CS201 Introduction to Java Programming
00 Programming and Class Basics

Chengyu Sun
California State University, Los Angeles

Overview

Class
= Variables and variable scope
= Methods
+ Constructors and garbage collection
+ Keyword t hi s
Object
= Reference
+ Assignment, equality, and array of objects
+ Pass by reference and pass by value
@ Keyword st ati c

Philosophy of Object Oriented
Programming Languages

The world consists of objects
= Human, cars, books, ...
Objects
= Attributes
+ Name, age, height, weight, eye color etc.
= Operations
+ Walk, talk, sleep, take etc.
» Interactions with other objects
+ Sit on a chair, drive a car, read a book ...

Benefits of OO Programming
(Or Topics of CS202)

#Inheritance
#Encapsulation
@ Polymorphism

Example: A Simple Account
Management System

Account

@ Attributes # Operations
= Account number = Check balance
= Owner’s name = Deposit
= Balance (>=0) = Withdraw

= Transfer

Account Class

#Header
#Members
= Class variables, a.k.a. fields
+accn, owner, bal ance

= Methods

+ Constructors
+bal ance(), deposit(), w thdraw(),
transfer()

Class Variables

Just like /ocal variables public class Account {
= Type int acen;
= Name

String owner;
= Value
4 Except that they are
declared outside all
methods // methods

Canbeusedinal ..
methods 3

double balance=0.0;

Variable Scope

@ Parts of the code where the variable can be
used

@ Usually from the declaration of the variable to
the end of the code module (often marked
with a “}"”) where the variable is declared

@ Scope of class variables is the whole class

@® Shadowing

Variable Scope Example

public class Scopel {
intx =-1;

public void test()
int x = 10; // System.out.printin(x) ??
for(inti=0;i<10; ++i)
int x = 5; // System.out.print(x) ??
éystem.out.println(i)/

System.out.printin(x + " +y);

Variable Scope Example

public class Scopel {
intx =-1;

public void test()
int x = 10; // Shadowing
for(inti=0;i<10; ++i)
int x = 5; // Error! Scope conflict
éystem.out.println(i); // Error! Out of Scope

System.out.printin(x + " + vy);

¥ ¥
inty =-2; inty =-2;
Constructors of Account Constructors

/** Constructor. creates an account with zero balance */
public Account(int accn, String owner)

this.accn = acen;
this.owner = owner;
/** Constructor. creates an account */

public Account(int accn, String owner, double balance)

this(accn, owner);
this.balance = balance > 0 ? balance : 0;

A special type of methods
= Name is the same as the class name
= No return type (not even voi d)
@ Purpose
= Allocate the memory
» Initialize fields
@ There could be more than one constructors
= Default constructor Cl assname()

= A constructor can call another constructor as the
first statement of the constructor

Keyword t hi s

A reference to an
object itself
= De-shadowing

@ A reference to a
constructor

intx =-1;

void foo()
intx = 10;
System.out.printin(x);

System.out.printin(this.x);
¥

Garbage Collection

@ There are no destructors in Java
Freeing memory allocated to objects is done
automatically — garbage collection
Advantage
= Simplifies programming
» Safer and more robust programs
+ No dangling pointers
+ Greatly reduced memory leaks
Disadvantages
= Less efficient

Other Methods of Account

#double balance()

#double deposit(double amount)
#double withdraw(double amount)
#double transfer(double amount,

Usage of Classes

Declaration Account a; // declaration

Allocation and /7 allocation and initialization
a = new Account(100000, "Chengyu", 10);

initialization
i //3in1
@ Ca”mg cIass Account b = new Account(100001, "Sun", 20);
methods

Account a) @ Classes Versus pamarn)
Objects a.transfer(10, b);
Object Reference Object Assignment

#0bject name is also called the reference

of the object

= Similar to pointerin C/C++

reference

public class Foo { Foo a = new Foo();
- r

int n; Foob = a,
Foo ¢ = new Foo(a);
public Foo() {n=0}

) e a.inc();
public Foo(Foo f) { n = f.n; } b.inc();
public void inc() { ++n; } c.inc();
?ublic void print() a.print(); // ??

b.print(); // ??

System.out.printin(n); c.print(); // ??

Object Equality

By reference System.out.printin(a == b); // ??
. == System.out.printin(a == c); // ??
% By value
= equals()
Add another method to Foo:

public boolean equals(Foo a)

{

return n == a.n;

}

Array of Objects

Account accounts[];
accounts = new Account[1000]; // allocation of references

// initialization has to be done for each element
Accounts[0] = new Account(100000, “Chengyu”, 10.0);
Accounts[1] = new Account(100001, “Sun”, 20.3);

accounts

‘ accounts[O]‘ accounts[l]‘ accounts[2] ‘ °ooo

Parameter Passing Example

public class Foo {

public int n = 0; inta=0;

Foo f = new Foo();

void inc(int a, Foo f) inc(a, f);
System.out.printin(a); // ??

++a; System.out.printin(f.n); // ??

++f.n;

¥

Keyword st ati c

public class Foo {
@ A st ati c member

) static inta = 0;
of a class is shared int b;
by all objects of the Foo() { b =0; }

class o
public void inc()
{

Foo f1 = new Foo();

++a; ++b;
Foo f2 = new Foo(); 3 ++b;

f1.print(); f2.print(); // ?? public void print()
{

fl.inc(); ; .
2.inc(); System.out.printin(a);

System.out.printin(b);
f1.print(); f2.print(); // ??

Example: Improved Account
Class

#Original constructors of Account:

= public Account(int accn, String owner,
double balance)

= public Account(int accn, String owner)
#Specifying account number in the
constructor is not good
#Solution: add a static field
mstatic int nextAccn = 100000;

New Constructor of Account

/** Constructor. creates an account with zero balance */
public Account(String owner)

accn = nextAccn++;
this.owner = owner;
/** Constructor. creates an account */
public Account(String owner, double balance)

this(owner);
this.balance = balance > 0 ? balance : 0;

