CS203 Programming with Data Structures

Introduction to Threads and Synchronization

Chengyu Sun
California State University, Los Angeles

Processes

Processes: 732 cPUlsage: 79 CommitChurge: 7040 / 246100

Multitasking

#What is multitasking?
#Why do we need multitasking?
= A long running process should not block all
other processes
= Fully utilize the resources of a computer
+ CPUs, graphic card, hard drives etc.

Multitasking within a Process —
Threads

Regular process Process with two threads

{ | {
// do task 1

// do task 1 // do task 2

}

// do task 2 l l

Thread Example

#A program performs two tasks
= Calculate Fibonacci(n)
= Download a web page
#Without thread: Thr eadTest 1. j ava

#With thread: Thr eadTest 2. j ava

Creating A Thread

#Subclass Thr ead class

= http://java.sun.com/j2se/1.5.0/docs/api/ja
va/lang/Thread.html

#Implement Runnabl e interface

= http://java.sun.com/j2se/1.5.0/docs/api/ja
va/lang/Runnable.html

Subclass Thr ead Class

#cl ass Foobar extends Thread
= Override r un() method

@Thread newThread = new
Foobar () ;

Implement Runnabl e
Interface
#class Foobar inplements Runnable
= Implement r un() method

#Thread newThread = new Thr ead(new
Foobar ())

How do we choose between these two approaches??

Run a Thread

#start () inthe Thread class
#start () is non-blocking

Without j oi n()

main
l fibo net
o — l
° [] [J
S \ | \ \
System.out.printin(); | ‘ | ‘
]

exit

With j oi n()
main
l fibo net
tl.start(); ——
t2.start();

t1.join(); l L

t2.join();
°

o
System.otjt.println();

exit

Collaboration between
Processes/Threads

#Processes

= Do not share address space

= Collaborate through message passing
#®Threads

= Share address space

= Collaborate through shared memory
(usually faster than message passing)

Life Cycle of a Thread

New
Thread start

yield

C D

Running
(Runnable)

Not
Runnable

run met hod
term nates

Scheduling

#What happens in the running/runnable
state?

#Scheduling — pick a thread from the
runnable threads and run it
= Time slicing
= VM default: Fixed Priority Scheduling

Fixed Priority Scheduling

Threads with higher priority are run first

4 Threads with the same priority are run in a
round-robin manner.

% Threads with lower priority are only run when
high priority threads are either dead or not
runnable.

4 Preemptive — current thread may be stopped
if there’s a thread with higher priority is
runnable

Runnable - Not Runnable

#sl| eep() method is invoked
#wai t () method is invoked
#Blocked on I/O

Not Runnable = Runnable

#Sleep time expires
#notify() ornotifyAll () methodis
invoked

#1/0 is completed

Producer/Consumer Example

#®A producerthread writes 0, 1, 2,..., 9
into a buffer

®A consumer thread reads from the
buffer

#If two threads are perfectly
synchronized, the consumer thread
shouldread 0, 1, 2, 3,..., 9, but ...

From Non-synchronized to
Synchronized

#Thr ead. sl eep(1000) — just to make
things more interesting

#wait() andnotify()

#synchr oni zed

Beyond Basics

#High-level Thread API
= Ti mer and Swi ng\Wor ker

#Semaphores, locks, conditions
#Scheduling
#Deadlock and starvation

® 50 take CS440

