers
	SRV.4.4 Request Path Elements
	SRV.4.5 Path Translation Methods
	SRV.4.6 Cookies
	SRV.4.7 SSL Attributes
	SRV.4.8 Internationalization
	SRV.4.9 Request data encoding
	SRV.4.10 Lifetime of the Request Object

	The Response
	SRV.5.1 Buffering
	SRV.5.2 Headers
	SRV.5.3 Convenience Methods
	SRV.5.4 Internationalization
	SRV.5.5 Closure of Response Object
	SRV.5.6 Lifetime of the Response Object

	Filtering
	SRV.6.1 What is a filter?
	SRV.6.1.1 Examples of Filtering Components

	SRV.6.2 Main Concepts
	SRV.6.2.1 Filter Lifecycle
	SRV.6.2.2 Wrapping Requests and Responses
	SRV.6.2.3 Filter Environment
	SRV.6.2.4 Configuration of Filters in a Web Application
	SRV.6.2.5 Filters and the RequestDispatcher

	Sessions
	SRV.7.1 Session Tracking Mechanisms
	SRV.7.1.1 Cookies
	SRV.7.1.2 SSL Sessions
	SRV.7.1.3 URL Rewriting
	SRV.7.1.4 Session Integrity

	SRV.7.2 Creating a Session
	SRV.7.3 Session Scope
	SRV.7.4 Binding Attributes into a Session
	SRV.7.5 Session Timeouts
	SRV.7.6 Last Accessed Times
	SRV.7.7 Important Session Semantics
	SRV.7.7.1 Threading Issues
	SRV.7.7.2 Distributed Environments
	SRV.7.7.3 Client Semantics

	Dispatching Requests
	SRV.8.1 Obtaining a RequestDispatcher
	SRV.8.1.1 Query Strings in Request Dispatcher Paths

	SRV.8.2 Using a Request Dispatcher
	SRV.8.3 The Include Method
	SRV.8.3.1 Included Request Parameters

	SRV.8.4 The Forward Method
	SRV.8.4.1 Query String
	SRV.8.4.2 Forwarded Request Parameters

	SRV.8.5 Error Handling

	Web Applications
	SRV.9.1 Web Applications Within Web Servers
	SRV.9.2 Relationship to ServletContext
	SRV.9.3 Elements of a Web Application
	SRV.9.4 Deployment Hierarchies
	SRV.9.5 Directory Structure
	SRV.9.5.1 Example of Application Directory Structure

	SRV.9.6 Web Application Archive File
	SRV.9.7 Web Application Deployment Descriptor
	SRV.9.7.1 Dependencies On Extensions
	SRV.9.7.2 Web Application Class Loader

	SRV.9.8 Replacing a Web Application
	SRV.9.9 Error Handling
	SRV.9.9.1 Request Attributes
	SRV.9.9.2 Error Pages
	SRV.9.9.3 Error Filters

	SRV.9.10 Welcome Files
	SRV.9.11 Web Application Environment
	SRV.9.12 Web Application Deployment

	Application Lifecycle Events
	SRV.10.1 Introduction
	SRV.10.2 Event Listeners
	SRV.10.2.1 Event Types and Listener Interfaces
	SRV.10.2.2 An Example of Listener Use

	SRV.10.3 Listener Class Configuration
	SRV.10.3.1 Provision of Listener Classes
	SRV.10.3.2 Deployment Declarations
	SRV.10.3.3 Listener Registration
	SRV.10.3.4 Notifications At Shutdown

	SRV.10.4 Deployment Descriptor Example
	SRV.10.5 Listener Instances and Threading
	SRV.10.6 Listener Exceptions
	SRV.10.7 Distributed Containers
	SRV.10.8 Session Events

	Mapping Requests to Servlets
	SRV.11.1 Use of URL Paths
	SRV.11.2 Specification of Mappings
	SRV.11.2.1 Implicit Mappings
	SRV.11.2.2 Example Mapping Set

