

Properties of A Decision Tree

- Number of leaves: ??
 Height of the tree: ??
- Any sorting algorithm that only uses comparisons between elements require at least O(NlogN) comparisons

Insertion Sort

- ♦Make N-1 passes of the array
- ♠At pass p,
 - $_{\scriptscriptstyle \mathrm{D}}$ the first $_{\scriptscriptstyle \mathrm{D}}$ elements of the array are already sorted.
 - "insert" a [p+1] so the first p+1 elements are sorted.

Insertion Sort Example 1st Pass: sorted unsorted 30 10 15 21 18 25 Take 10 and insert it into the sorted portion: 10 30 15 21 18 25 After insertion: sorted unsorted 10 30 15 21 18 25

Insertion Sort Implementation

- ♦Implementation #1:
 - _n Binary search for insertion position
 - n shift elements to the right
 - n Insert
- Complexity of pass P
 - n logP comparisons
 - _n P/2 assignments

Insertion Sort Implementation

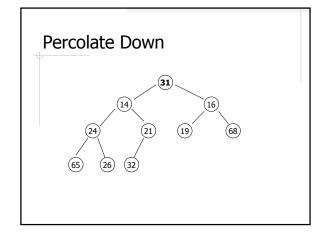
- ♦Implementation #2:
 - _n Pair-wise swap
- Complexity of pass P
 - _n P/2 comparisons
 - _n P/2 swaps

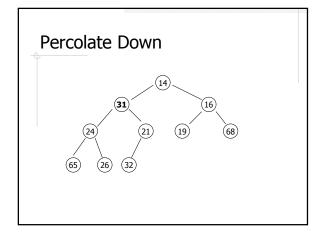
Insertion Sort Complexity

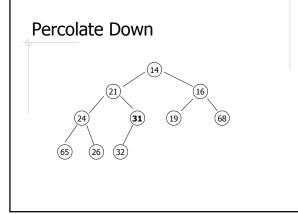
- ◆Best case: ??
- ♦Worst case: ??
- ♦Average case: O(N²)

Heap Sort

- Heap sort strategy
 - ⁿ Construct a heap with N insertions: O(??)
 - n Construct a sorted array with № removeMin: O(??)
- Can we construct the heap more efficiently (in linear time)??
- Can we perform heap sort without the extra space requirement??

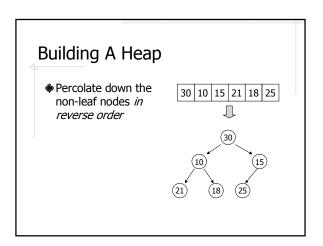


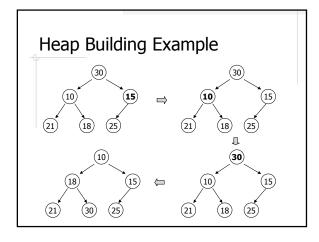




```
percolateDown

void percolateDown( int pos )
{
   int child;
   Comparable tmp = array[pos];
   while( pos*2 <= size )
   {
      child = pos * 2;
      if( child != size && array[child+1].compareTo(array[child]) < 0 ) child++;
      if( array[child].compareTo(tmp) < 0 ) array[pos] = array[child];
      else break;
      pos = child;
   }
   array[pos] = tmp;
}</pre>
```





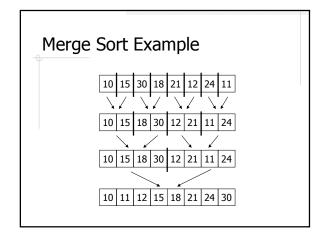
Heap Building Complexity

- The complexity of percolate down one node is: ??
- The complexity of percolate down all non-leaf nodes is: O(N)

Heap Sort Algorithm

- Build a MaxHeap
- removeMax() then put the removed
 value into the last position

Merge Sort Merging two sorted arrays takes linear time 10 15 30 18 21 25 10 15 18 21 25 30



```
Merge Sort Code ...

Comparable tmpArray[];

void mergeSort( Comparable a[] ) {
   tmpArray = new Comparable[a.length];
   mergeSort( a, 0, a.length-1 );
}
```

void mergeSort Code void mergeSort(Comparable a[], int left, int right) { if(left < right) { int mid = (left+right) / 2; mergeSort(a, left, mid); mergeSort(a, mid+1, right); merge(a, left, mid, right); } }</pre>

About Merge Sort

- Complexity
 - $_{n}$ T(1) = 1 $_{n}$ T(N) = 2T(N/2) + N O(NlogN)
- Rarely used in practice
 - Require extra space for the temporary array
 - ⁿ Copying to and from the temporary array is costly

Quick Sort

- Fastest sorting algorithm in practice
- Complexity
 - n Average case: O(NlogN)
 - n Worst case: O(N2)
- Easy to understand, very hard to code correctly

Quick Sort Algorithm

Given array A

- 1. If |A| = 1 or 0, return
- 2. Pick any element $\mathbf v$ in $\mathtt A.\ \mathbf v$ is called the pivot.
- 3. Partition $A-\{v\}$ (the remaining elements in A) into two disjoint groups A_1 and A_2
- 4. Return {quicksort(A₁), v, quicksort(A₂)}

Understand The Notations

A: 30 10 15 21 18 25

v: 25

A₁: 10 15 21 18

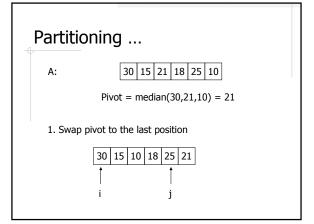
A₂: 30

Observations About The Quick Sort Algorithm

- ◆It should work
- It's not very clearly defined
 - n How do we pick the pivot?
 - _n How do we do the partitioning?
 - n How do we handle duplicate values?
- Why is it more efficient than Merge Sort?

Picking the Pivot

- Ideally, the pivot should leads to two equal-sized partitions
 - n First element??
 - n Random pick??
 - n Median of (first, middle, last)



... Partitioning

We want to move smaller elements to the left part of the array and larger elements to the right part, So:

- Increase i until a[i] > pivot
 Decrease j until a[j] < pivot
 swap a[i] and a[j]
- 3. Repeat 2 until i > j
- 4. Swap a[i] and pivot

More Details

- Handing duplicates
- Small arrays
 - n N>10: quick sort
 - n N≤ 10: insertion sort

Exercise

♦Implement quickSort