
1

CS203 Programming with Data Structures
Introduction to Threads and Synchronization

Chengyu Sun

California State University, Los Angeles

Processes

Multitasking

What is multitasking?

Why do we need multitasking?

� A long running process should not block all
other processes

� Fully utilize the resources of a computer

� CPUs, graphic card, hard drives etc.

Multitasking within a Process –
Threads

Regular process

{

}

// do task 1

// do task 2

Process with two threads

{

}

// do task 1 // do task 2

Thread Example

A program performs two tasks

� Calculate Fibonacci(n)

� Download a web page

Without thread: ThreadTest1.java

With thread: ThreadTest2.java

Creating A Thread

Subclass Thread class

� http://java.sun.com/j2se/1.5.0/docs/api/ja
va/lang/Thread.html

Implement Runnable interface

� http://java.sun.com/j2se/1.5.0/docs/api/ja
va/lang/Runnable.html

2

Subclass Thread Class

class Foobar extends Thread

� Override run() method

Thread newThread = new
Foobar();

Implement Runnable
Interface

class Foobar implements Runnable
� Implement run() method

Thread newThread = new Thread(new
Foobar())

How do we choose between these two approaches??

Run a Thread

start() in the Thread class

start() is non-blocking

Without join()

t1.start();

t2.start();

System.out.println();

main

fibo net

exit

With join()

t1.start();

t2.start();

System.out.println();

main

fibo net

exit

t1.join();

t2.join();

Collaboration between
Processes/Threads

Processes

� Do not share address space

� Collaborate through message passing

Threads

� Share address space

� Collaborate through shared memory
(usually faster than message passing)

3

Life Cycle of a Thread

New
Thread

Not

Runnable

Dead

Running
(Runnable)start

yield

run method
terminates

Scheduling

What happens in the running/runnable
state?

Scheduling – pick a thread from the
runnable threads and run it

� Time slicing

� JVM default: Fixed Priority Scheduling

Fixed Priority Scheduling

Threads with higher priority are run first

Threads with the same priority are run in a
round-robin manner.

Threads with lower priority are only run when
high priority threads are either dead or not
runnable.

Preemptive – current thread may be stopped
if there’s a thread with higher priority is
runnable

Runnable � Not Runnable

sleep() method is invoked

wait() method is invoked

Blocked on I/O

Not Runnable � Runnable

Sleep time expires

notify() or notifyAll() method is

invoked

I/O is completed

Producer/Consumer Example

A producer thread writes 0, 1, 2,…, 9
into a buffer

A consumer thread reads from the
buffer

If two threads are perfectly
synchronized, the consumer thread
should read 0, 1, 2, 3,…, 9, but …

4

From Non-synchronized to
Synchronized

Thread.sleep(1000) – just to make

things more interesting

wait() and notify()

synchronized

Beyond Basics

High-level Thread API
� Timer and SwingWorker

Semaphores, locks, conditions

Scheduling

Deadlock and starvation

So take CS440

