
Threads and concurrency in Java.

Martin Jarnes Olsen



This presentation

Threads in the Java 1.5 API.
Implementing threads.
Controlling the thread.
The life of a thread.
Thread synchronization.
Thread priority.



What is a thread?

Def: Sequential flow of 
control within a program.
Executes single instructions 
in a sequential order.
Can run multiple threads at 
the same time.
Runs within the same 
process.



Threads in the API

High level – specific tasks
java.util.Timer
javax.swing.Timer

Low level - implementing your 
own threads

java.lang.Thread
java.lang.Runnable



Implementing java.util.Timer

Timer t = new Timer();
t.schedule(new Clock(), 0, 1000);
:
class Clock extends TimerTask {

public void run() {
//will be executed each timeinterval

}
}



Implementing your own threads

Two ways
Subclassing java.lang.Thread.
Why use Thread?

A class can only extend one class at a time.
If don’t need to extend other classes.

Implementing the Runnable interface.
Why use Runnable?

A class can implement multiple interfaces.
If need to extend other classes.



Subclassing java.lang.Thread

class ThreadExample extends Thread {
public void run() {

:
}

}
:
ThreadExample te = new ThreadExample();
te.start();



Implementing java.lang.Runnable

class ThreadExample implements Runnable {
public void run() {

:
}

}
:
Thread t = new Thread (new ThreadExample());
t.start();



Controlling the thread.

start() automatically calls run()
If decired task is repetative, use while loop inside run().
Use a condition in the loop that is controllable from outside.
Control speed/intensity of thread by using sleep or wait.

boolean running;
public void run() {

running = true;
While(running) {

Try{ sleep(1000); } catch(Exception e) {}
:

}
}
Public void stopThread(boolean b) {

running = b;
}



The life of a thread

Different states (new to 5.0):
NEW – Before start() has been called.
RUNNABLE – After start() has been called.
WAITING – when calling wait().
TIMED_WAITING – when calling sleep().
TERMINATED – after run() is finished.

getState() method.



Producer/consumer

Consider the famous producer/consumer 
problem:

Two threads have access to the same stack.
One produces, one consumer.
Problem: Controlling the order of 
consummation and production.
Solution: Limiting the access to one thread at 
a time.



Thread synchronization

public synchronized void produce() {
while(!producing) 

try{ wait(); } catch(Exception e) {}
number++;
System.out.println("Producing: " +number);
producing = false;
notifyAll();

}
:

public synchronized void consume() {
while(producing) 

try{ wait(); } catch(Exception e) {}
System.out.println("Consuming: " +number);
producing = true;
notifyAll();

}



Thread priority

Can be access with getPriority() and 
setPriority().
A number between 1 and 10. (1 low, 10 
high)
5 is default.
Lowering the priority is not a smart way 
to schedule threads, as lower priority 
threads will simply not run most of the 
time.



Questions?


