
1

CS203 Programming with Data Structures
Recursion

Chengyu Sun

California State University, Los Angeles

Method

Header

n Access modifier

n static

n Return type

n Name

n Parameter list

Body

Signature

Recursion

A method calls itself

void print(int n)

{

if(n <= 0) System.out.println(“b”);

else

{

System.out.print(“a”);

print(n-1);

}

}

Recursive Process

print(2)

“a”
print(1)

“a” print(0)

“b”

print(3)

“a”

Ending Condition

When the recursion should stop

To avoid infinite recursion, make sure
the ending condition

n Exists

n Reachable

n Comes before the recursive call

Simple Recursion Examples

Factorial

Search

2

String Permutation

Output all the permutations of n
characters
n E.g. “abc”

wabc, acb
wbac, bca

wcab, cba

How do we reduce the problem of n
characters to the problem of n-1
characters??

Fibonacci Series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Definition

n fibonacci(0) = 0

n fibonacci(1) = 1

n fibonacci(n) = fibonacci(n-1)+fibonacci(n-2)

Recursive Fibonacci

int fibonacci(int n)

{
if(n == 0) return 0;
else if(n==1) return 1;

else
return fibonacci(n-1) + fibonacci(n-2);

}

Non-recursive Fibonacci

int fibonacci(int n)

{
if(n == 0 || n==1) return n;

int last1 = 1, last2 = 0, fibo;
for(int i=2 ; ?? ; ++i)

{
fibo = last1+last2;

??
}

return fibo;
}

Recursion vs. Non-recursion

Less code != more efficient

f(5)

f(4) f(3)

f(3) f(2)

f(2) f(1) f(1) f(0)

f(2) f(1)

f(1) f(0)

f(1) f(0)

Timing

The best way to appreciate a good
algorithm is to see how fast it runs

And time it

System.currentTimeMillis()

System.nanoTime()

3

When Can We Use Recursion?

A problem itself is recursively defined
n Fibonacci à f(n) = f(n-1) + f(n-2)

n Tree
w A tree has a root

w Each child of the root is also a tree

A problem of size n can be reduced to a
problem of size less than n
n Factorial: n à n-1

n Sort: n à n-1

n Binary search: n à n/2

When Should We Use
Recursion?

When the homework problem says so

When speed of code development takes
precedence over code efficiency

When the problem is naturally recursive
n Fibonacci Series

When the non-recursive solution is much
harder
n Hanoi tower

n Solving maze

