CS203 Programming with Data Structures

Introduction to Algorithm Analysis

Chengyu Sun
California State University, Los Angeles

Algorithm and Algorithm
Analysis

#®Algorithm - a well defined set of
instructions to complete a task
#Algorithm analysis - estimate the
time/space required by an algorithm
= Optimization
= Comparison

Algorithm != Code

#The same algorithm can be
implemented by different people, in
different languages, under different
conditions

#To analyze algorithm, we need to
abstract away the implementation
details

The Model

#A computer with infinite amount of
memory

#Simple instructions only (addition,
multiplication, assignment etc.)

#Sequential execution
#Each instruction takes one unit of time

Running Time

#Given size of the input N
» Tpeq(N) — best-case running time
= T, ort(N) — worst-case running time
= T,4(N) — average running time

Example 1: Max

int max(int a[])

int max=a[0];

for(inti=1; i< a.length; ++i)
if(max < a[i]) max = a[i];

return max;

by

ON??, Toes(N)??, Tiorst(N)??, Tyyg(N)??

Example 2: Search

int search(int x, int a[])

for(inti=0;i < a.length ; ++i)
if(a[i] == x) return I;
return -1;

}

®N??, Tpeat(N)??, Toorse(N)??, Toyg(N)??

The Big-O Notation

@®T(N) = O(f(N)) if there are positive
constants ¢ and n, such that T(N) <
cf(N) when N = n,

#®0(f(N)) — Order of f(N)

Time Complexity

#1In the Big-O notation

Running Time T(N)

3 o(1)

2057 + N O(N)
100N?2 O(N?)
1321312+ 23244255N + N2 O(N?)

Time Complexity

Two Simple Rules

#Constants do not matter

#Higher-order terms dominate lower-
order terms

Growth Rate of Some

Growth Rate of N2 and
N2+4N+20

Functions
N logN | NlogN N2 2
1 0 0 1 2
2 1 2 2 4
4 2 8 16 16
8 3 24 64 256
16 4 64 256 65536
32 5 160 1024 | 4294967296

N N2 N2+4N+20
10 300 360
50 2500 2720
100 10000 10420
1000 1000000 1004020
10000 100000000 | 100040020

Understand the Definition

4 How do we show 2057+N = O(N)??

T(N) = 2057+N and f(N) = N, and based on the
definition, we need to find c and n, such that
2057+N < cNfor N>n,

We can pick c=2 and ny=2057. Because
2057 < Nfor N>2057 and
N <N

We have
N+2057 < 2N for N>2057

Typical Complexities

Time Complexity Name
0(1) Constant
O(logN) Logarithmic
O(log?N) Log-squared
O(N) Linear
O(NlogN)
O(N2) Quadratic
O(N3) Cubic
2N Exponential

efficient

expensive

Example 3: Binary Search

int binarySearch(int x, int a[])

int index = -1, left = 0, right = a.length-1, mid;
while(left <= right) {

mid = (left+right)/2;

if(a[mid] > value) right = mid-1;

else if(a[mid] < value) left = mid+1;

else { index = mid; break; }

return index;

¥

4 Time complexity: best-case??, worst-case??,

average case??

Beyond Basics

#0, Q,and ©
#®Proofs

#Complex complexities, e.g.

T(N) = T(N-1) + T(N-2) + 2

