
1

CS203 Programming with Data Structures
Sorting

Chengyu Sun

California State University, Los Angeles

Sorting

Given an collection of elements, rearrange
the elements so that they are in ascending or
descending order
n The collection is usually an array

n The elements are comparable

For example:

30 10 15 21 18 25Before sorting:

After sorting: 10 15 18 21 25 30

Bubble Sort

Or in other words

n Find the smallest element and put it at 1st position

n Find the second smallest element and put it ant 2nd position

n …

Given an array of size N

For i=0 to N-1
find the smallest element in the range i+1 to N-1,
and swap it with the element at position i

Done

Bubble Sort Example

30 10 15 21 18 25

First iteration:

• i=0
• The smallest element in the rang 1 to 5 is 10

• Swap 10 and 30

0 1 2 3 4 5

After 1st iteration: 10 30 15 21 18 25

Comparison and Swap

Bubble sort

n Number of comparisons??

n Number of swaps??

Can we improve on Bubble Sort??

Decision Tree
a,b,c
a,c,b

b,c,a
b,a,c

c,a,b
c,b,a

a,b,c
a,c,b

c,a,b

b,a,c
b,c,a

c,b,a

a,b,c
a,c,b

c,a,b b,a,c
b,c,a

c,b,a

a,b,c a,c,b b,a,c b,c,a

a<b b<a

a<c c<a b<c c<b

b<c c<b a<c c<a

2

Properties of A Decision Tree

Number of leaves: ??

Height of the tree: ??

Any sorting algorithm that only uses
comparisons between elements require
at least O(NlogN) comparisons

Insertion Sort

Make N-1 passes of the array

At pass p,
n the first p elements of the array are
already sorted.

n “insert” a[p+1] so the first p+1 elements
are sorted.

Insertion Sort Example

30 10 15 21 18 25

1st Pass: sorted unsorted

Take 10 and insert it into the sorted portion:

30 15 21 18 25

10

After insertion:

10 30 15 21 18 25

sorted unsorted

Insertion Sort Implementation

Implementation #1:

n Binary search for insertion position

n shift elements to the right

n Insert

Complexity of pass P

n logP comparisons

n P/2 assignments

Insertion Sort Implementation

Implementation #2:

n Pair-wise swap

Complexity of pass P

n P/2 comparisons

n P/2 swaps

Insertion Sort Complexity

Best case: ??

Worst case: ??

Average case: O(N2)

3

Heap Sort

Heap sort strategy
n Construct a heap with N insertions: O(??)

n Construct a sorted array with N removeMin: O(??)

Can we construct the heap more efficiently
(in linear time)??

Can we perform heap sort without the extra
space requirement??

Percolate Down

31

14 16

24 21 19 68

65 26 32

Percolate Down

14

31 16

24 21 19 68

65 26 32

Percolate Down

14

21 16

24 31 19 68

65 26 32

percolateDown
void percolateDown(int pos)

{
int child;
Comparable tmp = array[pos];

while(pos*2 <= size)

{
child = pos * 2;

if(child != size && array[child+1].compareTo(array[child]) < 0) child++;

if(array[child].compareTo(tmp) < 0) array[pos] = array[child];
else break;

pos = child;

}

array[pos] = tmp;
}

Building A Heap

Percolate down the
non-leaf nodes in
reverse order

30 10 15 21 18 25

30

10 15

21 18 25

4

Heap Building Example

30

10 15

21 18 25

30

10 15

21 18 25

30

10 15

21 18 25

10

18 15

21 30 25

Heap Building Complexity

The complexity of percolate down one
node is: ??

The complexity of percolate down all
non-leaf nodes is: O(N)

Heap Sort Algorithm

Build a MaxHeap

removeMax() then put the removed
value into the last position

Merge Sort

Merging two sorted arrays takes linear
time

10 15 30 18 21 25

10 15 18 21 25 30

Merge Sort Example

10 15 30 18 21 12 24 11

10 15 18 30 12 21 11 24

10 15 18 30 12 21 11 24

10 11 12 15 18 21 24 30

Merge Sort Code …

Comparable tmpArray[];

void mergeSort(Comparable a[])
{

tmpArray = new Comparable[a.length];
mergeSort(a, 0, a.length-1);

}

5

… Merge Sort Code

void mergeSort(Comparable a[], int left, int right)
{
if(left < right)

{
int mid = (left+right) / 2;

mergeSort(a, left, mid);
mergeSort(a, mid+1, right);

merge(a, left, mid, right);
}

}

About Merge Sort

Complexity

n T(1) = 1

n T(N) = 2T(N/2) + N

Rarely used in practice

n Require extra space for the temporary
array

n Copying to and from the temporary array
is costly

O(NlogN)

Quick Sort

Fastest sorting algorithm in practice

Complexity

n Average case: O(NlogN)

n Worst case: O(N2)

Easy to understand, very hard to code
correctly

Quick Sort Algorithm

1. If |A|=1 or 0, return
2. Pick any element v in A. v is called the

pivot.

3. Partition A-{v} (the remaining elements in
A) into two disjoint groups A1 and A2
n A1 = {x∈A-{v} | x ≤ v}

n A2 = {x∈A-{v} | x ≥ v}

4. Return {quicksort(A1), v, quicksort(A2)}

Given array A

Understand The Notations

A:

v: 25

30 10 15 21 18 25

A1:

A2:

10 15 21 18

30

Observations About The Quick
Sort Algorithm

It should work

It’s not very clearly defined

n How do we pick the pivot?

n How do we do the partitioning?

n How do we handle duplicate values?

Why is it more efficient than Merge
Sort?

6

Picking the Pivot

Ideally, the pivot should leads to two
equal-sized partitions

n First element??

n Random pick??

n Median of (first, middle, last)

Partitioning …

30 15 21 18 25 10

Pivot = median(30,21,10) = 21

A:

1. Swap pivot to the last position

30 15 10 18 25 21

i j

… Partitioning

2. Increase i until a[i] > pivot
Decrease j until a[j] < pivot
swap a[i] and a[j]

3. Repeat 2 until i > j

4. Swap a[i] and pivot

We want to move smaller elements to the left part
of the array and larger elements to the right part,

So:

More Details

Handing duplicates

Small arrays

n N>10: quick sort

n N≤ 10: insertion sort

Exercise

Implement quickSort