	Security
	SRV.12.1 Introduction
	SRV.12.2 Declarative Security
	SRV.12.3 Programmatic Security
	SRV.12.4 Roles
	SRV.12.5 Authentication
	SRV.12.5.1 HTTP Basic Authentication
	SRV.12.5.2 HTTP Digest Authentication
	SRV.12.5.3 Form Based Authentication
	SRV.12.5.4 HTTPS Client Authentication

	SRV.12.6 Server Tracking of Authentication Information
	SRV.12.7 Propagation of Security Identity in EJBTM Calls
	SRV.12.8 Specifying Security Constraints
	SRV.12.8.1 Combining Constraints
	SRV.12.8.2 Example
	SRV.12.8.3 Processing Requests

	SRV.12.9 Default Policies
	SRV.12.10 Login and Logout

	Deployment Descriptor
	SRV.13.1 Deployment Descriptor Elements
	SRV.13.1.1 Packaging and Deployment of JAX-RPC Components

	SRV.13.2 Rules for Processing the Deployment Descriptor
	SRV.13.3 Deployment Descriptor
	SRV.13.4 Deployment Descriptor Diagram
	SRV.13.5 Examples
	SRV.13.5.1 A Basic Example
	SRV.13.5.2 An Example of Security

	javax.servlet
	SRV.14.1 Generic Servlet Interfaces and Classes
	SRV.14.2 The javax.servlet package
	SRV.14.2.1 Filter
	SRV.14.2.2 FilterChain
	SRV.14.2.3 FilterConfig
	SRV.14.2.4 GenericServlet
	SRV.14.2.5 RequestDispatcher
	SRV.14.2.6 Servlet
	SRV.14.2.7 ServletConfig
	SRV.14.2.8 ServletContext
	SRV.14.2.9 ServletContextAttributeEvent
	SRV.14.2.10 ServletContextAttributeListener
	SRV.14.2.11 ServletContextEvent
	SRV.14.2.12 ServletContextListener
	SRV.14.2.13 ServletException
	SRV.14.2.14 ServletInputStream
	SRV.14.2.15 ServletOutputStream
	SRV.14.2.16 ServletRequest
	SRV.14.2.17 ServletRequestAttributeEvent
	SRV.14.2.18 ServletRequestAttributeListener
	SRV.14.2.19 ServletRequestEvent
	SRV.14.2.20 ServletRequestListener
	SRV.14.2.21 ServletRequestWrapper
	SRV.14.2.22 ServletResponse
	SRV.14.2.23 ServletResponseWrapper
	SRV.14.2.24 SingleThreadModel
	SRV.14.2.25 UnavailableException

	javax.servlet.http
	SRV.15.1 Servlets Using HTTP Protocol
	SRV.15.1.1 Cookie
	SRV.15.1.2 HttpServlet
	SRV.15.1.3 HttpServletRequest
	SRV.15.1.4 HttpServletRequestWrapper
	SRV.15.1.5 HttpServletResponse
	SRV.15.1.6 HttpServletResponseWrapper
	SRV.15.1.7 HttpSession
	SRV.15.1.8 HttpSessionActivationListener
	SRV.15.1.9 HttpSessionAttributeListener
	SRV.15.1.10 HttpSessionBindingEvent
	SRV.15.1.11 HttpSessionBindingListener
	SRV.15.1.12 HttpSessionContext
	SRV.15.1.13 HttpSessionEvent
	SRV.15.1.14 HttpSessionListener
	SRV.15.1.15 HttpUtils

	Changes since version 2.3
	SRV.S.16 Final: Changes in this document since Proposed Final Draft version3
	SRV.S.17 PFD3: Changes in this document since Proposed Final Draft version2
	SRV.S.18 PFD2: Changes in this document since Proposed Final Draft
	SRV.S.19 PFD: Changes in this document since the Public Draft
	SRV.S.20 Changes in this document since version 2.3

	Deployment Descriptor Version 2.2
	SRV.A.1 Deployment Descriptor DOCTYPE
	SRV.A.2 DTD

	Deployment Descriptor Version 2.3
	SRV.B.1 Deployment Descriptor DOCTYPE
	SRV.B.2 DTD

	Glossary

