
1

CS203 Programming with Data Structures
Introduction to Algorithm Analysis

Chengyu Sun

California State University, Los Angeles

Algorithm and Algorithm
Analysis

Algorithm - a well defined set of
instructions to complete a task

Algorithm analysis - estimate the
time/space required by an algorithm

� Optimization

� Comparison

Algorithm != Code

The same algorithm can be
implemented by different people, in
different languages, under different
conditions

To analyze algorithm, we need to
abstract away the implementation
details

The Model

A computer with infinite amount of
memory

Simple instructions only (addition,
multiplication, assignment etc.)

Sequential execution

Each instruction takes one unit of time

Running Time

Given size of the input N

� Tbest(N) – best-case running time

� Tworst(N) – worst-case running time

� Tavg(N) – average running time

Example 1: Max

N??, Tbest(N)??, Tworst(N)??, Tavg(N)??

int max(int a[])
{

int max=a[0];

for(int i=1 ; i < a.length ; ++i)
if(max < a[i]) max = a[i];

return max;
}

2

Example 2: Search

N??, Tbest(N)??, Tworst(N)??, Tavg(N)??

int search(int x, int a[])
{

for(int i=0 ; i < a.length ; ++i)
if(a[i] == x) return I;

return -1;

}

The Big-O Notation

T(N) = O(f(N)) if there are positive
constants c and n0 such that T(N) ≤
cf(N) when N ≥ n0
O(f(N)) – Order of f(N)

Time Complexity

In the Big-O notation

Running Time T(N) Time Complexity

3 O(1)

2057 + N O(N)

100N2 O(N2)

1321312+ 23244255N + N2 O(N2)

Two Simple Rules

Constants do not matter

Higher-order terms dominate lower-
order terms

Growth Rate of Some
Functions

42949672961024160532

6553625664416

256642438

1616824

42212

21001

2NN2NlogNlogNN

Growth Rate of N2 and
N2+4N+20

10004002010000000010000

100402010000001000

1042010000100

2720250050

36030010

N2+4N+20N2N

3

Understand the Definition

How do we show 2057+N = O(N)??

T(N) = 2057+N and f(N) = N, and based on the

definition, we need to find c and n0 such that
2057+N ≤ cN for N>n0

We can pick c=2 and n0=2057. Because
2057 < N for N>2057 and

N ≤ N
We have

N+2057 ≤ 2N for N>2057

Typical Complexities

Exponential2N

CubicO(N3)

QuadraticO(N2)

O(NlogN)

LinearO(N)

Log-squaredO(log2N)

LogarithmicO(logN)

ConstantO(1)

NameTime Complexity

efficient

expensive

Example 3: Binary Search

Time complexity: best-case??, worst-case??,
average case??

int binarySearch(int x, int a[])

{
int index = -1, left = 0, right = a.length-1, mid;

while(left <= right) {
mid = (left+right)/2;

if(a[mid] > value) right = mid-1;
else if(a[mid] < value) left = mid+1;
else { index = mid; break; }

}
return index;

}

Beyond Basics

o, Ω, and Θ
Proofs

Complex complexities, e.g.

T(N) = T(N-1) + T(N-2) + 2

